
© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

A Visualization System for Hexahedral Mesh Quality Study
Lei Si*

University of Houston
Guoning Chen†

University of Houston

ABSTRACT

In this paper, we introduce a new 3D hex mesh visual analysis
system that emphasizes poor-quality areas with an aggregated glyph,
highlights overlapping elements, and provides detailed boundary
error inspection in three forms. By supporting multi-level analysis
through multiple views, our system effectively evaluates various
mesh models and compares the performance of mesh generation and
optimization algorithms for hexahedral meshes.

Keywords: hex-mesh analysis, mesh quality visualization

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools—

1 INTRODUCTION

Hexahedral (hex-) meshes are preferred in many mechanical and
(bio-)medical engineering applications due to their desired properties
for numerical simulations [4, 11, 43]. It is known that the quality
of hex-meshes impacts the accuracy and efficiency of various finite
element simulations [11, 48].

Quantitative mesh quality metrics are crucial for mesh generation
algorithms. A large number of mesh quality metrics [5, 11, 20] have
been designed to measure the deviance of individual elements from
their ideal shape (e.g., a regular cube for a hexahedral element).
However, existing visualization techniques (see Figure 1(a)(b)) may
overlook small, poor-quality elements due to viewer’s attention being
drawn to large patterns and areas with large elements. Nonetheless,
these small and poor-quality elements could lead to the failure of
simulations just like the other poor-quality elements. Boundary
preservation is another important criterion impacting the accuracy of
boundary condition problems, but most tools lack effective bound-
ary error visualization. Overlapping elements, introduced by some
mesh quality improvement algorithms, may also be concealed by
traditional color coding or volume rendering methods.

The above limitations of the existing tools motivate our work. To
address these limitations, a mesh quality visualization system should
provide the following.

• G1. Effectively reveal regions with bad quality elements de-
spite the region and element sizes.

• G2. Intuitively highlight overlapping/intersecting elements
• G3. Show the local configuration of bad elements (e.g., angles

at the corners of bad elements) to understand their causes
• G4. Display boundary difference/error with respect to the

reference surface to highlight places with large differences.
To achieve the above goals, we design and develop a new mesh
quality visualization system and make the following contributions.

• We propose a glyph design to highlight places with poor-
quality elements independent of the element sizes. This glyph
can be aggregated to provide collective information on the
quality of elements within a region.

• We explicitly detect and visualize the overlapping elements
that may be hidden in the mesh.

*e-mail: lsi@uh.edu
†e-mail: gchen16@uh.edu

(a) HexaLab (b) focus + context vol-
ume rendering

(c) our method

Figure 1: Visualization of the quality of a warrior hex-mesh [26]
using the quality filtering by the HexaLab [5] (a), focus+context
volume rendering [33] (b), and our glyph-based method (c), respec-
tively. Our method highlights places with bad-quality elements. The
larger the glyphs are, the worse the element quality is.

• We design a comprehensive visualization framework for bound-
ary errors to provide both a summary view of the boundary
error statistics and the detailed spatial distribution of error. In
particular, parametric representations of 3D boundaries and
their errors are used to aid the exploration of the boundary
errors for hexahedral meshes.

• We incorporate the above new design of visualization into
an interactive, multi-linked-view visual analytics system to
support an effective and efficient study of the mesh quality.

2 RELATED WORK

In this section, we briefly review the literature on hex mesh genera-
tion and optimization techniques and the relevant tools that provide
the visualization of the meshes.
Hex mesh generation and optimization. Hexahedral mesh gen-
eration has been a research focus due to its importance in various
applications. Earlier techniques [21, 29–31, 35, 37, 39–41, 47] gen-
erated unstructured hex meshes, while recent geometry processing
approaches, such as polycube mapping [9,13–15,22,23,28], produce
semi-structured meshes with limitations in handling complex ge-
ometry and topology. 3D parameterization methods [16, 19, 25, 34],
utilizing orthogonal and non-orthogonal frame fields, have gained
popularity but lack guarantees for generating valid hex-meshes.
High-quality all-hex mesh generation remains challenging [4],
and post-processing is often required to improve mesh quality
[1, 7, 8, 10, 12, 18, 27, 36, 44, 46]. To support mesh optimization,
displaying the obtained meshes’ quality is crucial for engineers and
researchers to identify areas for improvement.
Meshing tools with visualization capability. Due to its importance
for various tasks, numerous mesh generation tools have been de-
veloped, including generic tools like CUBIT [3] and other specific
tools (or libraries) as listed in [38]. Most of them do not provide a
visualization front end to allow the users to check the quality of the
generated meshes. A separate tool is usually needed, such as Mesh-
Lab [6], libigl [17], and Paraview [2], to aid the visual analysis of the

1

ar
X

iv
:2

30
8.

