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Abstract

Insights are often considered the ideal outcome of visual analysis
sessions. However, there is no single definition of what an insight
is. Some scholars define insights as correlations, while others define
them as hypotheses or aha moments. This lack of a clear definition
can make it difficult to build visualization tools that effectively sup-
port insight discovery. In this paper, we contribute a comprehensive
literature review that maps the landscape of existing insight defini-
tions. We summarize key themes regarding how insight is defined,
with the goal of helping readers identify which definitions of insight
align closely with their research and tool development goals. Based
on our review, we also suggest interesting research directions, such
as synthesizing a unified formalism for insight and connecting the-
ories of insight to other critical concepts in visualization research.
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1 Introduction

Card, Mackinlay, and Shneiderman assert that the goal of informa-
tion visualization is to amplify the user’s cognition [10]. To this
end, many visualization tools aim to amplify cognition by helping
users extract reliable insights from their data [33, 11] (e.g., to in-
crease insight generation rates [30, 55] or to reduce the incidence
of false discoveries [56, 57]). However, to enhance insight discov-
ery, it is crucial to have a clear understanding of what insights are
and how they can be discovered. Yet, the literature presents differ-
ent definitions of “insights” [27]. For example, Sariaya et al. define
insight as a unit of discovery [39] while Gomez et al. [20] and Guo
et al. [24] argue that insights are hypotheses. Demiralp et al. [17]
view insights as statistical data properties such as correlations be-
tween variables. Chen et al. suggest that insights are links between
statistical data properties and user domain knowledge [12]. Addi-
tionally, Chang et al. [11] draw on psychology and cognitive sci-
ence to define insights as “aha” moments as well as links between
units of knowledge.

Defining insights is a critical challenge for the visualization com-
munity because it can significantly influence tool development tra-
jectories. Depending on the chosen definition of insights, develop-
ers might pursue vastly different approaches. For example, if in-
sights are hypotheses, developers might design visualization tools
to maximize the generation of verifiable hypotheses such as sig-
nificant data correlations or outliers (e.g., [17]). In contrast, if in-
sights are “aha” moments, a researcher may instead design creativ-
ity support tools [43] or problem-solving tools [16] to maximize
user creativity and inspiration. Alternatively, if insights are links to
users’ domain knowledge, researchers may strive to build knowl-
edge management tools for tracking what users have learned over
time (e.g., [22]). This raises the question of which insight defini-
tion is the “right” one to use when developing a new insight-based
study or visualization tool. Further, what factors should influence
this choice?
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This paper summarizes the key considerations from the visual-
ization literature regarding how insights are defined and how to de-
sign applications around these definitions. Our aim is to help re-
searchers and developers choose (or create) the definitions that best
suit their design objectives. Additionally, we identify areas of in-
terest for future research, including the opportunity to contribute
new insight definitions, integrate existing definitions, or establish
connections between insight definitions and related concepts in the
literature.

In summary, this paper makes the following contributions:
• We present a literature review on the definition of insights.
• We categorize the definitions and their pros/cons to help

readers identify suitable definitions to motivate their work.
• We present interesting research directions in insight- and

theory-based visualization research motivated by this work.

2 How are Insights Defined in the Literature?
2.1 Overview

Existing research places a strong emphasis on insight discovery
during visual analysis and exploration tasks [32, 11, 24] For ex-
ample, researchers often test visual analysis tools by the quan-
tity, accuracy, and quality of insights users generate while using
them [39, 33, 30, 5, 56]. In this section, we summarize existing def-
initions and characteristics of insight and highlight recurring over-
laps and themes.

Review Process. We conducted keyword searches for “visu-
alization task” and “visualization insight” in Google Scholar. We
also reviewed the proceedings of VIS and EuroVis from 2013 to
2023, including papers describing visualization objectives, tasks,
and provenance, since they are often discussed alongside insights.
This generated an initial list of 125 papers. We reviewed each
paper to verify its relevance to visualization and whether it fo-
cused on defining, analyzing, or supporting insight discovery, e.g.,
“But what, exactly, is insight? How can it be measured and evalu-
ated?” [33]. For each relevant paper, we reviewed its list of refer-
ences to identify papers we may have missed. These steps yielded
a list of 38 papers. With feedback from colleagues/reviewers, we
extended it to include their suggestions, producing a final list of 41
papers. We analyzed how insight was defined in each paper, focus-
ing on high-level themes and key characteristics of insights. Ad-
ditionally, we cite synergistic ideas when relevant, e.g., tasks and
visualization recommendations.

