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ABSTRACT

This paper demonstrates that parallel vector curves are piecewise
cubic rational curves in 3D piecewise linear vector fields. Parallel
vector curves—loci of points where two vector fields are parallel—
have been widely used to extract features including ridges, valleys,
and vortex core lines in scientific data. We define the term gener-
alized and underdetermined eigensystem in the form of Ax+ a =
λ (Bx+b) in order to derive the piecewise rational representation
of 3D parallel vector curves. We discuss how singularities of the ra-
tionals lead to different types of intersections with tetrahedral cells.

1 INTRODUCTION

The extraction of many one-dimensional feature curves—ridges,
valleys, and vortex core lines—can be boiled down to the parallel
vector problem [4]:

v(x)×w(x) = 0 or v = λw, (1)

where v,w : R3 → R
3 are two 3D vector fields and λ is a real

number. The solutions x are a locus of points that normally form
one-dimensional curves embedded in the 3D space. For example,
the Sujudi–Haimes vortex core descriptor [5] can be interpreted as
v× ((∇v)v) = 0, where v is velocity; the Bank-Singer vortex core
can be defined as (∇× v)× (∇p) = 0, p being the pressure field;
and ridge and valley lines can be formulated as g× ((∇g⊺)g) = 0,
where g is the gradient field of a scalar field.

Challenges of extracting parallel vector curves (or simply PV
curves) include both specificity and accuracy. First, specificity be-
comes a problem when parallel vector curves are too close to each
other, causing ambiguities in reconstructing the topology of the
curves. For example, the seminal work by Peikert and Roth [4]
uses a numerical method to find intersections between PV curves
and individual mesh cells; when more than two intersections are de-
tected, heuristics have been used to pair the intersections. Second,
the reconstruction of PV curves inside mesh cells, in other words
the “subpixel” accuracy, is challenging. For example, differential-
equation-based methods such as feature flow fields (FFFs) exist but
are subject to integration errors [7].

In this study we present a mathematical derivation to extract an-
alytical exact PV curves. We regard our method as a generalization
of the work of Peikert and Roth [4]. We demonstrate a variety of
uses of analytical PV curves and envision the future possibilities of
using analytical PV curves. Overall, the contribution of this paper
is twofold:

• Theoretical contribution that PV curves are piecewise cubic
rational curves in piecewise linear vector fields;

• An analytical exact PV curve extraction algorithm.

2 BACKGROUND

This section first reviews the classical Peikert–Roth method and
then discusses other approaches to extract PV curves.

*e-mails: {hguo|tpeterka}@anl.gov

2.1 Peikert-Roth method

The Peikert–Roth method [4] is a fundamental approach to extract
PV curves in 3D vector fields. The basic assumption is that v and
w are linear on triangular faces (2-simplices) in the mesh; subdivi-
sion of non-triangular faces is needed if the mesh is nonsimplicial.
Based on the linearity assumption, one can find intersections be-
tween PV curves and every triangular face by solving the following
equation:
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v0z v1z v2z
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µ1

µ2
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w0x w1x w2x
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w0z w1z w2z









µ0

µ1

µ2



 , (2)

where columns (vix,viy,viz)
⊺ and (wix,wiy,wiz)

⊺ denote the xyz
components of v and v on the ith node of the triangle; and µµµ =
(µ0,µ1,µ2)

T denotes the barycentric coordinates and µ0 + µ1 +
µ2 = 1. If the result barycentric coordinates are within [0,1], the in-
tersection is in the triangle and is a parallel vector point (PV point).

Equation (2), known as the generalized eigenvalue problem in
the form of Aµµµ = λBµµµ (A and B, respectively, represents the 3×3
matrix in the left- and right-hand side of the equation), has closed-
form solutions of eigenvalues λ and eigenvectors µµµ . There exists a
method to transform the equation into a characteristic polynomial

det(A)λ 3 + ·λ 2 + ·λ +det(B), (3)

where we omit, for now, the quadratic and linear coefficients with
the dot (·) symbol, for clarity.