12
15

8v
2 

 [
cs

.G
R

] 
 2

4 
A

ug
 2

02
3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

generated meshes. Many finite element simulation softwares [32]
also offer some mesh generation and processing functionality with
limited visualization capability (e.g., wire-frame representation of
the meshes, color coding quality values, and color coding different
patches). Recently, two works for the visualization and analysis of
hexahedral mesh quality have been reported, i.e., the HexaLab [5]
and the hex mesh structure evaluation and visualization [45]. Both
works focus on effective visual representation and high-quality ren-
dering to aid the inspection of 3D meshes produced by different
methods. However, both tools do not provide split screens to com-
pare two meshes of the same model produced by different techniques.
Also, boundary error analysis and overlapping element analysis are
not offered by either tool. Most recently, a focus+context volume
rendering technique [33] has been introduced for the inspection of
hexahedral meshes, which allows the user to focus on regions with
bad-quality elements without occlusion or cluttering. However, this
technique may not reveal bad elements with small sizes (Figure 1
(b)) and does not address the boundary error analysis. In this work,
we present a comprehensive visual analysis system that can support
the quality and boundary error analysis of hex-meshes.

3 THE DESIGN OF HQVIEW

HQView, a multi-view visual analysis system (Section 3.3), offers
various representations for 3D hexahedral mesh quality information.
It computes a quality metric [20] for each element corner as a basis
for visualization. Besides traditional color encoding and histograms,
HQView provides additional functionality to achieve goals G1-G4
listed in the introduction.

3.1 A Glyph Design for Bad Quality Element (G1)

Element quality is a crucial mesh quality indicator. Traditional
color maps work well for 2D meshes but face occlusion issues in
3D hex meshes. Alternative methods like filtering in HexaLab [5],
focus+context volume rendering [23], or magic lens techniques have
limitations (see Fig. 1). To achieve size-independent visual encoding,
we introduce a glyph design mapping quality values to spheres, with
radius encoding the quality value (i.e., the scaled Jacobian metric).

Instead of using a quality value to describe the regularity of a 3D
cell, we calculate the quality of the corners shared by the one-ring
neighborhood of a vertex. The smallest quality value is selected to
represent the quality of the vertex. The radius of the sphere glyph
at each vertex is then determined by the quality value. We define
an inverse relationship between the quality of the vertex and the
radius of its sphere glyph such that the vertices with bad-quality
elements have prominent sphere glyphs that can be easily identified.
The inset to the right illustrates this mapping
where Ji represents the scaled Jacobian value
at corner i. To support the metric mapping
to the radius of the sphere, we map it to the
range of [0,2] as follows.

c = 1− Jm (1)
where Jm is the smallest scaled Jacobian of a
vertex. c has a reverse relation with Jm. That
is, if Jm = 1 (the best scaled Jacobian), c= 0, while c= 2 when Jm =
−1 (the worst scaled Jacobian). The radius of the sphere centered at
the vertex is then controlled by c. In particular, r = c∗ rmax, where
rmax is a user-controllable parameter to enhance the visibility of
the sphere glyphs. Using this strategy, the vertices surrounded by
bad-quality elements can be highlighted, regardless of their element
sizes.

The above glyph-based visualization can lead to clutter and over-
lap in areas with many small and bad-quality elements as they lead
to large spheres packed in a small region (e.g., Fig. 6 (b) and Fig. 2
(a)). In addition, rendering sphere glyphs for all vertices of a large
mesh is time-consuming. To address these issues, we introduce a
clustering-based glyph aggregating strategy (Fig. 2 (b)).

(a) all glyphs (b) aggregated glyphs
Figure 2: The aggregated glyphs (b) reduce the clutter of non-
aggregated glyphs (a).

