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Visualizing Similarity of Pathline Dynamics in 2D Flow Fields
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Figure 1: Visualisation of the divergence of the von Karman Vortex Street data set with two distinct reference regions (green).
The visualization was obtained using backward integration with the parameters: t0 = 15, τ = 15 ,and ∆t = 0.01.

ABSTRACT

Even though the analysis of unsteady 2D flow fields is challenging,
fluid mechanics experts generally have an intuition on where in
the simulation domain specific features are expected. Using this
intuition, showing similar regions enables the user to discover flow
patterns within the simulation data. When focusing on similarity, a
solid mathematical framework for a specific flow pattern is not re-
quired. We propose a technique that visualizes similar and dissimilar
regions with respect to a region selected by the user. Using infinites-
imal strain theory, we capture the strain and rotation progression
and therefore the dynamics of fluid parcels along pathlines, which
we encode as distributions. We then apply the Jensen–Shannon di-
vergence to compute the (dis)similarity between pathline dynamics
originating in a user-defined flow region and the pathline dynamics
of the flow field. We validate our method by applying it to two
simulation datasets of two-dimensional unsteady flows. Our results
show that our approach is suitable for analyzing the similarity of
time-dependent flow fields.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Scientific visualization

1 INTRODUCTION

Researching flows is central to improving not only energy conver-
sion processes but also understanding of natural phenomena such as
ocean currents. By highlighting meaningful structures, flow visual-
ization can reveal underlying dynamics to further this understanding.
This is challenging, as fluid motion is a time-dependent, nonlinear,
and possibly chaotic process. Techniques concerned with feature
detection or the computation of Largangian Coherent Structures
were shown to be beneficial to understanding, although for some
structures, such as vortices, a robust and objective definition is still
a current object of research.

In this work, we propose a method that takes a user-defined region
of interest and visualizes (dis)similarity. The approach is based on
pathlines for which we compute a strain/rotation progression using
concepts from continuum mechanics. We construct dynamics distri-
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butions from the resulting progressions, which we use to compute
similarity using the Jensen-Shannon divergence. Our method does
not require a clear definition of the feature that should be detected.
With the focus on dissimilarity, our method allows the user to select
a base line, resulting in highlighting abnormal dynamics in relation
to the chosen reference region.

Notation: We denote time-dependent velocity fields as v(x, t),
where x ∈ D is a position in the flow domain D ⊂ R2 and t ∈ T
is an instant in time within the time domain T ⊂ R. We denote
pathlines by p(x0, t0;τ). A pathline describes the trajectory of a
massless particle that is advected by the underlying velocity field.
It is a solution of the differential equation d

dt x(t) = v(x(t), t), with
x(t0) = x0. The parameter τ describes the integration time.

2 RELATED WORK

A common approach to visualize flows is to focus on specific flow
patterns with spatial and temporal extent, that is, features. Features
(e.g. vortices [5,15,17,22], shock waves [29], splats [21]) allow for a
purposive investigation of flow behavior, as they are associated with
specific physical properties of the flow. Feature detection methods,
for example, the λ2 [17] or Q-criterion [15], have drawbacks, as the
results depend on the chosen reference frame. A body of research is
concerned with objective flow characterization [1,8,9,27,28] or [11]
for sparse trajectory data.

Instead of investigating specific features, the vector field topol-
ogy [13, 14] was shown to be suitable for analyzing the underlying
structure of flows, where the so-called topological skeleton is cal-
culated and depicted. The topological skeleton consists of critical
points, i.e. points in space in which the velocity vanishes, and sepa-
ratrices seperating regions of the flow domain. Streamlines seeded
within regions constructed by the separatices share the same source
and sink. In their work, Günther and Rojo [7] provide a general
overview of this class of techniques. Although vector field topology
is only applicable to steady flow fields, Bujack et al. [4] provide a
survey of techniques exploring time-dependent flow topology. The
time-dependent analogy for vector field topology are Lagrangian
Coherent Structures (LCS) [10]. The Finite-Time Lyapunov Expo-
nent (FTLE) field proposed and discussed by Haller [12] is the most
common technique used for LCS visualization.