Review Structure. We provide a brief overview of the litera-
ture surveyed in Table 1. Our literature review reveals three major
themes in how insights are analyzed: categorizing, defining, and
scoping insights during visual analysis. In the remainder of this
section, we summarize each analysis method and how the resulting
contributions may influence the design of relevant, insight-driven
applications. Potential example applications are also described in
the text and cited in Table 1.

2.2 Categories of Insight.
The prior work details several high-level categories of insights that
visualization tools can support. The first set of categorizations
we observe distinguishes between instantaneous sparks and long-
term knowledge building. Chang et al. [11] distinguish between a
“knowledge-building insight,” or information directly extending a
user’s existing knowledge structures, and “spontaneous insight,” or
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Categorizations Knowledge Building vs. ”Eureka” Moments Insight Sources
[11, 34, 35, 42] [13, 20, 30, 32, 35, 38, 39, 46, 53, 56]

Definitions Utterances Data Facts Hypotheses Knowledge Links

[33, 34, 38, 39, 40, 55, 56]
General Recommendations

[20, 30]
General Knowledge Graphs

[12] [15, 17, 47, 48, 54] [2, 13, 21, 22, 23, 32, 35, 37, 53] [25, 26, 31, 36, 44, 46, 45, 51]

Scope Taxonomies & Typologies Frameworks Processes &
Patterns

Declarative
Specifications

[1, 9, 19, 28, 56] [21, 29] [5, 24, 53] [3, 7, 14]
Potential
Applications Life Logging Bioinformatics/

Medicine
Problem Solving/
Creativity Support

Provenance False Discoveries/
Multiple Comparisons

Grammars

[13] [25, 39] [16, 43] [52, 5] [56, 57] [19, 26, 41, 49, 50]

Table 1: We survey three approaches to analyzing insights in the literature: their categorizations, definitions, and scope within visual analysis
tasks. We also discuss potential applications of existing insight methodologies. References are organized by relevance to analysis approach.

a “eureka” moment that connects loosely related knowledge struc-
tures. This distinction is similar to “directed” versus “unexpected”
insights as proposed by Saraiya et al. [39]. Chang et al. [11] ar-
gue that knowledge-building is typically the focus of visualiza-
tion and visual analytics work [11], though some argue the oppo-
site [34, 35, 42].

Alternatively, categorizations may focus on the source of in-
sights, such as the input dataset, social structures of the analyst,
or an analyst’s external domain knowledge. We summarize these
categorizations in Table 2, where overlaps in categories share the
same row(s) of the table. Saraiya et al. define four categories of
data-driven insights [39, 38]: overall distributions, patterns, group-
ing, and detail. Choe et al. [13] extend these ideas by providing
more granular categorizations of data-driven insights, such as dis-
tinguishing distributions versus data summaries or correlations ver-
sus trends in identifying patterns. Zgraggen et al. [56] follow a sim-
ilar structure but focus on categorizing the different ways in which
people make data comparisons to extract data-driven insights. Guo
et al. [24] and Gomez et al. [20] abstract these ideas into higher-
level categories that connect the data facts emphasized by Choe
et al. [13] with more generalization-focused insights observed by
Zgraggen et al. [56] and a separate category of data-driven insights
known as hypotheses, i.e., conjectures about the dataset that can
be tested through subsequent confirmatory analyses. Liu and Heer
propose seven insight categories for analyzing exploratory visual
analysis outcomes [30]: “observation,” “generalization,” “hypoth-
esis,” “question,” “recall,” “interface,” and “simulation,” where we
find that the simulation category was not proposed in prior insight
studies. The Liu and Heer taxonomy [30] acts as a superset of sorts
and overlaps significantly with categories proposed in the literature,
such as those by Saraiya et al. [38, 39, 40] and North [33], Smuc et
al. [46], Gomez et al. [20] and Guo et al. [24], and Yi et al. [53].
Note that these categories are not mutually exclusive and have been
found to co-occur [46].

However, data-driven insights are not the only insights an analyst
may uncover. For example, Gotz et al. [22], Pousman et al. [35],
Liu and Heer [30], and Choe et al. [13] observe that analysts often
connect what they see in the data with their own knowledge and ex-
periences, i.e., with domain knowledge that exists outside the target
dataset. Pousman et al. broaden this view to support other kinds
of insights that may not be purely data-driven, in particular “aware-
ness insight,” “social insight,” and “reflective insight” [35]. Fur-
thermore, Smuc et al. [46] and Liu and Heer [30] observe that users
may also gain insights into how to improve the visual analysis tool
they are interacting with, yielding UI-driven insights.