Figure 3: Two different overlapping situations may arise (2D illus-
tration): (a) overlapping vertices caused by degenerated edges, (b)
overlapping quads caused by one vertex falling inside another quad.
Existing visualization (left image of each pair) cannot effectively
highlight the overlapping in either case. In contrast, we use arrow(s)
to intuitively direct the viewers toward places with overlap (right
image of each pair).

Our clustering strategy groups nearby vertices based on the spatial
proximity of their glyphs. Specifically, if two glyphs overlap (i.e.,
the sum of their radii exceeds the distance between their centers), the
corresponding vertices belong to the same cluster. The aggregated
glyph is positioned at the vertex in the cluster closest to the concen-
tration of cluster vertices. We also employ different colors for edges
within distinct clusters. Figure 4 (view A) displays this aggregated
visualization, which effectively directs the user’s attention to regions
with poor-quality elements for further analysis (Section 3.3).

3.2 Overlapping Element Highlighting (G2)

Overlapping elements can be hard to identify, as they may have good
quality or be small, making them difficult to distinguish from other
bad-quality elements. Two types of overlapping elements can arise
(1) overlapping vertices and (2) overlapping cells.

Overlapping vertices occur in regions with near-degenerate
meshes that don’t exhibit inverted elements, like those with zero-
length edges. This degenerate configuration is hard to detect and can
cause issues during finite element calculations. Overlapping cells
are more common and occur when a vertex of a cell moves inside
another cell due to mesh operations. These overlapping elements
need to be identified and optimized, as they alter calculations in the
coordinate system.

Current visualization tools struggle to effectively highlight mesh
regions with either overlapping configurations. Our visualization
system uses an arrow placement strategy to highlight overlapping
vertices (Fig. 3(a)) and transparent shaded rendering for overlapping
cells (Fig. 3(b)). In a scenario where a location contains two over-
lapping vertices, a pair of arrows will be generated, each pointing
towards a vertex. If n arrows point to the same vertex, they will be
evenly distributed around the vertices at intervals of 360/n degrees.

3.3 Multi-level Element Quality Analysis (G3)

Our visual analysis system supports mesh quality inspection at mul-
tiple levels. It consists of six views (Fig. 4): A. main view, B. overall
vertex quality chart, C. sub-region view, D. local element view, E.
selected point quality chart, and F. reference view.
A. Main View visualizes mesh quality using glyphs and highlights
overlapping elements. It also displays a quality histogram.
B. Overall Vertex Quality Chart sorts vertices by their quality and
supports selection for further analysis.

2

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Figure 4: The multi-view interface of our system for the level-of-
detail inspection of mesh element quality.

Figure 5: A multi-view interface for the boundary error visualization
of a hand hex-meshing.

C. Sub-region View shows individual elements within clusters for a
more detailed study.
D. Local Element View displays the one-ring neighborhood of a
selected vertex, offering a thorough quality analysis.
E. Selected Point Quality Chart provides quality values of all
corners shared by the selected vertex, helping to identify local con-
figuration issues.
F. Reference View enables comparison of the main mesh with a
ground truth or other algorithms’ results.

3.4 Multi-Dimension Views for Boundary Difference Vi-
sualization(G4)

Analyzing the boundary error of 3D meshes is difficult due to occlu-
sion, requiring users to choose different views around the mesh. To
efficiently analyze global boundary error information without chang-
ing viewpoints, Our system offers a comprehensive boundary error
analysis supported by a multi-view visualization for 3D meshes.

The boundary error is calculated for each surface point based
on the closest point on the original mesh. Positive boundary error
values (red) indicate modified mesh points lying outside the original
mesh, while negative values (blue) indicate points inside the orig-
inal mesh(Figure 5 (a)). To provide a holistic visualization of the
boundary error without requiring the user to rotate the model, we
use a UV map of the surface that is extracted from original mesh
using the OptCuts [24]. The UV map unfolds the curve surface to a
planar representation.

In the example shown in Figure 5 (b), positive errors correspond
to surface ridges, while negative errors are at concave areas.

A collated percentage graph is provided for all modified mesh
surface vertices, offering an overview of the surface areas inside or
outside the original mesh. Users can select individual vertices from
the graph for further analysis(Figure 5 (c)).

