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Figure 1: The VAINE (Visualization and AI for Natural Experiments) system interface. The three main views — the Clusters
view, the Average Treatment Effect view, and the Covariates view — enable analysts to estimate the effect size of the treatment on
the outcome variable of interest. Interactive menu options can be used to adjust clusters, exclude outliers, and inspect covariates.

ABSTRACT

Natural experiments are observational studies where the assignment
of treatment conditions to different populations occurs by chance
“in the wild”. Researchers from fields such as economics, health-
care, and the social sciences leverage natural experiments to conduct
hypothesis testing and causal effect estimation for treatment and
outcome variables that would otherwise be costly, infeasible, or
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unethical. In this paper, we introduce VAINE (Visualization and
AI for Natural Experiments), a visual analytics tool for identifying
and understanding natural experiments from observational data. We
then demonstrate how VAINE can be used to validate causal rela-
tionships, estimate average treatment effects, and identify statistical
phenomena such as Simpson’s paradox through two usage scenarios.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools ; Human-centered computing—Visu-
alization—Visualization application domains—Visual analytics

1 INTRODUCTION

Identifying and quantifying causal relationships are essential tasks
in many domains to develop theories, build models, and guide pol-
icy. Accurate causal inference depends on running controlled ex-
periments to investigate the variables in question. This requires the
random allocation of treatment conditions via randomized controlled
trials (RCTs). RCTs allow scientists to account for confounding
factors, and are considered the “gold standard” for supporting causal
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claims. However, RCTs may not be possible, especially in situations
where manipulating treatment variables is impractical or unethical.

For example, during the COVID-19 pandemic, understanding
causal relationships between non-pharmaceutical interventions and
infection transmission would have helped policy makers decide
which interventions to implement and when. However, it is both
unethical and impractical to conduct RCTs by dictating different
health guidelines to arbitrary subsets of populations. Researchers
must thus rely on observational data available post-hoc to look for
indirect clues about causality. Beyond global pandemics, similar
approaches are needed to understand the causal relationships that
explain human behavior, information operations (what causes suc-
cessful disinformation campaigns to go viral online?), and model
evaluations (what causes a model to fail?).

Causal claims can be tested using observational data if a natural
experiment has occurred. This is an uncontrolled process where the
assignment of treatment conditions to different groups has occurred
“as if at random”. Such natural experiments have long been used by
researchers in fields such as economics, healthcare, and the social
sciences. By analyzing observational data, researchers are able to
conduct hypothesis testing and causal effect estimation that would
otherwise be costly, infeasible, or unethical [7].

There are many challenges and caveats to working with obser-
vational data. In particular, the well known adage that correlation
doesn’t imply causation duly applies. Correlations between treat-
ment and outcome variables may be driven by underlying confound-
ing variables that aren’t observed. Making a claim of causation
thus requires showing that correlation still exists when controlling
for all other variables, i.e., covariates. As such, while algorithmi-
cally generated claims of causation can be used to explore potential
causalities in observational data, they shouldn’t be taken at face
value and need to be interpreted and contextualized by a domain
expert. When working with natural experiment data, experts would
want to know whether all possible covariates have been accounted
for during data collection, how much outliers influence the result,
and what characterizes subgroups experiencing stronger effects. The
need to contextualize, explore, and interpret the results of natural
experiments thus motivates the development of a visual analytics
tool to better support human-in-the-loop causal analysis.

In this paper, we introduce VAINE (Visualization and AI for Natu-
ral Experiments) (Fig. 1), a visual analytics system that enables users
to identify natural experiments in observational data and estimate
the impact of treatment variables on outcomes. We also demonstrate
how VAINE can be used to validate causal relationships, estimate
average treatment effects, and identify statistical phenomena such as
Simpson’s paradox through two usage scenarios.

2 RELATED WORK

Causal inference from observational data has long been a challenge
in statistics and data analysis. Much work has been done in the
field of mathematical causal discovery [14, 17] and causal structure
analysis [16]. More recently, a number of visualization techniques
have been developed to support causality representation [5, 9] and
inference [19, 20]. However, causality inference from observational
data remains a challenging task, particularly because correlation
does not imply causation. For instance, a study by Shalizi et al. on
social network data has found that the use of regression coefficients,
even taking into consideration temporal data, cannot distinguish
causal factors from confounding variables [18].