A limitation of this method is the specificity and accuracy when
reconstructing PV curves from PV points. First, one may associate
two intersections if they are on the triangular faces of the same 3D
cell, but ambiguity exists when the cell has more than two inter-
sections. Actually, each triangular face may have up to three PV
points because the characteristic polynomial is cubic, and chances
exist that a 3D cell has many intersections. In such cases, heuristics
or cell subdivision are needed to pair the intersections. Second, al-
though the PV points are analytically exact on 2D triangular faces,
no such exact method exists for characterizing PV points and curves
inside 3D cells. Our method generalizes the Peikert–Roth method
and resolves both specificity and accuracy problems with an exact
analytical solution, as described in the rest of this paper.

2.2 Other methods

Various methods are proposed to address the specificity and accu-
racy problem; to date, however, no method delivers exact analytical
results.

A parity test method was proposed in [2] to eliminate ambigu-
ities when multiple pairs of PV points exist on the faces of a cell.
Ambiguity cases produced by the Peikert–Roth method can be used
as the input, and the parity test samples u and v on the boundary of
the faces and uses Poincare–Hopf and Gauss–Bonnett theorems to
determine the parity.

An isosurface-based method [4] views PV curves as the inter-
section between two isosurfaces—zero-level sets of the x- and y-
components of v(x)×w(x). This method assumes linearity of the
cross product field and can be numerically challenging; one has to
verify the z-component of the product is zero in the outputs.
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Integral-based method such as feature flow fields (FFF) [7]
views PV curves as integral curves of a derived vector field, namely
feature flow fields. Although methods exist to improve stability of
FFFs [8], error accumulates in solving ordinary differential equa-
tions (ODEs) and transforming input vector fields into FFFs. In
order to eliminate error accumulation in solving ODEs, Gelder and
Pang [1] proposed PVSolve, which uses the dimensionless project
vector at every iteration and enables larger step sizes than FFF meth-
ods. In addition, integral-based methods have been generalized to
high-order meshes [3] and time-tracking [6].

3 MATHEMATICAL FORMULATION

This section proves that PV curves in piecewise linear vector fields
v(x) and w(x) are parametric curves and piecewise cubic rational
functions of λ .

3.1 Assumption

We assume that both v(x) and w(x) in Equation (1) are piecewise
linear (PL). The PL assumption implies that the domain is dis-
cretized into 3D simplicial tetrahedral cells. In each tetrahedron,
both v(x) and w(x) can be linearly interpolated:

v(x) = µ0v0 +µ1v1 +µ2v2 +µ3v2

w(x) = µ0w0 +µ1w1 +µ2w2 +µ3w2

1 = µ0 +µ1 +µ2 +µ3

, (4)

where (µ0,µ1,µ2,µ3)
⊺ are the barycentric coordinates of a point

on the PV curve; vi and wi (i = 0,1,2,3) are the vector values at
the ith vertex of the tetrahedron. We consider only the PV curves
inside the tetrahedron; that is, µi ∈ [0,1], i = 0,1,2,3.

Based on the PL assumption, we rewrite Equation (1) as
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,

(5)
where columns (vix,viy,viz)

⊺ and (wix,wiy,wiz)
⊺ denote the xyz-

components of vi and wi, respectively, on the ith vertex. Because
µ0 + µ1 + µ2 + µ3 = 1, we reduce µ3 and transform both sides of
the equation as follows:
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 .

(6)

3.2 Generalized underdetermined eigensystem

We define Equation 6 as a generalized underdetermined eigensys-
tem and rewrite it as

Aµµµ +a = λ (Bµµµ +b) , (7)

where A and B are the 3× 3 matrices on the left- and right-hand
side of Eq. (6), respectively; a and b are equal to

(

v3x,v3y,v3z

)

⊺

and
(

w3x,w3y,w3z

)

⊺
, respectively; and µµµ represents the three inde-

pendent components of the barycentric coordinates (µ0,µ1,µ2)
⊺
.1

1Equation 7 appears similar to but is fundamentally different from those

of generalized eigenvalue problems (in the form of Aµµµ = λBµµµ ), which typ-

ically has a finite number of solutions of λ , whereas a generalized underde-

termined eigensystem has infinitely many solutions of λ .