4 EVALUATION

We integrate the above comprehensive visualization techniques into
one unified system with two separate windows, i.e., the Mesh Quality
Analysis Window, and the Boundary Error Analysis Window. We

applied our system to analyze the quality of the hex-meshes included
in the database of HexaLab [5] and from the hex-mesh structure
simplification work [12].

The process of using our system to analyze a hex-mesh is as fol-
lows. After loading a hex-mesh, the Mesh Quality Analysis window
displays the wire-frame of the mesh, the distribution of individual
element quality, and an interactive bar chart ranking vertex quality
(Figure 6 (a)). To locate poor-quality elements, glyph representation
is activated, using aggregated glyphs to prevent clutter (Figure 6(b)).
By focusing on the regions with poor quality, the user can select a
large aggregated glyph corresponding to a small cluster and inspect
the area in the sub-region view (Figure 6(c), top). A bad-quality
vertex can be chosen for detailed inspection, revealing its Jacobian
configurations and connectivity configuration (Figure 6(c), middle
and bottom). This multi-level, multi-perspective mesh quality analy-
sis process efficiently identifies and analyzes mesh quality issues.

Element quality analysis. To evaluate the effectiveness of our
proposed visual encoding, we compare our visualizations of a few
meshes with those shown by HexaLab [5] and the focus+context
volume rendering [33], respectively. Since the other two approaches
do not explicitly support the boundary error visualization, our com-
parison focuses on the element quality analysis and the effective
revelation of low-quality elements with different sizes. Figure 1
compares the quality visualization of a warrior hex-mesh using the
three approaches. Both HexaLab and the focus+context volume
rendering cannot effectively reveal the bad elements at the tips of
those protruded features. In contrast, our aggregated glyphs not
only highlight those places but also convey how severe the element
quality is in those regions via the sizes of the glyphs.

Figure 7 compares the quality visualization of a kitten hex-mesh
using the three methods, respectively. From this comparison, we
see that among the three approaches, the focus+context volume
rendering can provide the smoothest visual representation of the
mesh quality. However, if the two areas have a similar quality, the
volume rendering will not effectively distinguish their difference as
humans cannot accurately tell the difference between similar colors
if they are not next to each other (e.g., the back and the left ear of the
kitten). Also, one may think the quality of the elements in the left
ear of the kitten is worse than those in the right ear because they look
more prominent. In contrast, HexaLab can provide a more accurate
reading on the element quality by filtering. That is, the remaining
elements after filtering all have quality lower than a user-specified
threshold. However, the difference among these remaining elements
is hard to discern (e.g., it is hard to decide which elements are worse
than the other in Figure 7(a)). Also, depending on the threshold,
other less optimal areas may not be captured (e.g., the top of the
kitten and the middle of the tail of the kitten). As a comparison,
our aggregated glyph visualization retains most of the areas with
bad-quality elements and allows a more effective differentiation of
the element quality. For example, the quality of the elements at the
back of the neck of the kitten (represented by a big green glyph) is
worse than those at the back of the kitty that are prominent in both
HexaLab and volume-rendering visualization. Similarly, there is a
ring of bad-quality elements at the top of the head of the kitten that
is not emphasized by the other two methods due to their small sizes.

Overlapping cells analysis. Fig. 8 shows an example of overlap-
ping and intersection elements in a fandisk mesh. The overlapping
vertices Fig. 8(a) are difficult to notice without the additional arrows.
A similar observation can be made for the intersection elements
Fig. 8(b). In addition, the cells involved in the intersection are high-
lighted, with each element colored distinctly, and an arrow is placed
to indicate each intersection vertex.

Boundary error analysis. To analyze the boundary error of a mesh,
the system loads the modified and original meshes into the Boundary
Error Analysis Window, as shown in Figure 6 (d). In the window,
the main view displays overlapping surfaces, but occlusion hides

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Figure 6: A use case of our system for the analysis of a hex-mesh quality.

(a) HexaLab (b) focus + context vol-
ume randering

(c) our method

Figure 7: Comparison of the quality visualization using HexaLab
(a), focus+context volume rendering (b), and our methods (c) for
a teddy bear hex-mesh (top row) and a kitten hex-mesh (bottom),
respectively.