2.2.1 Using Insight Categorizations to Inform Tool Design
Each categorization emphasizes different sources of insight that can
impact how we design visualization tools. For example, Guo et
al. [24], Saraiya et al. [39] and Zgraggen et al. [56] emphasize data-
driven sources of insight, which may be appropriate for tools de-
signed for rigorous testing and management of key data statistics,

e.g., to prevent false discoveries [57]. Pousman et al. [35], Liu and
Heer [30] and Choe et al. [13] broaden this view to consider the con-
text of the person performing the analysis, which can be critical for
tools used for a domain-specific purpose (e.g., medicine [39, 25])
or a personal one (e.g., life logging [13]). With an integrative view
of these categorizations, we hope to empower readers to choose a
categorization that best suits their research and development needs.

2.3 The Varying Definitions of Insight.
Although insights are often categorized in similar ways, the lit-
erature present inconsistent definitions for what constitutes an in-
sight. Are they utterances, statistical correlations, or something
more complex? In this section, we summarize the definitions pro-
posed in the literature and discuss the pros and cons that may affect
their use.

2.3.1 Insights are Utterances
Some definitions assert that insights are utterances. Saraiya et
al. define insight as “an individual observation about the data by
the participant, a unit of discovery,” [39, 38] which can include
“any data observation that the user mentions” during in-person lab
studies [39, 30, 56, 55], as well as self-reported insight diaries col-
lected through field studies [40] and competition submissions [34].
Gomez et al. observe that users may only report a subset of their
insights relevant to the study at hand [20]. Zgraggen et al. posit
that insights may not only be explicitly defined through direct user
reporting but also implicitly defined through observation, such as
when the user is observed performing an analysis but does not offi-
cially report the outcome of this analysis to experimenters [56].

Pros and Cons. This definition adopts a stream-of-
consciousness view of insights that require experimenters to
bear witness to the utterance in order to capture the corresponding
insight. On the one hand, this definition is easy to apply in
insight-based studies since all that is required is an experimenter
to observe a user’s utterances. On the other hand, this definition
places a significant burden on the experimenter to manually
identify and validate utterances, ignoring the potential role that
visualization provenance and automation can play in helping to
detect insights [52].

2.3.2 Insights are Data Facts
Several works categorize insights in terms of how their calcula-
tion supports user hypotheses, claims, and reflections, pointing to a
third definition – insights are data facts. As shown in Table 2,
Choe et al. propose eight insight classes, where six classes are
statistical in nature (“trend,” “correlation,” “data summary,” “dis-
tribution,” “outlier” and “comparison”) and two are adapted from
existing taxonomies ( “detail” [39, 40] and “self-reflection” [35]).
Zgraggen et al. propose five insight classes, all of which are sta-
tistical in nature [56]. We observe that these statistical insight
classes extend those initially proposed by Saraiya et al. [39, 40].
Liu and Heer [30], Pousman et al. [35], and Chen et al. [12] group



Motivation Pousman et al. [35] Liu & Heer [30] Guo et al. [24] Choe et al. [13] Saraiya et al. [39] Zgraggen et al. [56]
Detail Detail
Trend
Correlation Patterns Correlation
Data Summary
Distribution Overall Distributions Shape

Observation Fact

Outlier
Mean
Variance

Analytic insight

Generalization Generalization Comparison Grouping
Ranking

Hypothesis Hypothesis
Question

Data-driven

Simulation
Reflective insight Recall Self-reflection

Domain-driven
Awareness insight

Socially-driven Social insight
UI-driven Interface

Cited By [9, 53] [19, 30, 56, 55]
[25, 19, 52, 5, 26]
[56, 55, 57]

[25, 52]
[25, 5, 26, 56, 36, 13]
[37, 24, 39, 33, 11]
[46, 53, 35, 40, 32]

[5, 26]

Table 2: We observe significant overlaps in how insights are categorized in the literature. Observed categories are colored and labeled by the
source of the insight: the data, external domain knowledge, social structure, or the visualization interface itself. Overlapping categories share
the same row. Papers that cite each categorization are recorded in the bottom row.

these different statistical representations into a single high-level cat-
egory, i.e., “observation,” “analytic insight” and “data facts,” re-
spectively. These overlaps suggest that collectively, data facts may
be a core building block of insights. Chen et al. formalize the re-
lationship between data facts and insights through their Fact Man-
agement Framework [12], which provides a theoretical base from
which to formalize insights. Building on these ideas, visualization
recommendation systems such as ForeSight [17], DataSite [15],
SeeDB [48], and Voder [47] extract statistical patterns and anoma-
lies to strengthen the user’s understanding of the data and hopefully
guide the user toward new insights.

