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Figure 1: Screenshot of GeoSneakPique showing a query for largest magnitude earthquakes (a) within a user-specified free draw
polygon for a geographic area of interest (c). The GeoSneakPique widget (b) provides a hexbin-based preview of the data distribution
as well as a detailed basemap for additional spatial context. The system interface provides feedback (d) on administrative geographic
regions included (i.e., states) and allows for naming and saving the region for future queries (’middle us’).

ABSTRACT

How many crimes occurred in the city center? And exactly which
part of town is the ‘city center’? While location is at the heart of
many data questions, geographic location can be difficult to spec-
ify in natural language (NL) queries. This is especially true when
working with fuzzy cognitive regions or regions that may be defined
based on data distributions instead of absolute administrative loca-
tion (e.g., state, country). GeoSneakPique presents a novel method
for using a mapping widget to support the NL query process, allow-
ing users to specify location via direct manipulation with data-driven
guidance on spatial distributions to help select the area of interest.
Users receive feedback to help them evaluate and refine their spatial
selection interactively and can save spatial definitions for re-use
in subsequent queries. We conduct a qualitative evaluation of the
GeoSneakPique that indicates the usefulness of the interface as well
as opportunities for better supporting geospatial workflows in visual
analysis tasks employing cognitive regions.

Keywords: Data-driven scaffolds, cognitive region.

Index Terms: Human-centered computing—Visualization——

1 INTRODUCTION

Information-seeking referring to the notion of place is a prevalent
form of human enquiry [17, 20]. Despite the ubiquity of place in
information-seeking, the semantics of place is often subjective as the
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interpretation varies among people and how they relate to place [26].
As users formulate information goals, they often translate vague con-
ceptual knowledge into more concrete descriptions. This translation
can be difficult, however, as the ‘concrete’ description from a user
may not match the structure or content of the underlying data. When
user input does not match or cannot easily be put into words as an NL
query, the search process is often unsatisfactory. Search interfaces
can help with some of the challenges related to this exploratory form
of sense-making through user interface scaffolds such as autocom-
pletion [7]. Autocompletion displays in-situ suggestions as users
input queries in the flow of their search tasks. These suggestions
provide feedback to the user aiding them in generating valid queries
with visual cues based on the underlying document corpora.

In visual analysis, place is a basic category often employed to
individuate meaningful portions of spatial locations during data
exploration [22]. With the proliferation of NL tools for visual analy-
sis [3,5,6,12,14,18,32,36,37,46], users can express their analytical
questions in plain language containing attributes and values from the
underlying data source. Similar to web search tools, visual analysis
NL interfaces also provide autocompletion to help users formulate
queries [23]. While these systems can enhance a user’s ability to
more easily, and successfully, generate NL spatial queries about
specific, named locations (e.g., states, provinces, countries), there
are still many areas ripe for exploration to allow users a more natural
and flexible mode of spatial exploration that better aligns with the
vague ways in which people often conceptualize space.

Spatial language is complicated and there are numerous issues
with identifying the intended meaning of spatial prepositions and
relationships in NL usages [38, 41]. The vagueness and ambigu-
ity of expressing place-related terminology is commonly due to
two considerations [24, 25, 31]: First, generic place terms such as
‘area’ and ‘region’ are typically ambiguous in that their meaning is
compounded from a number of distinct, but closely related senses.
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Second, concepts of place are often dependent on other concepts,
such as geographic feature types, which are vague themselves.

In our work, we explore how vague definitions for places can
be expressed in visual autocompletion widgets through the concept
of more concrete specifications of cognitive region [26]. Cognitive
regions are (approximately) two-dimensional features that people
use to understand the (near) earth surface, as well as to reason and
communicate about it. These regions are spatial categories that often
correspond non-arbitrarily to real entities, properties, and processes,
and are created as intellectual or cognitive actions. They are a useful
form of regionalization that correspond more readily to the reality of
a heterogeneous set of geospatial features surface or serve the needs
of a particular geospatial inquiry (e.g., ‘The Midwest’, ‘West Coast’,
and ‘downtown’). They may have irregular boundaries or may align
nicely with common administrative boundaries (e.g., one definition
of ‘West Coast’ may encompass all of Washington, Oregon, and
California, while another definition of the same named region may
simply be the land along the coastline). They may also be identi-
fied on-the-fly based on perception of data distributions (e.g., an
interesting cluster of data points that are grouped into an arbitrarily
shaped area of interest). Cognitive regions are particularly well-
suited for NL interaction of geospatial data as they reflect the type of
categorical thinking that so highly characterizes human thought and
communication. They also may be formed, or re-shaped, on-the-fly
through evaluation of data distributions, with the boundaries of a
region of interest expanding or contracting based on how data is
distributed around the user’s initial conceptual boundary.