Despite the difficulties of casual inference, once a causal relation-
ship has been identified, it becomes possible to conduct hypothe-
sis testing by identifying natural experiments when they occur in
observational data. Natural experiments have long been used by
researchers in fields such as economics [2, 13], healthcare [10] and
the social sciences [3]. Observational data can thus be successfully
used to identify natural experiments when they occur, allowing an-

alysts to estimate the effect size of the treatment variable on the
outcome variable of interest. However, natural experiments remain
an underexplored area for visual analytics systems. In this paper, we
aim to address this gap through the VAINE system.

3 VAINE
During the design and implementation of VAINE, the first author
was embedded within a research team of domain experts applying
natural experiments to observational data. In addition to causal
effect estimation, the results had to be interpreted and contextualized.
Based on these requirements and prior related work, the following
design goals (DG) were derived collaboratively:

DG1: Control for confounding variables. VAINE should control
for confounding variables by automatically grouping data
items such that items in the same group have similar values for
all covariates other than the treatment and outcome variables.

DG2: Estimate effect sizes. The primary outcome of VAINE should
be an estimate of the effect of the treatment on the outcome
variables. Users should be able to obtain this estimate, and
understand how it is derived from the data clusters.

DG3: Incorporate user feedback. Users should be able to incorpo-
rate domain expertise or contextual information to guide the
algorithm. For example, by adjusting clustering parameters,
removing outliers, and inspecting cluster details.

DG4: Support responsive UI. Interactions should automatically
trigger rapid recomputation of analytics and update visual-
izations.

VAINE 1 is a domain-agnostic tool implemented as a python pack-
age and widget for the popular Jupyter notebook 2 computational
environment. Our target users are research analysts who are familiar
with using such computational environments for causal analysis.
The front-end is built in JavaScript, using the React 3 framework.

3.1 Interface
The VAINE system displays the current treatment and outcome
variables in the far left panel. The interface has three main views:
Clusters, Average Treatment Effect, and Covariates views (Fig. 1).
The same cluster color coding is used to coordinate across views.
Clusters with an insignificant (p > 0.05) regression coefficient are
deselected by default (grayed out) across all views.

The Clusters view displays all data instances clustered based on
their covariates, with a default of 10 clusters. Data instances in
the same cluster have similar covariate values, and only vary by
treatment and outcome values. This controls for confounding vari-
ables, and isolates the effect of the treatment on the outcome variable
(DG1). Each cluster also has an overlaid line indicating the linear
regression of the outcome variable on the treatment variable for all
data instances in that cluster (DG2). Note that this regression line is
based on the data values of the treatment and outcome variables, not
the dimensionality reduced coordinates of data points.

The Average Treatment Effect view displays data points in a linear
model plot based on their treatment and outcome values. Each
cluster is overlaid with a line of the linear regression of the outcome
variable on the treatment variable. This view includes the weighted
average treatment effect for selected clusters, an estimate of the
impact of the treatment on the outcome variable (DG2). The overall
regression line for the entire dataset (without clustering) is depicted
with a faint dashed line, providing context to interpret subgroup
regressions relative to that of the entire dataset.

1https://github.com/pnnl/vaine-widget
2https://jupyter.org
3https://reactjs.org

https://github.com/pnnl/vaine-widget
https://jupyter.org
https://reactjs.org


The Covariates view summarizes covariate values of all data
instances in a parallel coordinates plot, with only the first five covari-
ates shown by default. Visual clustering is used to enhance patterns
in the data and reduce visual clutter [21]. In this view, analysts can
explore how the clustering controls for covariate values (DG1).

3.2 Interactions
Treatment and outcome variables of interest can be selected using
the drop-down menus on the left. VAINE then automatically treats
all other variables in the dataset as covariates, and re-clusters data
instances based on the new covariates (DG4).

In the Clusters view, analysts can manually adjust selected clus-
ters using a drop-down menu, or by clicking on their regression line
overlay (DG3). In order to coordinate across views, cluster selec-
tions propagate to all three views. Additionally, the Clusters view
also allows analysts to adjust the number of clusters created (DG3).
When this value is changed, VAINE automatically re-clusters all data
instances and updates all three views. Clicking on a cluster name in
the drop-down menu opens a dialogue box where users can change
cluster name and color, and inspect the distribution of its covariates
(DG1). In the Covariates view, analysts can manually select which
covariates to inspect using the drop-down menu (DG1). This allows
users to prioritize covariates based on their relative importance.

