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Figure 1: An overview of the Vis-SPLIT tool. (A) The Hierarchical Overview is an abstract view of the current clusters. (B)
The Heatmap Overview displays the patterns for the expression values of genes in each cluster. (C) The Survival Analysis
View visualizes survival curves for each cluster. (D) The PCA View allows users to view or split the selected node in the
Hierarchical Overview, and includes (D.1) the Projection depicting individuals in 2D, placed based on genetic expression,
(D.2-D.3) axis-aligned heatmaps displaying the expression values of genes, and (D.4) the Feature Loadings Plot showing current
gene contributions.

ABSTRACT

We propose an interactive visual analytics tool, Vis-SPLIT, for par-
titioning a population of individuals into groups with similar gene
signatures. Vis-SPLIT allows users to interactively explore a dataset
and exploit visual separations to build a classification model for
specific cancers. The visualization components reveal gene expres-
sion and correlation to assist specific partitioning decisions, while
also providing overviews for the decision model and clustered ge-
netic signatures. We demonstrate the effectiveness of our framework
through a case study and evaluate its usability with domain experts.
Our results show that Vis-SPLIT can classify patients based on their
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genetic signatures to effectively gain insights into RNA sequencing
data, as compared to an existing classification system.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics

1 INTRODUCTION

RNA-Sequencing (RNA-Seq) generates data about the abun-
dance/expression of RNA molecules. This technique allows the
identification of expression patterns that represent different cell
states, which can have special diagnostic or prognostic value in
cancer research. However, the success of this approach depends on
the specificity of the context under consideration, such as normal
tissue biology, immunogenic mutational burden, genetic etiology,
or specific treatments. The earlier RNA studies required laborious
manual assessment of the importance of individual genes in such
context, aided by traditional readily-available hierarchical clustering
techniques.

To cluster or analyze high-dimensional gene data, dimensionality
reduction techniques have been commonly used. There are two
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types of dimensionality reduction techniques: linear methods such as
Principal Component Analysis (PCA) [20] and non-linear methods
such as Multi-Dimensional Scaling (MDS) [16] and t-Stochastic
Neighbor Embedding (t-SNE) [33]. While non-linear methods have
been used successfully for capturing local distances between data
points [2, 10], they may require tools to explain them and rate their
trustworthiness to generate better results [3].

Typical instances of RNA-Seq clustering tend to be static, so
even relatively minor improvements such as adding or removing a
feature in a cluster are prohibitively costly for subsequent reviewers
or analysts, significantly limiting the pace of potential improvements
via unplanned contributions. For example, the breast tumor RNA
expression clusters were discovered using one-shot (model-free)
hierarchical clustering and disseminated in static dendrograms and
heatmaps [21, 28]. While the clusters have proven to carry a high
degree of diagnostic and prognostic value in the ensuing years,
progress on refinement of these results was slow. It was 8 years until
an actual classifier derived from this discovery was developed, the
PAM50 classifier [19], and the corresponding clusters it classifies are
essentially unimproved after its proposal. Some machine learning
techniques have found some success in improving classifications by
training data-driven models [4, 5, 17]. However, these unsupervised,
or “black box”, techniques often lack transparency in their decisions
and do not allow the incorporation of domain knowledge [15].

To address these issues, we propose Vis-SPLIT (Visually Sepa-
rable Plots formed from Linear, Iterated Technique), an interactive
clustering framework that utilizes PCA to present users with easily
explainable projections. For our approach, we choose to use PCA
due to its computational efficiency, interpretability, and the ability
to visualize and interact with its inner workings [26], including the
eigenvectors and eigenvalues of each Principal Component (PC). In
the proposed method, an analyst applies PCA to a working dataset
iteratively to identify increasingly subtle clusters [24]. Obvious
partitions are made first, reducing the sizes of working clusters and
ultimately revealing underlying patterns.

Vis-SPLIT provides four linked views that are designed to build a
classification scheme for RNA-Seq data. Due to its iterative nature,
only one projection is given at a time, along with other coordinated
views to manipulate the projection into visually separable clusters.
The framework enables domain experts to incorporate domain knowl-
edge by exploring and selecting high-dimensional features/genes.
We demonstrate the usability of Vis-SPLIT through a case study
on an RNA-Seq dataset of breast cancer patients and evaluate the
effectiveness of Vis-SPLIT through domain experts’ feedback.