1.1 Contributions
This paper introduces GeoSneakPique, a system that supports the
querying of named regions as well as arbitrary combinations of
geographic regions, cognitive regions, or data-driven regions that
cannot easily be represented in NL. Our contributions are as follows:

• GeoSneakPique provides an aggregated ‘sneak peek’ (hex bins,
dual encoded to reflect count using color and size) of the
data with a map widget to facilitate queries based on data
distribution or using contextual spatial information from the
detailed basemap.

• We introduce a ‘coverage’ metric to help users assess and
refine spatial queries using commonly named administrative
geographies as well as data characteristics. The system also
persists spatial definition of named regions for use in future
queries. This ensures consistency in analytics and facilitates
comparisons between regions.

• An evaluation of the system provides useful insights for future
system design of NL input systems for supporting geospatial
inquiry involving cognitive regions.

2 RELATED WORK

2.1 Cognitive regions
While the concept of location is fundamental in geography and facili-
tates our categorization of locations and attributes, it can be tricky to
make a clear match between the human understanding of a location
and a computer mapping of the location [11, 40]. Incorporating cog-
nitive regions or other locations with fuzzy or irregular definitions,
is a known difficulty and important challenge in NL interfaces [29].
Montello [26] suggests four distinct types of regions: administra-
tive, thematic, functional, and cognitive. These geographic regions
may have sharp, well-defined, and official boundaries (e.g., states
and countries), or vague and more personally relevant, conceptual
definitions (e.g., ‘downtown’ or ‘west coast’), or they may be a com-
bination of both (e.g., a neighborhood, which may have an official
boundary defined by the city or county, but have a fuzzier border
for individuals based on their personal categorization of location).
The regions are often fuzzy and vague, with substantial variation

between individuals - even for the same named region (e.g., the
boundaries of Northern and Southern California; [27]). Addition-
ally, another challenge in working with cognitive regions is that the
precise definition of a named region may vary based on the way
in which it is used or interacted with. The boundary of the ‘west
coast’ may have different meanings depending on the nature of the
question being asked about the region - the region defined when
asking about best surf breaks and the region used when asking about
trends in agricultural production across the west coast will likely be
different even though the named region (‘west coast’) is the same.

2.2 Geospatial queries and expressing spatial concepts

Map reading tasks typically fall into three categories - identifying
specific information about locations, assessing general information
about patterns across an entire region, or to facilitate comparisons
between multiple locations or attributes [35]. However, asking
questions about location requires that we clearly define the location
in question - for instance, a defined geography or a geographic name
that can be attached to a known location (e.g., the term ‘California’
can be matched to a polygon with a name attribute of ‘California’).
In writing spatial NL queries, it can be challenging to align a user’s
name for a location to an absolute geographic definition. This is a
classic problem for NL queries as seen in toponym disambiguation
research [10], as well as more broadly in understanding cognitive
regionalization [27]. To further the challenges of specifying user
locations in NL queries, the location of interest may not even have a
common name and may be data driven, for instance, ‘the area around
that cluster of data points over there’ or ‘that land area sticking out
near the lake’. Sketching has long been thought of as a natural way
to express spatial information (e.g., [13]) and has been incorporated
into various systems as a support for defining location (e.g., graphical
selection in Google maps [2]), spatial relationships (e.g., [13]), or to
query for specific geographic patterns / configurations (e.g., [8, 39]).