To get the closed-form solutions of λ and µµµ , we first transform
Eq. (7) into

(A−λB)µµµ =−(a−λb) . (8)

We then left multiply the adjugate of (A−λB) on both sides of the
equation, and we have

adj (A−λB) (A−λB)µµµ =−adj (A−λB) (a−λb) , (9)

where adj(·) is the adjugate operator for square matrices. Because
adj(M)M = det(M)I always holds for any n× n square matrix M
even if M is singular, det(M) being determinant of M and I being
the n×n identity matrix, we have

det(A−λB)µµµ =−adj (A−λB) (a−λb) . (10)

We will show that both det (A−λB) and adj (A−λB) (a−λb) are
polynomials of λ up to degree three. Thus each component of µµµ can
be written as a cubic rational function of λ when det (A−λB) 6=
0. For simplicity, we denote Q(λ ) = det (A−λB); Pi(λ ) is the
ith component of the 3-dimensional vector −adj (A−λB) (a−λb).
We then have







µ0 = P0(λ )/Q(λ )
µ1 = P1(λ )/Q(λ )
µ2 = P2(λ )/Q(λ )

(11)

if Q(λ ) 6= 0. Because µ0 + µ1 + µ2 + µ3 = 1, by letting P3(λ ) ≡
Q(λ )−P0(λ )−P1(λ )−P2(λ ), we can also write µ3 as a rational:

µ3 = 1−µ0−µ1−µ2 =
Q(λ )−P0(λ )−P1(λ )−P2(λ )

Q(λ )
=

P3(λ )

Q(λ )
.

(12)
In the rest of this section, we will demonstrate that both Pi(λ ) and
Q(λ ) are cubic polynomials, thus supporting our claim that PV
curves are piecewise cubic rational parametric curves.

3.3 Denominator polynomial Q(λ )

The denominator det(A−λB) is a polynomial up to the third de-
gree:

Q(λ ) =det(A−λB) =
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where ai j and bi j , respectively, is the ith row and jth column of A
and B. We will refer to Q(λ ) as the characteristic polynomial of
the given tetrahedron.

In general, the roots of the third-degree polynomial Q(λ ) can be
written in closed form. In special cases when the cubic coefficient
det(B) is zero (or the quadratic coefficient coincidentally being zero
too), the roots are still in closed form.

3.4 Numerator polynomials Pi(λ )

Each component of the right-hand side of Equation (10), that is,
−adj (A−λB) (a−λb), is a polynomial of λ up to the third degree.
The first part of the product is a 3×3 adjugate matrix:

adj (A−λB)

=
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each element is a 2×2 determinant, which is a polynomial of λ up
to degree two. The second part of the product is the 3× 1 vector
(a−λb); each component is a degree-one polynomial of λ . Each
component of the product −adj (A−λB) (a−λb) is thus a poly-
nomial up to degree three, denoted as Pi(λ ).

A key observation can be made by studying the full expansion2

of −adj (A−λB) (a−λb): coefficients of Pi(λ ) contain only val-
ues of v j and w j, j ∈ {0,1,2,3} and j 6= i. For example, P3(λ ) is
related only to the values of v0, w0, v1, w1, v2, and w2. In this case,
P3(λ ) is the characteristic polynomial of Equation (2), which is the
basis of the Peikert–Roth method [4] for extracting parallel vector
points on triangular faces.

3.5 Degeneracies

We discuss degeneracy cases when Q(λ ) becomes zero.
First, if Q(λ ) constantly equals 0, there is no solution to the equa-

tion if Pi(λ ) 6= 0 for all i unless the right-hand side of Equation 10
is 0. An example of the latter case (Pi(λ ) = Q(λ ) = 0 for all i and
λ ) is v(x) = w(x) = 0, which satisfy v(x)×w(x) = 0 everywhere
in the tetrahedron; we do not consider such degeneracy cases in PV
curve extraction.