Pros and Cons. The allure of data facts lies in how easy they
are to compute. For example, when insight is defined as a linear cor-
relation, it becomes straightforward for a visualization recommen-
dation system to automatically recommend data-driven insights by
testing every pair of variables for a correlation [54]. Furthermore,
a statistical or mathematical representation of insight enables re-
searchers to test their validity. For example, Zgraggen et al. tested
the accuracy of reported insights by mapping each utterance from
their user study to corresponding dataset statistics such as mean,
variance, and linear correlation [56]. However, this definition of in-
sight ignores the role of domain knowledge in contextualizing sta-
tistical results. For example, a correlation only becomes meaning-
ful when it represents a relationship that matters in the real world,
such as a correlation between racial discrimination and incidence
of crime [31] or precipitation and incidence of wildlife strikes [5].
Thus, we should be cautious when adopting this definition since a
naive application could yield spurious and ungrounded results.

2.3.3 Insights are Hypotheses
The prior work also suggests that insights are hypotheses and/or
evidence. For example, to evaluate how study participants perform
during open-ended exploration tasks, Gomez et al. label each ob-
served insight from their study as a “claim,” i.e., “a general hypoth-
esis, question, or remark about the data model that is potentially
synthesized from multiple observations,” or as “evidence,” such as
an observation comprised of “specific references to data points”
supporting the claim [20]. Guo et al. augment this claim-evidence
structure to encompass “facts,” “generalizations,” and “hypothe-
ses” [24], where facts are units of truth about specific entities in the
data, generalizations are inferred relationships between observed
entities, and hypotheses are claims that facts and generalizations
can support. Liu and Heer adopt a similar strategy where they ob-
serve that analysts’ data observations and generalizations can lead

Internal/Analytic Knowledge

Detail Correlation

DistributionComparison
Data Facts

Generalization

Generalization

Hypothesis

External Knowledge

Domain Knowledge Social Awareness

Tool Expertise Personal Experiences

…

Figure 1: Insights seem to capture internal knowledge extracted
from data such as data facts, generalizations of these facts, and hy-
potheses to be tested. Insights also link internal and external knowl-
edge such as domain knowledge, personal experiences, and tool ex-
pertise.

to new hypotheses, i.e., insights [30]. Similarly, Sacha et al. ob-
serve that “Analysts try to find evidence that supports or contradicts
hypotheses in order to gain knowledge from data” [37].

Pros and Cons. With this definition, insights are the culmi-
nation of a natural progression toward building the user’s mental
model of the data. It starts with extracting low-level data facts from
a dataset, moves to group these facts into broader generalizations
about the dataset, and finishes with the user formulating hypothe-
ses to be tested in subsequent confirmatory analyses. As a result,
this definition aligns well with the categorizations we analyzed in
subsection 2.2. This definition can also be considered an extension
of the previous definition of insights as data facts. That being said,
this definition also inherits the same limitations. Specifically, this
definition completely omits the role of user experiences, domain
knowledge, and social structures in forming insights. Further, it is
still unclear how to construct the desired hierarchy from data facts
to hypotheses without significant manual intervention [24], requir-
ing additional research in the future to formalize these structures.

2.3.4 Insights are Knowledge links
Finally, others argue that insights can be seen as knowledge links.
For example, Chang et al. say that “insight is considered to be
more or less units of knowledge” in visual analytics [11]. This idea
can also be extended to define insights as links connecting statisti-
cal and/or visual analysis findings (e.g., [47, 26]) with user knowl-
edge [39, 40, 32, 45, 36, 22, 53, 21, 2, 1, 46, 37, 44, 25, 23, 26],



which can be synthesized from one or more user sessions [45, 22,
40, 11, 21, 46, 44, 25, 23], a priori knowledge from outside the
exploration process [40, 22, 53, 35, 2, 46, 37, 44, 25, 23], etc.
Links can be implied, for example through observations made in
qualitative insight studies [39, 40, 46], or they can be digital ob-
jects made through annotation [22, 21, 51] and linking interac-
tions [45, 22, 21, 44, 25, 18, 51] such as to connect system visu-
alization state with the user’s digitized notes. Similarly, insights
can be made hierarchical and even composed together to form more
complex insights [39, 40, 32, 35, 21, 46, 44, 31, 23].