2 RELATED WORK

Several clustering methods, including hierarchical methods [6] and
the k-means algorithm [29] have been used to classify gene expres-
sion, but require tuning parameters and using appropriate methods
for measuring similarity.

To address this issue, different interactive clustering methods
have been successful when working with genetic data [18, 25, 34].
Van Long et al. [34] presented an interactive, density-based hierar-
chical clustering method, which can deal with noises in microarray
experiments. Mukhopadhyay et al. [18] proposed an interactive
multiobjective clustering (IMOC) algorithm, learning from user de-
cisions to refine its results. Seo and Shneiderman [25] developed
the Hierarchical Clustering Explorer for interactively exploring and
visualizing large microarray data based on a hierarchical cluster-
ing method. However, these methods often lack explanation of the
clustering process.

Some interactive tools utilize non-linear techniques to provide
powerful data exploration features [11, 23, 27]. Somarakis et al. [27]
used t-SNE for their two-dimensional embeddings while Höllt et
al. [11] used a hierarchical variant, HSNE [22], to organize clusters
into a radial hierarchy for exploration. Sabando et al. [23] trained a

parametric feed-forward neural network to recreate the effects of t-
SNE to be more fitting for their purpose. While t-SNE based methods
easily identify neighborhoods and provide separable projections,
they do not explain projections in terms of the input features.

For interpretability and efficient clustering, many methods utilize
linear dimensional reduction methods such as PCA when working
with high-dimensional data. PCA has been used successfully in
the analysis of genetic data [12, 31, 32], but often lacks interactive
configuration or is implemented and configured manually, targeted
to a specific dataset. This limits the flexibility of an approach to be
used with different datasets.

There are more generally applicable PCA systems [8, 13] that
provide additional insight into a dataset by exposing certain features
of the algorithm. iPCA [13] allows the user to modify dimensional
contribution and visualize the eigenvectors within the PCs. Dim-
Lift [8] utilizes an iterative approach based on Factor Analysis of
Mixed Data (FAMD), identifying obvious feature correlations first
so that hidden patterns can be uncovered. While useful tools, these
methods focus on data and algorithm exploration or hypothesis for-
mation, while Vis-SPLIT allows users to quickly build classification
models for gene expression data.

3 DESIGN REQUIREMENTS

RNA-Seq is a biological tissue measurement procedure and raw-data
processing technique that ascertains the abundance (or “expression”)
of RNA transcripts in the sample for each gene. RNA-Seq is now
routinely performed on tumor and adjacent tissue samples from
cancer patients. The technique of honing in on expression patterns
– representing cell states – with special diagnostic or prognostic
value in research cohorts has been very successful, provided that
the context under consideration is specific enough, e.g. with respect
to tumor origin site, metastatic status, immunogenic mutational
burden, specific genetic etiology, or specific treatments. However,
discovering/classifying expression patterns is challenging due to
the presence of high dimensionality [35] and noises [7]. Based on
discussions with two biomedical researchers, we identified several
design requirements (DRs) of Vis-SPLIT for classifying types of
cancer based on genetic expression.

DR1. Provide an overview of the distribution and features of
individuals based on clusters: Domain experts are interested in the
characteristics of each cluster so that they can identify significant
features/genes of each cluster/group, explore how common/rare each
cluster is, and understand an overall structure of the user-defined
classification.

DR2. Identify patterns of activation or inactivation for different
genes or gene groups: In order to define meaningful clusters, an
analyst needs to be able to identify genetic patterns that distinguish
some individuals from the others. These patterns must be apparent
within the working set of individuals so that the analyst can define
classification rules to exploit the pattern’s presence.

DR3. Compare the similarities of gene group activation across
clusters: It is common to analyze genetic distinction in terms of gene
groups, or sets of genes whose collective activation is significant for
the purposes of classifying and understanding an individual. These
gene groups must be apparent and comparable across all clusters to
confirm the results of a classification.

DR4. Understand the link between clusters and diseases: Specific
sub-types or classes of disease can be associated with each cluster,
often defined by its highly activated gene groups and/or prior domain
knowledge. Domain experts are interested in the survival rates and
prognosis of these diseases.