(a) Overlapping vertex (b) Intersecting cell
Figure 8: Overlapping vertices and intersecting cells in a 3D view
are difficult to be distinguished, as the lines obstruct their visibility.

some error distributions. The UV map provides a comprehensive
overview without requiring the user to select different viewpoints,
though it lacks 3D context like sharp features and corners. The
boundary error distribution doesn’t show a consistent pattern near
specific feature types. For instance, concave areas corresponding
to limb-torso conjunctions can exhibit both positive and negative
errors. Larger errors typically occur where the surface has a large
curvature, as these areas are challenging to preserve. the sorted error
value bar chart enables quick identification of vertices with large
boundary errors and their nature.

User feedback. We designed an online survey to gather unofficial
user feedback on our system. Among the 38 responses received,
11 participants identified themselves as mesh experts. The survey

consists of 13 questions, 9 of which are designed for mesh element
quality analysis, serving three different objectives. The first category
of questions requests participants to rank regions by applying their
judgment of mesh quality across three different methods. The second
category of questions prompts users to identify all problematic areas.
The third group of tasks requires users to select the most effective
method for highlighting poor-quality regions. Responses to the
questions suggest that our methodology is effective in helping users
identify regions of poor quality, particularly when dealing with small
mesh sizes. Detailed feedback of the survey can be found in the
supplemental document.

5 CONCLUSION

We present a new visual analysis system for the study of the quality
of 3D hexahedral meshes. Our system offers simple but effective
visual encoding techniques and a multi-view capability to help reveal
small elements with low-quality and overlapping configurations and
support the inspection of boundary errors. The evaluation shows that
our system outperforms the existing tools in the tasks of locating
small elements with low quality, finding overlapping elements in the
mesh, and studying boundary error configurations.

To improve our system, we will address the following limitations
of the system. First, our aggregation glyph construction requires
performing collision detection among nearby spheres. Our current
implementation using traversal has a complexity of O(n2). To ac-
celerate, we will adopt a pre-computed tree-like structure, such as a
union-find data structure [42]. Second, our system does not suggest
the ideal configuration for a comparative study of the bad-quality
elements. Third, our arrow placement strategy for highlighting over-
lapping elements may still produce cluttered arrows in small regions
with many overlapping elements. Nonetheless, the cluttered arrows
may help draw the attention of the viewers. To reduce clutter, a
view-dependent placement of arrows may be explored. Fourth, some
models may not be successfully unfolded for boundary error visu-
alization due to the limitation of the used UV unfolding algorithm.
Finally, the current user evaluation is rather informal and incomplete.
Future work will focus on addressing these limitations while con-
sidering other element quality measures [11] and incorporating the
visualization of the simulation results run on the respective meshes
to provide new insights into the mesh quality and its impact on the
downstream tasks.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviews for their constructive
feedback to help improve this work.

4

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


© 2023 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

REFERENCES

[1] M. N. Akram, L. Si, and G. Chen. An embedded polygon strategy for
quality improvement of 2d quadrilateral meshes with boundaries. In
VISIGRAPP (1: GRAPP), pp. 177–184, 2021.

[2] U. Ayachit. The paraview guide: a parallel visualization application.
Kitware, Inc., 2015.

[3] T. D. Blacker, W. J. Bohnhoff, and T. L. Edwards. Cubit mesh genera-
tion environment. volume 1: Users manual. Technical report, Sandia
National Labs., Albuquerque, NM (United States), 1994.

[4] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and
D. Zorin. Quad-mesh generation and processing: A survey. 32(6):51–
76, 2013.

[5] M. Bracci, M. Tarini, N. Pietroni, M. Livesu, and P. Cignoni. Hexalab.
net: An online viewer for hexahedral meshes. Computer-Aided Design,
110:24–36, 2019.

[6] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. Meshlab: an open-source mesh processing tool. In Euro-
graphics Italian chapter conference, vol. 2008, pp. 129–136. Salerno,
Italy, 2008.

[7] J. Daniels, C. T. Silva, and E. Cohen. Localized quadrilateral coarsen-
ing. 28(5):1437–1444, 2009.