Although we will utilize ideas developed in the context of LCS,
our goal is not a direct detection of a specific flow pattern. Our
method should extend existing techniques in such a way that, for
example, a similarity field with respect to a detected feature can be
computed fast.
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In the context of similarity in 2D vector fields, Schlemmer et
al. [24,25] and Bujack et al. [2] proposed methods applying moment
invariants for pattern matching. After visual selection, Bujack et al.
[2] use statistical moments and normalization as rotation, translation,
and scale invariant descriptors. In the following work [3], they used
their technique to cluster similar flow patterns without predefined
descriptors.

3 BACKGROUND

3.1 Localized FTLE
Localized FTLE was introduced by Kasten et al. [18] and is an
alternative to computing FTLE [12] using flow maps. Flow maps
are constructed by advecting particles in the flow forward (or back-
ward) in time. The flow map maps the initial positions of the tracer
particles to their end positions after a specified integration time.
The map gradient then describes the deformation gradient used for
computing the right Cauchy-Green deformation tensor. Its spectral
norm normalized by the integration time results in the FTLE field. In
contrast, localized FTLE is based on the local deviation of the neigh-
borhood along a pathline and allows the pathlines to be processed
individually.

With the velocity field v(x, t) and a pathline p(x0, t0;τ), the devi-
ation of infinitely close particles is governed by the spatial gradient
of the velocity field along the pathline. We denote an infinitely close
perturbed particle as y := x0 +σ(t), with the time-varying perturba-
tion vector σ(t) ∈ R3. At t0, ∥σ(0)∥ is close to zero. Kasten et al.
then approximated the temporal evolution of the deviation σ(t), by
considering very short advection times. The solution of the differen-
tial equation for short advection times is then σ(t) = exp(∇0t)σ(0),
where ∇0 = ∇v(p(0), t0)

Kasten et al. [18] applied this approximation for short time in-
tervals along the pathline p(x0, t0;τ). Note that the samples are
equidistant in time. They obtain the following description for the cu-
mulative deviation along a pathline σ(τ) = Ψ

t0+τ
t0 (x0)σ(0), where

the matrix:

Ψ
t0+τ
t0 (x0) :=

0

∏
i=N−1

exp(∇v(p(i∆t), i∆t)∆t) (1)

maps the neighborhood of the point x0 to the deviation after advec-
tion over the advection time τ . N is the number of discrete time steps,
and ∆t is the (small) temporal sample distance. The integration time
satisfies τ = ∆t ·N. Ψ

t0+τ
t0 (x0) can be treated analogously to the flow

map gradient. Although we will not apply localized FTLE directly,
we will utilize the idea of computing the deformation gradient along
pathlines by accumulating small deviations.

3.2 Jensen-Shannon Divergence
The Jensen-Shannon divergence (JSD) [20] is an information-
theoretic divergence measure based on Jensen’s inequality [16] and
the Shannon entropy [26]. It is similar to the common Kullback-
Leibler divergence [19], which measures the divergence between
statistical populations.

The Kullback-Leibler divergence is defined as follows:

KL(ξ1|ξ2) = ∑
x∈X

ξ1(x)log
ξ1(x)
ξ2(x)

, (2)

where ξ1 and ξ2 are discrete probability distributions defined in
the same probability space X . The Kullback-Leibler divergence is
always larger than zero. As KL(ξ1|ξ2) ̸= KL(ξ2|ξ1) applies, this
measure is not symmetric. Note that it can be made symmetric
by defining the measure J = KL(ξ1|ξ2) +KL(ξ2|ξ1). The most
significant drawback for our purposes is that the Kullback-Leibler
divergence requires absolute continuity: ξ2(x) = 0 =⇒ ξ1(x) = 0.
In our approach, absolute continuity is not guaranteed.

In our method, we apply the closely related Jensen-Shannon
divergence:

JSD(ξ1,ξ2) =
1
2

KL(ξ1|m)+
1
2

KL(ξ2|m), (3)

where m = 1
2 ξ1 +

1
2 ξ2. The JSD is a symmetric divergence measure

that does not require absolute continuity, as m(x) = 0 =⇒ ξ1(x) =
0∧ξ2(x) = 0 applies by definition.