Second, if Q(λ ) has a real root λ0, it is typically a degener-
acy case unless the limit limλ→λ0

Pi(λ )/Q(λ ) exists for all i ∈
{0,1,2,3}. If the limit exists, λ0 is a common root of Pi(λ ) and
Q(λ ).

4 PARALLEL VECTOR CURVES INSIDE A TETRAHEDRON

The extraction of parallel vector curves inside a tetrahedron is equiv-
alent to the solutions of µ0, µ1, µ2, and µ3 ∈ [0,1], that is,











0 ≤ P0(λ )/Q(λ )≤ 1
0 ≤ P1(λ )/Q(λ )≤ 1
0 ≤ P2(λ )/Q(λ )≤ 1
0 ≤ P3(λ )/Q(λ )≤ 1

, (15)

which further leads to following eight distinct inequalities.

P0(λ )/Q(λ )≥ 0 (Q(λ )−P0(λ ))/Q(λ ) ≥ 0
P1(λ )/Q(λ )≥ 0 (Q(λ )−P1(λ ))/Q(λ ) ≥ 0
P2(λ )/Q(λ )≥ 0 (Q(λ )−P2(λ ))/Q(λ ) ≥ 0
P3(λ )/Q(λ )≥ 0 (Q(λ )−P3(λ ))/Q(λ ) ≥ 0

. (16)

One can find a finite number of intervals of λ ∈ R; each interval
corresponds to a disjoint branch of the curve in the tetrahedron.

4.1 Solution intervals of each cubic rational inequality

Without loss of generality, let P(λ )/Q(λ )≥ 0 be any of the inequal-
ities in Equation (16); P(λ ) and Q(λ ) are cubic polynomials. We
describe the method by assuming that P(λ ) and Q(λ ) do not share
any roots; if there exists q such that P(q) = Q(q) = 0, we first re-

duce the rational
P(λ )
Q(λ ) to

P(λ )
λ−q

/
Q(λ )
λ−q

and then use the new numerator

and denominator as the input to solve the inequality.
We solve the inequality by (1) finding all roots of P(λ ) and Q(λ ),

(2) sorting the roots such that −∞ < r0 < r1 < .. . < rnr
< +∞,

nr being the total number of roots, and (3) checking whether
P(λ )/Q(λ ) ≥ 0 for each interval (−∞,r0),(r1,r2), . . . ,(rnr

,+∞).
Note that each endpoint of the result intervals is open if the endpoint
is a root of Q(λ ); otherwise the endpoint is closed. For example,
the result may be (−∞,r0)∪ [r2,+∞) if Q(r0) = 0 and Q(r2) 6= 0;
another result may be [r2,r3] if none of r2 and r3 is the root of
Q(λ ). We will interpret the meaning of open and closed intervals
in the next subsection.

We consider λ in the extended real domain R̄=R∪{∞}. This is
reasonable because normally (when P(λ ) and Q(λ ) have nonzero

2We omit the very long expansion for space.
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Figure 1: Ring representation of two sets of rational inequality solu-
tions. Solid dots and hollow dots, respectively, are the solutions of
the numerators and denominators.

cubic coefficients) the limits of P(λ )/Q(λ ) at positive and negative
infinities exist and are equal:

lim
λ→∞

P(λ )

Q(λ )
= lim

λ→−∞

P(λ )

Q(λ )
= lim

λ→+∞

P(λ )

Q(λ )
. (17)

Thus, we view two intervals that share the infinity endpoint as one
single interval. For example, (−∞,10]∪ [20,+∞) is considered as
one single interval that contains the infinity.

Figure 1 illustrates R̄ as a ring; the bottom and top of the ring are
zero and infinity, respectively. Solutions of P(λ ) and Q(λ ), respec-
tively, are mapped to solid and hollow dots on the ring. The color of
each sector indicates the sign of P(λ )/Q(λ ). Figure 1(a) illustrates
the solution of P(λ ) = (λ +20)(λ +10)(λ −0.1) and Q(λ ) = (λ +
100)(λ +0.3)(λ −10); as a result, the solutions of P(λ )/Q(λ )≥ 0
are (−∞,−100)∪ [−20,10]∪ (−0.3,0.1]∪ (10,+∞).