Brushing and linking is used to coordinate analysis across all
views. Users can brush over any of the views to select a subset of
data points. Selected points, such as outliers, can be excluded from
analysis using the Exclude button.

3.3 Algorithm
During preprocessing, the system computes a 2-D embedding using
UMAP [15] for each treatment with the covariates and remaining
treatments as input features (DG1). The tool then performs hierar-
chical clustering of each 2-D embedding and outputs a dendrogram
that is passed to the system front-end using the approach described
by Arendt et al. [4]. On load, the number of clusters defaults to 10.
When the number of clusters is adjusted, the dendrogram from the
preprocessing phase is used to re-cluster the n data points in O(n)
time, allowing VAINE to quickly respond to interactions (DG4).

The average treatment effect (AT E) value estimates the size of the
impact of the treatment on the outcome variable, and allows analysts
to perform causal effect estimation. The AT E is calculated using
the weighted average of the regression coefficients of all selected
clusters (DG2). In order to do so, linear regression of the outcome
variable on the treatment variable is first performed for all clusters.
Linear regression was chosen as the default algorithm because it is
simple and can be quickly calculated on the front end, allowing for
rapid user adjustments (DG4). For a dataset with M selected clusters
and a sum of N data instances across these clusters, each cluster
has a size of ni (such that n1 +n2 + ...+nM = N) and a regression
coefficient of bi. The calculated AT E of this dataset is:

AT E =
1
N

M

∑
i=1

ni ·bi (1)

When analysts exclude data points from the dataset (described in
3.2), the clusters will not change. However, regression equations will
be recalculated for affected clusters, and the AT E will be updated
using the new regression coefficients and cluster sizes (DG4).

4 USAGE SCENARIOS

We demonstrate VAINE with two usage scenarios [12]. The first
uses the Auto MPG dataset [8], often used to predict the miles
per gallon of cars from variables such as weight. The second sce-
nario looks at the Ames Housing dataset [6], which has been used
to predict house sale prices from other variables. These datasets
were selected because they are intuitive and contain well-established
causal relationships, which allow us to validate VAINE.

(a) From the Clusters view, we identify 3 distinct clumps in the dataset. After setting
the number of clusters to 3, the ATE of weight on mpg is estimated to be -0.01.

(b) From inspecting the Covariates view, we can see that the three clusters are clearly
distinguished by their covariates. In particular, instances within the same cluster share
similar values for the number of cylinders, displacement and horsepower.

Figure 2: After setting the number of clusters for a treatment and
outcome pair, the clustering can be verified in the Covariates view.

4.1 Usage Scenario 1: Auto MPG Dataset

The Auto MPG dataset [8] contains 9 attributes. We exclude tempo-
ral and ordinal variables, and consider mpg and horsepower to be
the outcome variables. All other variables are treatment variables.

It has often been claimed that the weight of a vehicle affects its
fuel economy [1] (i.e., its miles per gallon (mpg) value). We can look
at this proposed causal relationship in VAINE by selecting weight
as the treatment variable of interest. In the Clusters view, we see
three distinct clumps in the dataset. Setting the number of clusters
to 3 identifies these (Fig. 2a). The Covariates view reveals that the
clusters are clearly distinguished by their covariates. In particular,
instances within the same cluster share similar values for the number
of cylinders, displacement and horsepower (Fig. 2b). From the
Average Treatment Effect view, we can see a small but significant
estimated effect of weight on mpg. VAINE thus allows us to confirm
from the data that when other variables are held nearly constant,
increasing a car’s weight decreases its mpg, a finding that agrees
with both EPA guidelines and prior studies such as [19].

For comparison, we can also look at variables not known to affect
mpg, such as acceleration. A simple linear regression of acceleration
on mpg for the entire dataset yields a regression coefficient of 1.20.
We can verify this relationship in VAINE by selecting acceleration as
the treatment variable of interest. The Clusters view reveals multiple
distinct clusters in the dataset; we thus adjust the number of clusters
to 4 (Fig. 1). With this new clustering, the AT E is now 0.03. While
still significant, this is a large decrease from the coefficient of 1.20
when only a simple linear regression was used without clustering.
Additionally, the direction of the effect of acceleration on mpg is not
constant across clusters. The overall regression line for the entire
dataset suggests a strongly positive relationship of acceleration on
mpg (Fig. 1). However, from examining the subgroups, we see
that the blue and orange clusters show a relationship opposite to the



Figure 3: Outliers identified in the Average Treatment Effect view
can be excluded from analysis, updating the axes and AT E value.