Moreover, Smuc et al. argue that insights can be more effectively
analyzed through a direct analysis of how users’ reported insights to
build on one another and propose relational insight organizers (or
RIOs) to organize and visualize the resulting insight graph [46].
RIOs share similarities with the structures proposed by Gotz et
al. [22], where user knowledge is also captured as a graph, with
high-level concepts and instantiations of these concepts stored as
nodes within the graph, and relationships between instances stored
as edges in the graph. Similar graph-based structures have also
been suggested by Shrinivasan and van Wijk [45], Willett et al. [51],
Mathisen et al. [31], He et al. [25], and Kandogan and Engelke [26].

Pros and Cons. We believe this definition is the most compre-
hensive conceptualization of insight since multiple units of knowl-
edge and relationships between knowledge units can be represented
using this definition. For example, data facts can be represented as
units of analytic knowledge within a network graph, and domain
knowledge can be represented as separate nodes within the graph
for contextualizing these data facts. That being said, most imple-
mentations of this definition keep insights at a relatively high level,
for example, by only capturing domain knowledge as unstructured
text in user-written notes or only capturing analytic knowledge as
visualizations rather than the data characteristics that users inter-
preted within these visualizations (e.g., specific correlations, differ-
ences in means, etc.). We still lack formal structures for reasoning
about what we call the internal knowledge that users extract from
data and the external knowledge users bring into an analysis ses-
sion, hindering our ability to operationalize this definition in prac-
tice.

2.3.5 Integrating the Definitions

At face value, these definitions may appear distinct. However,
a close look at the varying perspectives points to an overarching
theme – an insight is a collection of knowledge. We summarize
the knowledge captured through insights in Figure 1. Although ex-
isting definitions vary in what they emphasize, e.g., prioritizing data
facts versus domain knowledge, the components appear consistent
across definitions, which we categorize as internal and external
knowledge. For example, internal knowledge consistently includes
data facts, generalizations, and hypotheses. External knowledge
consistently includes domain expertise and personal experiences.
Awareness of these components enables users of existing theory to
navigate the varied definitions of insight; for example, identifying
a definition emphasizing domain knowledge to motivate the design
of a knowledge management tool [22].

2.4 Scoping Insights.

Although there are many ways to express knowledge gained, gain-
ing this knowledge generally occurs within a certain visual analysis
scope [21, 19]. Further, scoping insights appears to be tightly bound
with defining tasks [19, 9] or objectives [36, 29] in visualization re-
search. Here, we explore how insights are scoped in the literature.

Many task models have been developed to categorize the scope
of insights that analysts may be looking for. These models of-
ten take the form of taxonomies and typologies [19], where tasks
observed in the field or lab studies are generalized into abstract
classes, such as “Find Anomalies” [1], “Search/Comparison” [28]

or “characterizing data distributions and relationships” [5]. Spe-
cific to insights, a number of taxonomies target insight generation
processes to understand whether task patterns may predict insight
scope, rigor, and complexity [53, 24, 5]. Task models may also
take the form of frameworks, where the scope and structure of ob-
served tasks, and relationships between these tasks, are abstracted
into general-purpose hierarchies. Examples include the frame-
work of tasks, sub-tasks, actions, and events proposed by Gotz and
Zhou [21], and the goals to tasks framework proposed by Lam et
al. [29]. We observe that these models predict the scope of insights
by culling the set of relevant data facts (taxonomies) or narrow-
ing the range of relevant data for applying these data facts (frame-
works). Further, these models seem to suggest an upper bound on
the depth and breadth of corresponding insights, where insights are
unlikely to cover more data or facts than are predicted by these
models. That being said, these models represent a range of possi-
bilities. They are not meant to predict the exact insights an analyst
may uncover as they analyze a dataset.