[8] J. Daniels, C. T. Silva, J. Shepherd, and E. Cohen. Quadrilateral mesh
simplification. ACM Trans. Graph., 27(5):1–9, 2008.

[9] X. Fang, W. Xu, H. Bao, and J. Huang. All-hex meshing using closed-
form induced polycube. ACM Trans. Graph., 35(4):1–9, 2016.

[10] X. Gao, Z. Deng, and G. Chen. Hexahedral mesh re-parameterization
from aligned base-complex. ACM Trans. Graph., 34(4):1–10, 2015.

[11] X. Gao, J. Huang, K. Xu, Z. Pan, Z. Deng, and G. Chen. Evaluating
hex-mesh quality metrics via correlation analysis. Computer Graphics
Forum, 36(5):105–116, 2017.

[12] X. Gao, D. Panozzo, W. Wang, Z. Deng, and G. Chen. Robust structure
simplification for hex re-meshing. ACM Trans. Graph., 36(6):1–13,
2017.

[13] J. Gregson, A. Sheffer, and E. Zhang. All-hex mesh generation via
volumetric polycube deformation. 30(5):1407–1416, 2011.

[14] H.-X. Guo, X. Liu, D.-M. Yan, and Y. Liu. Cut-enhanced polycube-
maps for feature-aware all-hex meshing. ACM Trans. Graph.,
39(4):106–1, 2020.

[15] J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and M. Desbrun. ℓ1-based
construction of polycube maps from complex shapes. ACM Trans.
Graph., 33(3):1–11, 2014.

[16] J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3d
cross-frame field. ACM Trans. Graph., 30(6):1–8, 2011.

[17] A. Jacobson and D. Panozzo. libigl: prototyping geometry processing
research in c++, 2017.

[18] Z. Ji, L. Liu, and G. Wang. A global laplacian smoothing approach with
feature preservation. In Ninth International Conference on Computer
Aided Design and Computer Graphics (CAD-CG’05), pp. 6–pp. IEEE,
2005.

[19] T. Jiang, J. Huang, Y. Wang, Y. Tong, and H. Bao. Frame field singu-
larity correctionfor automatic hexahedralization. IEEE Transactions
on Visualization and Computer Graphics, 20(8):1189–1199, 2013.

[20] P. M. Knupp, C. Ernst, D. C. Thompson, C. Stimpson, and P. P. Pebay.
The verdict geometric quality library. Technical report, Sandia National
Laboratories, 2006.

[21] B. Lévy and Y. Liu. Lp centroidal voronoi tessellation and its applica-
tions. ACM Trans. Graph., 29(4):1–11, 2010.

[22] B. Li, X. Li, K. Wang, and H. Qin. Surface mesh to volumetric
spline conversion with generalized polycubes. IEEE Transactions on
Visualization and Computer Graphics, 19(9):1539–1551, 2012.

[23] L. Li, P. Zhang, D. Smirnov, S. M. Abulnaga, and J. Solomon. Interac-
tive all-hex meshing via cuboid decomposition. ACM Trans. Graph.,
40(6):1–17, 2021.

[24] M. Li, D. M. Kaufman, V. G. Kim, J. Solomon, and A. Sheffer. Optcuts:
Joint optimization of surface cuts and parameterization. ACM Trans.
Graph., 37(6):1–13, 2018.

[25] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. All-hex meshing using
singularity-restricted field. ACM Trans. Graph., 31(6):1–11, 2012.

[26] M. Livesu, A. Muntoni, E. Puppo, and R. Scateni. Skeleton-driven

adaptive hexahedral meshing of tubular shapes. In Computer Graphics
Forum, vol. 35, pp. 237–246. Wiley Online Library, 2016.

[27] M. Livesu, A. Sheffer, N. Vining, and M. Tarini. Practical hex-mesh
optimization via edge-cone rectification. ACM Trans. Graph., 34(4):1–
11, 2015.

[28] M. Livesu, N. Vining, A. Sheffer, J. Gregson, and R. Scateni. Polycut:
Monotone graph-cuts for polycube base-complex construction. ACM
Trans. Graph., 32(6):1–12, 2013.

[29] J. H.-C. Lu, I. Song, W. R. Quadros, and K. Shimada. Volumetric
decomposition via medial object and pen-based user interface for hex-
ahedral mesh generation. In Proceedings of the 20th International
Meshing Roundtable, pp. 179–196. Springer, 2012.