(a) The purple and lime clusters have the steepest regression lines. Selecting these two
clusters increases the AT E to 8.48 (from an AT E of 4.86 when all clusters are selected).

(b) Unlike the rest of the dataset, data instances in the selected clusters (purple and lime)
tend to have a 2ndFlrSF of 0. For clarity, only a subset of covariates are shown.

Figure 4: By inspecting the purple and lime clusters in greater detail,
we can conclude that Lot Area has a stronger effect on Sale Price
for smaller properties without a second floor.

overall trend. This is a case of Simpson’s paradox, where trends
in subgroups disappear or are reversed when groups are combined.
By visualizing clusters in the dataset, VAINE thus supports the
identification of inconsistent treatment effects in subgroups, allowing
instances of Simpson’s paradox to be mitigated by expert judgement.

4.2 Usage Scenario 2: Ames Housing Dataset

The Ames Housing dataset [6] contains 81 attributes. We exclude
all temporal and ordinal attributes, and consider Sale Price to be the
outcome attribute of interest. All other attributes are treatments.

Of the available treatment variables, we would expect property
area to affect property sale price. In order to estimate the change in
sale price per unit change in property area, we set Lot Area as the
treatment variable. From the Average Treatment Effect view, a clear
outlier is identified. Excluding this outlier increases the estimated
AT E of Lot Area on Sale Price to 4.86 (Fig. 3).

In the Clusters view, some clusters have a steeper regression line
than others, suggesting that Lot Area has a stronger effect on Sale
Price for those particular properties. We can investigate this further
by deselecting all other clusters, highlighting only the purple and

lime clusters with the steepest regression lines. From this selection,
we see that the AT E for these two clusters is 8.48, indicating that the
effect of Lot Area on Sale Price for properties in these two clusters is
almost double that of the entire dataset (Fig. 4a). From the Average
Treatment Effect view, we see that the two clusters tend towards
smaller Lot Area values. The steeper effect of Lot Area on Sale
Price for smaller properties corresponds with findings from prior
studies using the Ames housing dataset [11].

Using the Covariates view, we can further inspect the data in-
stances in the two clusters. From Fig. 4b, it can be seen that the most
distinct covariate differentiating these clusters from the rest of the
data is the Second floor square feet (2ndFlrSF) variable. Instances
in the two clusters tend to have a 2ndFlrSF of 0. We thus conclude
that per unit increases in Lot Area cause a greater increase in Sale
Price for smaller properties without a second floor.

5 LIMITATIONS AND FUTURE WORK

VAINE was originally designed to operate on continuous treatments,
outcomes, and covariates. Therefore, some decisions are less ap-
propriate for ordinal or categorical data, such as using dimension
reduction and linear regression. However, workarounds such as
one-hot encodings are possible. We also note that VAINE assumes
linearity when estimating the AT E. While the Average Treatment
Effect view can be used to identify instances of non-linear relation-
ships, VAINE does not currently take such factors into consideration.
Moving forward, we would like to extend VAINE to account for
non-linearity. Given the utility of time ordering to establish causal
relationships, future work can also extend VAINE to account for a
range of data types and experimental setups.

Finally, the design goals outlined in this paper were identified
by the research team of domain experts conducting causal analysis.
There may be further design goals not considered here. Preliminary
applications of VAINE by the research team have also found limita-
tions in terms of the scalability of the system to datasets with tens of
thousands of instances. While computation time remains feasible,
optimizing for scale represents a potential avenue of future work.

6 CONCLUSION

In this paper we presented VAINE, a visual analytics tool designed
for research analysts familiar with using computational environments
for causal analysis. VAINE helps users identify natural experiments
in observational data by clustering data instances based on covariates.
Analysts can thus control for confounding variables and isolate
the effect of the treatment(s) on outcome variables. The visual
representations in VAINE allow domain experts to explore potential
causalities and contextualize results by adjusting clusters, identifying
outliers, and inspecting covariates. We have also demonstrated how
VAINE can validate causal relationships, estimate average treatment
effects, and identify cases of Simpson’s paradox.

Despite the limitations addressed above, VAINE is a practical
and novel technique for leveraging natural experiments in observa-
tional data for human-in-the-loop causal effect estimation. Having
validated VAINE, the research team is currently applying it to under-
stand various operational domains including information operations,
human behavior, and causal explanations of model performance.
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