2.3 Autocompletion and NL interaction

Search and NL interfaces often employ text or visual autocompletion
to help users formulate input queries [21,34,45]. The autocompletion
suggestions are either displayed contextually as a user types [15, 30]
or the interface reformulates the query into corresponding canonical
expressions that represent the system’s language [3, 5, 6, 34]. These
scaffolds are useful in guiding the user to type syntactically complete
and analytically valid queries during data exploration. However,
these systems do not provide any preview of the underlying data,
resulting in users having to determine questions of analytical interest,
while formulating these questions in NL form. ‘Scented widgets’
demonstrated how some graphical user interface controls can support
data analysis tasks [44]. Their system enhanced traditional widgets
such as sliders, combo boxes, and radio buttons with embedded
visualizations to facilitate sense-making in information spaces.

More recently, Sneak Pique [33] examined how both textual and
visual variants of autocompletion with data previews provide users
guidance within the context of NL interaction for visual analysis
tasks. While Sneak Pique supports numerical, temporal, and spatial
previews of the data, there are additional technical and linguistic
challenges specific to supporting a fuller range of a user’s spatial NL
query needs. For instance, there is a classic geographic information
retrieval problem in which the location(s) of interest in the user’s
query must be identifiable so they can be mapped to defined loca-
tions in the database [29]. While Sneak Pique can enhance a user’s
ability to more easily and successfully generate NL spatial queries
about specific, named locations, there are still opportunities to better
support vague ways in which people often conceptualize locations.
We extend the concept of data-driven scaffolds from Sneak Pique in
GeoSneakPique. We specifically explore how vague definitions for
places can be expressed in visual autocompletion widgets through
the concept of more concrete specifications of cognitive regions.
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Figure 2: Left: Corresponding data points in the quadtree representation from the user’s rectangular selection in the map widget. Right: Determine
the coverage of state areas based on the user selected region.

3 SYSTEM

3.1 Overview

GeoSneakPique employs a web-based architecture with the input
NL query processed by an ANTLR parser [1] with a context-free
grammar, similar to parsers described in [18,32]. The parser accesses
the dataset through the Data Manager to handle data query requests.
Upon execution, the queries update the D3 Leaflet map [9]. Similar
to Sneak Pique [33], the system polls the query as the user is typing
and triggers grammar parse tree errors when the query is partially
complete. Based on the underlying grammar rules, text- and widget-
based auto completion suggestions are shown to the user to help
resolve the partial queries. Given our specific focus on handling
vague cognitive regions in the context of NL interaction, we extend
the map widget to help users identify their region of interest in
geospatial queries containing place-related tokens such as ‘near’,
‘in’, and ‘around’. The system also supports numerical and temporal
descriptors in the queries such as ‘large’, ‘small’, and ‘recent’. The
map widget provides a data preview and enables a user to select a
region by either using a rectangular or free draw selection (Figure 1).

3.2 Algorithm

Algorithm 1 provides an overview of the algorithm for determining
the coverage of the user selected cognitive region in the map widget.

Algorithm 1 Determine coverage of selection

Input: Polygon object containing user selection
Output: List of geographies and their normalized scores
qt is a quadtree data structure to store data points from dataset

1: Visit qt to get selected geo data points and the corresponding
admin geography within the user selected region

2: Get selected geo area and the corresponding admin geography
unit (e.g. state) within the user selected region

3: Take the aggregation of admin geography from selected geo
data points and selected geo area

4: for each admin geography in the aggregated list do
5: Calculate a normalized score given the proportion of geo

data points selected and overlapping geo area (Eq. 1)
6: if score < selected threshold then
7: Remove the admin geography from aggregated list
8: end if
9: end for

10: Sort the scores of the aggregate list of admin geography in
descending order

3.2.1 Compute normalized scores

When a selection is made on the map widget, the algorithm uses the
proportion of data points selected and the overlapping geographic
area to determine the confidence level of selecting a particular geog-
raphy. In our example, we use states, as county-level geography is
too fine a unit and country-level too coarse.