[30] Y. Lu, R. Gadh, and T. J. Tautges. Feature based hex meshing methodol-
ogy: feature recognition and volume decomposition. Computer-Aided
Design, 33(3):221–232, 2001.

[31] L. Maréchal. Advances in octree-based all-hexahedral mesh generation:
handling sharp features. In Proceedings of the 18th International
Meshing Roundtable, pp. 65–84. Springer, 2009.

[32] D. Marinkovic and M. Zehn. Survey of finite element method-based
real-time simulations. Applied Sciences, 9(14):2775, 2019.

[33] C. Neuhauser, J. Wang, and R. Westermann. Interactive focus+ context
rendering for hexahedral mesh inspection. IEEE Transactions on
Visualization and Computer Graphics, 27(8):3505–3518, 2021.

[34] M. Nieser, U. Reitebuch, and K. Polthier. Cubecover–parameterization
of 3d volumes. 30(5):1397–1406, 2011.

[35] S. J. Owen and S. Saigal. H-morph: an indirect approach to advancing
front hex meshing. International Journal for Numerical Methods in
Engineering, 49(1-2):289–312, 2000.

[36] C.-H. Peng, E. Zhang, Y. Kobayashi, and P. Wonka. Connectivity
editing for quadrilateral meshes. pp. 1–12, 2011.

[37] J. Sarrate Ramos, E. Ruiz-Gironés, and X. Roca Navarro. Unstructured
and semi-structured hexahedral mesh generation methods. Computa-
tional Technology Reviews, 10:35–64, 2014.

[38] R. Schneiders. Mesh generation software. http://www.

robertschneiders.de/meshgeneration/software.html.
[39] J. F. Shepherd and C. R. Johnson. Hexahedral mesh generation con-

straints. Engineering with Computers, 24(3):195–213, 2008.
[40] M. L. Staten, R. A. Kerr, S. J. Owen, T. D. Blacker, M. Stupazzini, and

K. Shimada. Unconstrained plastering hexahedral mesh generation via
advancing-front geometry decomposition. International Journal for
Numerical Methods in Engineering, 81(2):135–171, 2010.

[41] M. L. Staten, S. J. Owen, and T. D. Blacker. Unconstrained paving
& plastering: A new idea for all hexahedral mesh generation. In
proceedings of the 14th International Meshing Roundtable, pp. 399–
416. Springer, 2005.

[42] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union
algorithms. J. ACM, 31(2):245–281, mar 1984. doi: 10.1145/62.2160

[43] T. J. Tautges. The generation of hexahedral meshes for assembly
geometry: survey and progress. International Journal for Numerical
Methods in Engineering, 50(12):2617–2642, 2001.

[44] K. Xu, M. N. Akram, and G. Chen. Semi-global quad mesh structure
simplification via separatrix operations. In SIGGRAPH Asia 2020
Technical Communications, pp. 1–4. 2020.

[45] K. Xu and G. Chen. Hexahedral mesh structure visualization and eval-
uation. IEEE Transactions on Visualization and Computer Graphics,
25(1):1173–1182, 2018.

[46] K. Xu, X. Gao, and G. Chen. Hexahedral mesh quality improvement
via edge-angle optimization. Computers & Graphics, 70:17–27, 2018.

[47] H. Zhang, G. Zhao, and X. Ma. Adaptive generation of hexahedral
element mesh using an improved grid-based method. Computer-Aided
Design, 39(10):914–928, 2007.

[48] Y. Zhang, C. Bajaj, and B.-S. Sohn. 3d finite element meshing from
imaging data. Computer Methods in Applied Mechanics and Engineer-
ing, 194(48-49):5083–5106, 2005.

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
http://www.robertschneiders.de/meshgeneration/software.html
http://www.robertschneiders.de/meshgeneration/software.html

	Introduction
	Related Work
	The Design of HQView
	A Glyph Design for Bad Quality Element (G1)
	Overlapping Element Highlighting (G2)
	Multi-level Element Quality Analysis (G3)
	Multi-Dimension Views for Boundary Difference Visualization(G4)

	Evaluation
	Conclusion