4 METHODOLOGY

Our method consists of two steps. In the first step, we construct a
dynamics distribution, which represents the stretching and rotation
that a fluid parcel undergoes during a specific timeframe along
its trajectory. In the second step, taking a user-defined reference
region, we compute the similarity of the dynamics distributions to
the reference distribution using the Jensen-Shannon divergence.

In the following, we first describe how we utilize ideas from
localized FTLE and infinitesimal strain theory to compute a set of
transformations that describe the dynamics along a pathline. We
then discuss how we apply these distributions for a fast computation
of the similarity of pathline dynamics with respect to a reference
distribution.

4.1 Dynamics Distribution
The finite-strain tensor is a common tensor in continuum mechanics
and closely related to the right Cauchy-Green tensor. It is defined
as E = 1

2 [F
T F − I] = 1

2 [C− I], where F ∈ R2×2 is the deformation
gradient, C ∈ R2×2 is the right Cauchy-Green tensor, and I ∈ R2×2

is the identity. Analogously to the Cauchy-Green tensor, it describes
the deformation of a fluid volume from a reference configuration
and captures nonlinear dynamics.

Note that the product integral described in Equation 1 computes
the product of matrices. As matrix multiplication is not commutative,
the gradient for short advection times must be applied in the correct
order. By directly constructing and utilizing a distribution from the
deformation gradients for short integration times that contribute to
Ψ, we lose information on the correct order. Our goal is to construct
a distribution based on (short) deformation gradients without order
dependence, and thus without matrix multiplication. In order to
describe the deformation dynamics as a distribution, we first require
a description of the nonlinear strain tensor using summation, which
is commutative.

After computing the pathlines (using the Dormand-Prince method
[6]), we construct an infinitesimal strain tensor by applying the local-
ized concept for short advection times. The deformation gradient for
a short advection time is described and approximated by omitting the
higher order terms of the Taylor series: F∆ = exp(∇0∆t))≈ I+∇0∆t ,
where ∆t ∈ R is the (small) advection time, and ∇0 is the spatial
gradient of the velocity field at the corresponding position in space
and time.

We can now calculate the finite strain for short advection times by
inserting F∆ into the equation of E and rearranging the equation to:
E∆ = 1

2 [∆t∇0 +∆t∇
T
0 +∆2

t ∇T
0 ∇0]. We choose the advection time to

be very short (∆t ≪ 1), so that ∥∆t∇0∥ is also small. We can then
omit ∆2

t ∇T
0 ∇0, as ∆2

t ≪ ∆t . This results in the so-called infinitesimal
strain tensor, a common tensor from continuum mechanics: ε =
1
2 [∆t∇0 +∆t∇

T
0 ]≈ E∆.

We now briefly show that the sum of infinitesimal strains along a
pathline is a viable approximation for the finite strain tensor. Two
consecutive transformations exp(∇0∆t)) and exp(∇1∆t)) result in
the deformation gradient F2 = exp(∇1∆t))exp(∇0∆t)). When insert-
ing F2 into the equation for the finite-strain tensor, substituting for
the approximation, and omitting the matrix products as shown in the
equation for E∆ and ε , we obtain the following equation:

E2 ≈
1
2
[∆t∇0 +∆t∇1 +∆t∇

T
0 +∆t∇

T
1 ] = ε0 + ε1. (4)
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(a) FTLE (b) ∆t = 0.01 (c) ∆t = 0.05 (d) ∆t = 0.1 (e) ∆t = 0.5 (f) ∆t = 1 (g) ∆t = 2

Figure 2: Visualization of the FTLE field (a) using reconstruction from strain progression for varying sample distances (b,c,d,e,f,g). The
visualization was carried out on the von Karman Vortex Street data set (cf. Sect. 5.1) with subdivision using backward integration using
parameters t0 = 15 and τ = 15.

Note that this only holds if ∥∆t∇0∥ ≪ 1. This construction is
analogous to the construction of more consecutive transformations.
This results in ∑

N−1
i=0 εi(x0, t0;∆t), which can be interpreted as a

strain progression. This progression is the basis for our deformation
dynamics. Note that the approximation error can accumulate for
many terms. Here, we study the error introduced by our approach
visually. Fig. 2 shows the resulting FTLE field (far left) and the
calculation of the principal stretch using the sum of the infinitesimal
strain to approximate the finite stain. It is clear that an error is
introduced, yet we found it to be tolerable for our approach, as the
figure suggests a strong correlation between the FTLE values and
the approximation sum.