To optimize for spatial queries, we use a quadtree, a compact data
structure that facilitates search operations [19]. We first perform a
search on the quadtree to identify the selected points. For each state,
we calculate the proportion of selected points to the total number
of data points. We also calculate the proportion of geographic area
for a state that intersects the user-defined region. Figure 2 shows
the intermediate results of the how GeoSneakPique calculates the
proportion values. Lastly, we use both selected point proportion
and overlapping geographic area proportion values to determine the
confidence score. We adopted a heuristic approach and experimented
with various individual weights for computing coverage of user
selection. In practice, we found that assigning weights 0.65 and
0.35 to the overlapping geographic area and data points respectively,
led to reasonable results to reflect likelihood of intentional inclusion
of a specific geography. We found that a threshold of 0.2 and higher
worked well for choosing geographic areas that the user intended to
include in their selection. Our observations experimenting with the
various weights are documented in the supplementary material.

confidence score = Parea ∗0.65+Ppoints ∗0.35 (1)

3.3 User Interface

Figure 1 shows the GeoSneakPique interface with an input field for
typing queries (a), a map widget for user selection (b), the main
map view (c), and a panel to display the results of the targeted
cognitive region (d). When a user selects a region in the map widget
to complete a text query (e.g., “large earthquakes in...”), the panel
displays the various states sorted from the highest confidence score
using a gradient color palette (Figure 2 - Right). The user can choose
to remove places that they do not want to associate with the selection
as well as give the region a name in the text field provided. The
named region is saved by the system and can be referenced in future
queries (e.g. “what are the recent ones in the midwest?”). The main
map is updated to show the result from the query.

GeoSneakPique also supports comparisons between two user-
identified cognitive regions (e.g., “compare the west and the east”).
The system displays statistics minimum, maximum, and average
values in each of these regions. The various system behaviors and
query examples are demonstrated in the supplementary video.
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4 EVALUATION

We conducted a user study of GeoSneakPique with the following
goals: (1) collect qualitative feedback on how people express and
query for cognitive regions in visual analysis and (2) identify system
limitations and opportunities for how the semantics of place can
be used to further data exploration. The study was exploratory in
nature where we observed the ways people explored data and how
they responded to the system behavior. Because the main goal of
our study was to gain qualitative insight in the system behavior, we
encouraged participants to think aloud with the experimenter.

4.1 Method
4.1.1 Participants
We recruited 12 volunteers (five males, seven females, age 36 – 65)
from a local town mailing list. The participants had a variety of
backgrounds - user researcher, sales consultant, engineering leader,
product manager, investor, commercial real estate broker, program
manager, and marketing manager. Based on self-reporting by the
participants, all were fluent in English and regularly used some type
of NL search interface such as Google. Seven regularly used a
visualization tool [3, 4] and the rest had limited proficiency.

4.1.2 Procedure and Apparatus
For the evaluation, we created a dataset of ∼ 10,000 earthquakes
in the US [42], with a standardized structure and attributes [43].
While we used earthquakes in our evaluation, the system will work
with any point dataset. We began with a short introduction of how to
use the system. Participants were instructed to phrase their queries
in whatever way that felt most natural and to tell us whenever the
system did something unexpected. Although GeoSneakpique could
handle other analytical queries, we asked participants to specifically
focus on geospatial ones as we wanted to better understand how
they would explore the data based on place. We discussed reactions
to system behavior throughout the session and concluded with an
interview. Each session took approximately 30 minutes.

4.1.3 Analysis Approach
We employed a mixed-methods approach involving qualitative and
quantitative analysis, but considered the quantitative analysis as a
complement to our qualitative findings.