4 FRAMEWORK

As illustrated in Fig. 1, Vis-SPLIT has four main views: (A) the
Hierarchical Overview, (B) the Heatmap Overview, (C) the Survival
Analysis View, and (D) the PCA View.



4.1 Hierarchical Overview
The Hierarchical Overview (Fig. 1A) shows the entire dataset being
partitioned into individual clusters. In the Hierachical Overview,
we can discover the distribution of patients with similar genetic
signatures across clusters (DR1). This view serves as a visual repre-
sentation of the classification model being built.

Visually, the plot resembles a top-down Sankey Diagram, with
each rectangular node representing a separation in the data defined
by user interactions with the PCA view. In other words, the top
of the diagram represents the whole dataset, with movement down
the tree corresponding to iterative partitions in the data, eventually
resulting in final clusters in the leaf nodes.

The width of nodes and bands corresponds to the number of
individuals present in that portion of the classification model. Colors
are assigned to each cluster as partitions are made, and can be traced
down to the leaf node (representing a final cluster) or can be used to
see the relative size difference in any parenting super-clusters or the
dataset as a whole. A list of features (genes) can be found on each
partitioning node, representing the features that were determined
to be most different between the resulting clusters of a partition. A
given feature i will be shown here if the following threshold is met:

|µa
i −µ

b
i | ≥ σavg

where µa
i and µb

i represent the mean values of a feature i among
the two resulting clusters, a and b, and σavg represents 1 standard
deviation from the mean of all differences in feature values:

σavg =

√
∑(di −µd)2

N

where di is the difference between the average value of feature i
across cluster a and the average value of feature i across cluster b,
µd is the average of differences di for all i features, and N is the
number of features.

4.2 Heatmap Overview
The Heatmap Overview (Fig. 1B) shows an overview of all indi-
viduals and their genetic signatures. This allows comparison of
activation in different gene groups across all clusters (DR3)

Every individual is shown as a column, and every feature is repre-
sented as a row. The color of each bar encodes a gene expression
value, blue (negative values) to yellow (zero) to red (positive values).
As partitions are made in the data, this heatmap will reorganize indi-
viduals into separable vertical bands, corresponding to the cluster
bands of the Hierarchical Overview. The corresponding cluster color
is displayed at the top of each cluster in the Heatmap Overview.
Additionally, any features that are identified as “important” for a
given partition in the Hierarchical Overview will be grouped into a
horizontal band, ordered internally by the highest expression.

4.3 Survival Analysis View
The Survival Analysis view (Fig. 1C) depicts the relationship be-
tween formed clusters and diseases (DR4). This view provides a
summary of probabilities that individuals for each cluster will sur-
vive up to a specific time. Kaplan-Meier analysis [14] is applied to
the current clusters, and a curve is shown for each, colored to match
that cluster’s band in the Hierarchical Overview. A baseline curve is
also shown as a dotted gray line, representing the dataset as a whole.

4.4 PCA View
The PCA View (Fig. 1D) is designed to display activation patterns
for different groups of genes (DR2). In the PCA View, an analyst
can identify feature trends and make meaningful partitions in the
data. We use the same color encoding as the Heatmap Overview.

4.4.1 Projection

The Projection (Fig. 1-D.1), shows the current PCA projection. The
projection will only include individuals from the selected node in the
Hierarchical Overview and will utilize all features (genes) by default,
though a limited feature space will be used if any features have been
specifically selected. An analyst can choose any two Principle
Components (PCs) for the Projection’s axes, and can explore the
configurations that utilize the most distinguishing features. Each
individual is represented as a point and is placed relative to the
selected PCs. In the Projection, an analyst can draw a divider line
to partition the data based on an observed visual separation. Color
can also be encoded on points based on selected features. This is
done by averaging selected feature values for each individual and
coloring them using the same blue-yellow-red color scale used in
all of Vis-SPLIT’s heatmaps. Additionally, if there is any existing
classification for the dataset, it can be viewed for comparison by
toggling an overlay showing categorical colors and a legend.

4.4.2 Heatmaps

For both selected PCs in the Projection, a heatmap is aligned, seen
in Fig. 1-D.2 and Fig. 1-D.3. Each heatmap is divided into bins
that encapsulate the aligned points in the Projection. For the bot-
tom heatmap, each row indicates a feature/gene and each column
represents a bin containing all individuals stretching upwards into
the scatterplot. Features are sorted based on values within the PC’s
eigenvector, prioritizing the most contributing genes for a given pro-
jection. For the right heatmap, the rows and columns are swapped.