4.2 Solutions of all rational inequalities

The solution of Equation (16) is the intersections of solutions of
individual inequalities. As a result, the solution is either an empty
set or the union of subintervals. If the result is an empty set, the
parallel vector curve does not intersect the tetrahedra; otherwise
there exists intersections. The number of subintervals ranges from
zero to four, and each interval corresponds to a continuous segment
of the parallel vector curve. Normally, each subinterval is a closed
interval because the feasible region of λ such that Pi(λ )/Q(λ ) ∈
[0,1] is closed. For example, Figure 1(b) illustrates solutions of
multiple rational inequalities, leading to four feasible regions.

Figure 2 demonstrates possible configurations that PV curve in-
tersect a tetrahedron with synthetic data. If infinity is included in
the interval, a critical point exists in w(x) at the location where λ
is infinity. The interval of (−∞,λ0]∪ [λ1,+∞). As we increase (or
decrease) λ from λ1 (or λ0) to +∞ (or −∞), the PV point converges
to the critical point where w(x) = 0.

5 PV CURVE RECONSTRUCTION

We present a two-pass algorithm to reconstruct PV curves: the first
pass computes and solves the numerator polynomial for each trian-
gular face in the mesh, and the second pass computes the denomi-
nator polynomial and extracts PV curves inside each tetrahedron.

Per-triangle numerator pass. We calculate the exact roots of
the numerator polynomial (P(λ )) for each triangular face. The cu-
bic numerator polynomial typically has up to three real roots, each
corresponding to an intersection between a PV curve and the plane
that contains the triangle. If the intersection is inside the triangle,
we record the tuple of triangle ID, λ value, and the barycentric co-
ordinates of the intersection for the next pass.

Per-tetrahedron denominator pass. We compute the denomi-
nator polynomial (Q(λ )) and its root(s) for every tetrahedra that are
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Figure 2: Possible configurations of PV curves intersecting a tetrahedron: (a) single branch with a normal interval, (b) single branch with a critical
point of v, (c) single branch with a critical point of v and w, respectively, (d) two branches with normal intervals, (e) two branches with a critical
point on each branch, (f) three branches, (g) three branches with a critical point of w on one of the branches, (h) four branches with a critical
point of w on one of the branches. Red and blue arrows, respectively, indicate the v and w vectors.

Figure 3: PV curves extracted from a flow-past-cylinder dataset.

labeled in the previous pass, in order to reconstruct PV curves. We
gather the roots of all numerator polynomials of the triangular sides
and then solve the solution intervals. As a result, each tetrahedron
in the iteration finds one or multiple closed intervals of λ , and each
interval corresponds to a segment of PV curves.

Results and limitations. Figure 3 shows PV curves extracted
from a flow-past-cylinder dataset. We acknowledge the limitation
of the piecewise linearity assumption on both v and w. First, one
has to tessellate the input mesh if the input data are not given in
tetrahedral mesh. For example, if the input data are in a regular grid,
one may subdivide each cube into a number of tetrahedra; however,
multiple possible subdivisions exist and may lead to different PV
extraction results. Second, one has to make assumptions about the
linearity. For example, the Sujudi–Haimes descriptor, w = (∇v)v
is not linear even if v is linear; in future work, we will investigate
the error of PV curves when w is interpolated linearly.

6 CONCLUSIONS

This paper proves that PV curves are cubic rational curves in two
linear vector fields and presents an analytical exact PV curve ex-
traction algorithm. We believe this work opens numerous research
avenues. First, one can develop methods to query, filter, and sim-
plify PV curves for feature exploration. Second, one can investigate
the change of λ values along PV curves; although λ is monotonous
within each tetrahedron, the change over the entire curve may reveal
key insights into the data. Third, one can build connections between
vector field topology (e.g., critical points) with PV curves. Fourth,
it would be straightforward to further generalize the derivation to
track PV curves over time, in order to capture the dynamics of key
features in time-varying scientific data. Fifth, the two-pass recon-
struction algorithm can be directly accelerated with both GPUs and
distributed parallel computing for analyzing very large data.
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