5 DISCUSSION AND FUTURE WORK

Overall, participants were positive about the system and identified
many benefits. Given that we used a US earthquakes dataset for
the study, most questions were centered around the intensity and re-
cency of earthquakes occurring in various geographic areas. Several
participants were impressed with the system’s ability to understand
their fuzzy geospatial queries (“It’s neat that I am not bound by
the constraints of the state boundaries when I want to dig deeper”
[P9]). The participants appreciated the functionality for specifying
and saving cognitive regions in their analysis (“It’s convenient to
not have to type all the states every time I want to reference the east
coast” [P2]). The total number of queries that participants typed
ranged from 8 to 20 (μ = 10.4). The number of times the map
widget was used to select a geographical region ranged from 5 to 11
(μ = 7.4). Most of the times when participants interacted with the
map widget, they named and saved a cognitive region; the number of
times ranged from 6 to 8 (μ = 6.8). Participants reused these saved
cognitive regions 4 to 8 (μ = 5.9) times in subsequent analytical
questions in their user sessions. The most common cognitive regions
that participants named were ‘the west’ (47%), ‘northwest’ (38%),
‘south’ (12%), and ‘midwest’ (3%). The most common analytical
queries were related to ‘large’ (42% of the interactions), ‘small’
(31%), and ‘compare’ (25%) earthquakes, with the remaining for
‘recent.’ Comments relevant to this behavior included, “I want to see
if there are actually large earthquakes around the ring of fire. It’s

convenient to be able to use ‘west’ when I ask questions” [P4], “I am
able to be specific by asking for ‘New York’, but also more vague
and just do a broader brush stroke on the New England area” [P10],
and “I used cognitive regions as bookmarks to refer back to and I
don’t have to remember precisely what I selected in that little map”
[P7]. All participants interacted with the sliders and drop-down
menus in the text response to understand the system behavior.

The study also revealed several shortcomings and provides oppor-
tunities for supporting queries involving cognitive regions:
Control over the spatial resolution: In GeoSneakPique, the
hexbins in the map widget adjust based on map zoom for providing
some user control over spatial resolution. However, participants
expressed interest in more control over the spatial resolution of the
hexagons in the map widget used to discretize the data. For exam-
ple, P3 stated, “There seems to be more earthquake activity by the
coastal regions on the west when compared to the central valley. I
would have liked to be able to see more of that detail so I could fine
tune my region to refer to Coastal California.” Future work should
consider providing more data-driven control, matching the scale of
a user’s analysis to the scale of the data, or perhaps, including other
spatial aggregation options, such as heatmaps.
Comparisons between cognitive region features: GeoSneakPique
supports quantitative comparisons between cognitive regions by pro-
viding statistics such as mean, average, minimum, and maximum
values. However, participants expected richer comparisons between
features and the ability to specify which features they were inter-
ested in. P11 said, “I am a commercial real-estate broker and have
certain areas that I keep an eye on. I would like to see price dif-
ferences between regions based on proximity to public transport,
square footage, and urban density.” Many of the analytical tasks
involving cognitive regions tend to involve comparisons of complex
properties [16]. There is a need for supporting users with interaction
techniques to specify the properties of interest and for visual analysis
tools to provide richer summaries of such comparisons.
Recommendations based on cognitive region properties: Visual-
ization recommendation systems are highly data-driven and rely on
users’ past behavior and preferences. Interfaces that support analyti-
cal inquiry with cognitive regions provide a motivating scenario for
recommending other cognitive regions that may have similar data
characteristics. P1 explained where such recommendations could be
useful in his work - “I develop medicine distribution and treatment
logistics in developing countries. We need to look at the trend in
cases, population, and number of treatment centers. It would be
helpful if your tool could recommend new cognitive regions that my
team has to look into based on what we have already focused on.”

6 CONCLUSION

This paper presents a technique for providing graphical auto-
completion to support querying cognitive regions of interest that can-
not easily be represented in NL. We introduce a ‘coverage’ metric to
determine the user’s regions of interest through direct manipulation.
GeoSneakPique allows for persisting the definitions of these cogni-
tive regions where users can label, refine and incorporate them in
future queries in the interface. An evaluation of the system indicates
that participants found the system to be intuitive and appreciated
the ability to specify vague geographic regions in their NL inquiry.
Feedback from interacting with GeoSneakPique identifies oppor-
tunities for employing cognitive regions in richer geospatial data
exploration. As Sigurd F. Olson [28] expresses the aesthetics of
nature through the notion of place - “I see the mountain ranges of
the West and the high, rolling ridges of the Appalachians. I picture
the deserts of the Southwest and their brilliant panoramas of color,
the impenetrable swamp lands of the South. They will always be
there and their beauty may not change, but should their silences be
broken, they will never be the same.”
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