Each cell is colored based on the average value of the given
feature for the contained individuals within the given heatmap bin.
Heatmap bins that do not hold any individuals will instead show
gray outlined boxes for each feature.

Feature names are listed to the sides of the heatmap along with
their respective values in the heatmap’s PC. Features can be selected
by clicking these labels, which updates the global feature selection
across all the visual components in the PCA View. In the case
that the user has selected any features, the selected features’ labels
remain black while any others are displayed in gray.

4.4.3 Feature Loadings

The Feature Loadings plot (Fig. 1-D.4) shows the influence of each
feature along the selected PCs in the Projection [9]. Each vector rep-
resents a feature with its length and direction indicating its influence
in the Projection. A similar vector direction of features can indicate
a correlation between them. Features’ labels are placed along an
outside circle to reduce visual clutter. Additionally, spacing forces
are applied to the labels to reduce overlap. An analyst can select
features by clicking their circle or label or by brushing. Unselected
features and their vectors are grayed out and, like with the aligned
heatmaps, any selection of features is global to the PCA View.

5 CASE STUDY

We demonstrate a classification case of our workflow to group pa-
tients with breast cancer. In this case, we used the PanCancer Atlas
breast cancer dataset [30]. This dataset tracks 50 genetic mark-
ers across 1082 individuals, which have been previously classi-
fied through the PAM50 test [36] as BRCA_LumA, BRCA_LumB,
BRCA_Basal, BRCA_Her2, BRCA_Normal, or none.

To classify the dataset better than the PAM50, first, an analyst
wants to divide the entire dataset into two parts through the Pro-
jection (Fig. 2A). To examine the features/genes of each group in
detail, the analyst explores a heatmap for the second PC, where a
few genes seem to be much more positive towards the top of the
scatterplot: ERBB2, GRB7 and CDC6 (DR2). Additionally, the
Feature Loadings plot (Fig. 2B) shows these features have a much
stronger influence than the other features.



Figure 2: An example of (A) identifying a gene partition based on
(B) selected features in the Feature Loadings plot.

The analyst selects these seemingly correlated features from the
Feature Loadings plot and encodes color to the Projection, con-
firming that individuals in the top part of the Projection have high
expressions for these genes (Fig. 2A). Using their domain knowl-
edge, the analyst knows these features to correlate to HER2 positive
breast cancers, having higher levels of HER2 protein. Based on this
finding, the analyst divides the dataset into two clusters.

The width of vertical bands in the Hierarchical and Heatmap
Overviews reveal that about 10% of individuals fall within the new
HER2 group (DR1). The analyst can also see that the three signifi-
cant genes they identified earlier have been separated and raised to
the top of the Heatmap Overview, highlighting the major difference
between these two clusters’ genetic signatures (DR3). The analyst
also notes that the HER2 group has a flatter survival curve in the
Survival Analysis View, from which hypotheses may be formed
about the prognosis of disease found within these individuals (DR4).

Next, to further classify individuals who don’t belong to the
HER2 group, the analyst chooses the larger leaf node in the Hi-
erarchy Overview. Again a separation is noticeable in the Projec-
tion, with one cluster near the bottom-left and another near the
top-right (Fig. 1D). The analyst selects all features pointing towards
these directions, and runs PCA again. The new projection is made
using only about half of the total features, making it easier to focus
on and linearly divide the clusters previously observed.

The analyst continues to look for feature patterns and splits the
data until they can no longer make any meaningful partitions. Once
the analyst has completed their interactions, they review the re-
sulting model in the Overviews and Survival Analysis View. The
produced Vis-SPLIT classification can then be compared with that
of the PAM50 test (Fig. 3). While both heatmaps reveal cohesive
genetic signatures across four distinct clusters, Vis-SPLIT classi-
fies all examples, whereas the PAM50 test leaves some individuals
within the less descriptive classifications of “BRCA_Normal” and
“none”. Though some of these previously unclassified individuals
may be important to recognize as outliers, many have genetic signa-
tures which strongly align with a formed cluster. Additionally, some
genetic patterns are more clearly represented within Vis-SPLIT clus-
ters. One example of these patterns is the top feature group within
the HER2 positive clusters, which contains more overwhelmingly
positive values for the three identified genes (Fig. 3A).