In addition to the infinitesimal strain ε , we also consider the
infinitesimal rotation tensor: ω = 1

2 [∆t∇0 −∆t∇
T
0 ].

We found that the invariant of the infinitesimal strain tensor ε

and the rotation tensor ω are viable for the construction of the
transformation distribution. Note that tr(ω) = 0 and for incompress-
ible fluids tr(ε) = 0 apply. Here, we chose α = det(ε) ∈ R and
β = det(ω) ∈ R. α can be interpreted as the infinitesimal squared
principal stretch of the fluid parcel, which is an objective measure.
β can be interpreted as the infinitesimal vorticity magnitude. As
vorticity is not objective, we assume the resulting distribution to be
not objective.

We now construct the progression set by first computing
{α0,α1, . . . ,αN−1} and {β0,β1, . . . ,βN−1} along a pathline using
the defined sample distance ∆t . N = τ/∆t applies, where τ is the in-
tegration time. We then compute a histogram ξp by first constructing
a histogram for the set α and the set β , respectively. The two one-
dimensional histograms with n bins are then concatenated to form a
one-dimensional histogram with 2n bins. Note that constructing a
two-dimensional histogram would imply that the sets of invariants
are independent, which is not the case, as they both depend on ∇0∆t .
We normalize ξp so that the sum of all bins equals one.

4.2 Similarity Visualization

Our method is based on the visualization of the similarity of path-
line dynamics using a reference deformation distribution and the
deformation distribution computed earlier. For visualization, we
first compute the reference deformation distribution ξR. The user
defines an area R ⊆ R2 for the reference distribution. Here, we use
circular regions, but any region is applicable. Now, we construct a
distribution for every pathline, where x0 ∈ R by adding the bins of
the corresponding pathlines. After normalizing by the number of
elements, we obtain the reference distribution ξR.

We can now calculate the similarity by computing the Jensen-
Shannon divergence JSD(ξp,ξR). Small divergence values indicate
strong similarity, where a value of zero implies that ξR and ξp are
the same distribution. Here, we normalize the resulting field by the
upper bound, which is ln(2), when using the natural logarithm. The
divergence is then displayed by color mapping.

(a) n = 10 (b) n =
√

N = 38

(c) n = 100 (d) n = 200

Figure 3: Visualization of the divergence and the corresponding dis-
tributions of the von Karman Vortex Street using an elliptic reference
region. The visualization was obtained by integrating backward with
parameters t0 = 15, τ = 15, and ∆t = 0.01 with a varying number of
bins n. The distributions of α (red), β (blue) for the reference config-
uration and the most dissimilar pathline (yellow, cyan, respectively)
are shown.

4.3 Parameters

Amount of Bins: The amount of bins determines the quality of
the dynamics distribution. Choosing a value too low leads to a
greater variance of the values α and β within a bin. As a result,
the algorithm can overestimate the similarity between distributions,
leading to overall low divergence values. High values increase
the computation time and produce a large amount of empty bins,
especially if the number of samples is low. We found that the
common rule of thumb n =

√
N produces viable results and a solid

starting point for exploration. N can be directly computed from the
chosen integration time and sample distance (cf. Fig. 3).

Sample Distance ∆t : The sampling distance determines the reso-
lution of our pathline approximation and the quality of the infinitesi-
mal strain tensor. It is straightforward to assume that the parameter
should be chosen as small as possible. Increasing the resolution
and thus decreasing ∆t leads to a longer computation time for the
dynamics distribution. A high value of ∆t can lead to artifacts due
to the omission of higher-order terms that have a greater impact for
higher values of ∆t (cf. Fig. 4e,f).

Integration Time τ: From the construction of the dynamics
distribution, it is apparent that a decrease in integration times leads
to a decrease in variance. This may lead to a more pronounced
divergence. It is desirable to study long pathlines as it reveals more
details in the visualized flow structures associated with dissimilarity
(cf. Fig. 4c,d).
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(a) τ = 1 (b) τ = 10

(c) ∆t = 0.5 (d) ∆t = 0.01

Figure 4: The influence of the parameters shown on the buoyancy
dataset. The non-varying parameters are set to ∆t = 0.01 and τ = 20
with a bin number of 100. The integration was performed backward
in time starting at t0 = 13.