An analyst’s interest in pursuing certain tasks can also be defined
by the kinds of insights they expect to uncover. This observation
stems from how a user’s analysis strategy is likely informed by an
initial goal or “hunch” regarding the target dataset [29, 56, 5], even
if vaguely at first [5]. For example, Bertin defines tasks accord-
ing to the structure of the underlying data and the information the
user seeks to learn from this data [7]. Andrienko and Andrienko
extend Bertin’s ideas to define tasks as declarative functions over
data relations comprised of targets, i.e., data attributes of interest,
and constraints, i.e., query predicates over these attributes [3]. We
note that Andrienko and Andrienko and Bertin’s proposals over-
lap significantly with declarative definitions of task in database re-
search, notably relational calculus, a component of the relational
model that also defines tasks (or queries) as declarative functions
over data relations [14]. That being said, existing declarative defi-
nitions of task are limited to scoping the user’s expectations and fail
to encapsulate the insights that the user found, which are particu-
larly interesting in insight discovery work.

Thus, although existing task models are useful aids for inferring
insight scope, they alone are insufficient for fully defining insights
and must be paired with alternative theories accordingly.

3 Discussion
In this section, we highlight promising directions for future re-
search.

3.1 Building a “Grammar of Insights”
The structural consistencies we observed across insight definitions
draw close parallels to the role of grammars in visualization lan-
guages. For example, visualizations have been categorized in the
same way that insights have [4, 8]. However, by favoring ease of
use, visualization taxonomies also sacrifice the ability to express a
diverse range of visualizations. Instead, one could identify the core
building blocks behind them and construct grammars for express-
ing these building blocks. This is the core idea behind the Grammar
of Graphics [50], which has led to wildly successful visualization
grammars such as Vega-Lite [41] and ggplot2 [49].

We (and others [26]) posit that the consistent structures observed
across insight definitions suggests that one could also derive an
equivalent “grammar of insights,” i.e., a unified formalism for ex-
pressing the core building blocks observed in our literature review.
With a formalism, we can start to derive new grammars for ex-
pressing insights that maintain consistency with established defini-
tions. Declarative definitions of tasks [7, 3, 14] and analytic knowl-
edge [26] provide promising starting points for new grammars,
as do existing knowledge annotation systems (e.g., [22, 44, 51]).
However, we still lack generalizeable, programmable primitives for
defining insights with equivalent precision to visualization gram-
mars. As a first step towards filling this gap, we are developing



a formalism for specifying insights and a corresponding grammar
called Pyxis that can be used in visualization systems [6]. Our on-
going work builds on this survey by specifying formal structures
for the concepts we observe in the literature, such as internal knowl-
edge (data facts, generalizations, etc.), external knowledge (domain
knowledge, personal experiences, etc.), and links forged between
the two to form insights (see Figure 1).

3.2 Insights, Objectives and Tasks
An emergent theme from this work is that insights, objectives, and
tasks are intertwined. For example, the types of insights gained dur-
ing a task are likely influenced by the user’s current objective, such
as confirming an established hypothesis versus searching for inter-
esting patterns in the data [5]. Similarly, when a user pivots to a
new task, i.e., changes their analysis objective, their recent insights
likely influenced that pivot. The literature also seems to suggest that
generalizable theory models should capture the various facets of
user tasks (insights and objectives) and their interconnected nature.
For example, Andrienko and Andrienko model these connections
by defining tasks in two parts [3]: the target information sought dur-
ing the task and the constraints the target must fulfill. Brehmer and
Munzner expand on this principle through a multi-level typology
that connects why the user performs a task, how they execute the
related methods, and what the task’s inputs and outputs are [9]. By
connecting the inputs that guide the task (objectives) with the out-
puts produced from the task (insights), we posit that theoretical task
models could provide a holistic structure that enables researchers to
analyze how tasks evolve and induce particular insights over time.

4 Conclusion
The paper presents a literature review charting the landscape of ex-
isting definitions of insight. We dissect the key components of these
definitions, evaluate their pros and cons, and discuss their applica-
bility to various scenarios in insight-based research. Based on our
review, we identify two opportunities to extend existing theory: de-
veloping grammars of insight and connecting insight with theoreti-
cal models of visual analysis tasks and objectives.
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[15] Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist. DataSite: Proac-
tive visual data exploration with computation of insight-based recom-
mendations. IVS, 18(2):251–267, Apr. 2019. Publisher: SAGE Publi-
cations. doi: 10.1177/1473871618806555

[16] J. L. Cybulski, S. Keller, L. Nguyen, and D. Saundage. Creative prob-
lem solving in digital space using visual analytics. Computers in Hu-
man Behavior, 42:20–35, 2015. Digital Creativity: New Frontier for
Research and Practice. doi: 10.1016/j.chb.2013.10.061
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