Figure 5: Visualisation of the divergence with two distinct reference
regions (green). The visualization was obtained using backward in
time integration with the parameters: t0 = 13, τ = 20 ,and ∆t = 0.01.

5 RESULTS

5.1 Datasets

We explore two data sets that describe a time-dependent 2D flow.
They are provided by the Computer Graphics Laboratory of ETH
Zürich and were used in the work of Günther et al. [8]. The data
sets were generated using the Gerris flow solver [23]. The first data
set represents the common flow pattern of a von Karman Vortex
Street, where the flow is disturbed by a cylinder. The second data
set describes a flow that develops due to buoyancy effects caused by
a heated cylinder. The vortex street spans [−0.5,7.5]× [−0.5,0.5]
with a grid resolution of 640× 80. It consists of 1501 time steps
in the range of [0,15]. The heated cylinder data set spans the do-
main [−0.5,0.5]× [−0.5,2.5] with a grid resolution of 150× 450.

It consists of 2001 time steps in the range of [0,20].

5.2 Performance

The following computation times were obtained on a Linux system
with Ubuntu 20.04 LTS, 32GB of RAM, and an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz chip (2 physical processors and 32
threads). This construction of the dynamics distribution is the most
costly, as it requires numeric integration for every point. This is only
required once for a specified timestep, integration time, and sample
distance. Note that we store the dynamics sets α and β for a fast
recalculation of the reference distribution. In a grid with M vertices
and input parameters τ and ∆t , this results in values Mτ/∆t that must
be stored in memory. This results in a large but manageable memory
footprint for 2D flows on modern workstations. Using the rule of
thumb mentioned above, the distributions have a memory footprint of
M
√

τ∆t . For the buoyancy data set with the parameters specified in
Sect. 5, we measured a computation time for the construction of the
dynamic distribution of approximately 13 seconds. The computation
of the similarity visualization takes approximately 1 second for this
case and does not require additional memory. As the integration
and computation of α and β are independent of each other, we
parallelized these computations using OpenMP.

5.3 Use Cases

The resulting visualization is shown in Fig. 1 and Fig. 5. The refer-
ence region in Fig. 1 (top) and Fig. 5(left) corresponds to the use
case in which the user investigates the dissimilarity (high divergence)
from a known base line. This reveals abnormal behavior, which is
in this case associated with vortex shedding or, in the case of the
heated cylinder, turbulent motion. Fig. 1(bottom) corresponds to
the use case in which the user is aware of the location of a specific
feature. By choosing the reference region to be completely within
the feature, focusing on similarity (low divergence) reveals the other
similar features. Fig. 5(right) is a case in which the user expects tur-
bulence and aims to declutter the visualization. When the reference
region is chosen in such a way that turbulence is captured within
the reference region, abnormal behavior is more easily identifiable.
Note that Fig. 1, reveals structures akin to LCS. We assume this to
be the result of choosing a reference region with a low (or high) α ,
since dissimilarity to a low (or high) alpha is equivalent to a high
magnitude of stretching.

6 CONCLUSIONS

In this work, we provided a novel user-guided approach to visualize
similarity. Our technique utilizes the concept of strain progression
to encode the strains and rotation along a pathline as distributions.
We then compare these distributions using the Jensen-Shannon di-
vergence, which measures the difference between two distributions.
The benefit of our strain-based method is that the entire evolution of
fluid parcels is considered when computing similarities.

In the future, we will expand our method to three dimensions and
apply the approach to turbulent flows. This is of interest because
visualizations of turbulent flows are often cluttered, as self-similar
patterns occur on many scales. Fig. 5 suggests, that our method
is able to ”encode” turbulence in the reference distribution and
potentially increasing the quality of the similarity visualization. We
also want to improve on the description of the reference distribution
and explore clustering techniques.

In addition, we will explore techniques to speed up the compu-
tation and improve the memory footprint, which is critical when
taking 3D flows into account.
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