5.1 Expert Feedback
Our Vis-SPLIT was reviewed by two biomedical researchers to
evaluate the usefulness of the proposed framework. After domain
experts were given time to use Vis-SPLIT, along with some guidance
on its use, they provided overall positive feedback, claiming that the
tool was intuitive and produced an easily interprettable model. They
appreciated how fast it was to discover clusters and build a model,
noting on first look that it “truly felt most sensible to split first [based
on the HER2 group], because it was the most salient [within the
Projection].” They liked using the Projection to extract clusters such
as this one and one resembling PAM50’s Basal group, and enjoyed

Figure 3: A comparison of classification from the resulting Heatmap
Overview of the PAM50 (top) and Vis-SPLIT (bottom), and (A)
some regions where the difference is visible.

the explanations provided by the aligned heatmaps and Loadings
plot. For less significant distinctions, such as that between the orange
and blue clusters from Fig. 3, the domain experts favored patterns
seen in the aligned heatmaps and Loadings plot, which revealed a
group of genes that spanned continuously from low expression to
high expression across the cluster.

The experts also liked the ability to overlay existing classifica-
tions directly on their projections. When viewing PAM50 classes
through this option, one expert noticed that some individuals seemed
misclassified as HER2 by the PAM50 system. They reached this con-
clusion by encoding the genes known to correlate with this cancer
onto the Projection, observing low representation on specific indi-
viduals and then overlaying the PAM50 classification. They felt it
was useful to be able to identify these inconsistencies in the genetic
expressions within PAM50 classes and were more confident that
the classifications made through Vis-SPLIT better grouped similar
genetic signatures.

The experts did note that the system did not provide any statisti-
cal analysis allowing more in-depth comparison of survival curves.
Additionally they mentioned a desire for more robust navigation
in the Hierarchical Overview to return back to the previous states
of the application, essentially being able to “undo” and/or review
partitioning decisions.

6 CONCLUSION

We presented Vis-SPLIT, a novel framework for interactively clus-
tering RNA-Seq datasets. We provide several techniques to cluster
similar genes and identify groups of individuals linked to the sub-
types of a disease. Finally, a case study and accompanying expert
feedback is presented to demonstrate the tool’s use.

There are several limitations of our current framework, which will
be addressed in the future. First, although Vis-SPLIT has analyzed
and visualized up to 2,000 individuals, any more individuals results
in the Heatmap Overview becoming increasingly crowded and losing
the ability to identify individuals, especially once there is less than
a pixel dedicated to each. The addition of other summarization
methods [1] and a zoom feature can alleviate this issue. With more
features another limitation is seen in the Loadings Plot, where feature
labels may stray further from the direction their corresponding vector.
Finally, the approach could be strengthened with measurements of
certainty for an example’s classification within the model.

Vis-SPLIT can assist cancer researchers in the exploration of
data to build new models and compare them with existing baselines.
Outputted models can be used directly or can be summarized into
simpler decision trees based on significant gene expressions.



REFERENCES

[1] D. Albers, C. Dewey, and M. Gleicher. Sequence surveyor: Leveraging
overview for scalable genomic alignment visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2392–2401,
2011.

[2] E.-a. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine,
S. C. Bendall, D. K. Shenfeld, S. Krishnaswamy, G. P. Nolan, and
D. Pe’er. visne enables visualization of high dimensional single-cell
data and reveals phenotypic heterogeneity of leukemia. Nature biotech-
nology, 31(6):545–552, 2013.

[3] A. Chatzimparmpas, R. M. Martins, and A. Kerren. t-viSNE: Interac-
tive assessment and interpretation of t-sne projections. IEEE Trans-
actions on Visualization and Computer Graphics, 26(8):2696–2714,
2020.

[4] H.-I. H. Chen, Y.-C. Chiu, T. Zhang, S. Zhang, Y. Huang, and Y. Chen.
Gsae: an autoencoder with embedded gene-set nodes for genomics
functional characterization. BMC systems biology, 12(8):45–57, 2018.

[5] J. Ding, A. Condon, and S. P. Shah. Interpretable dimensionality
reduction of single cell transcriptome data with deep generative models.
Nature communications, 9(1):2002, 2018.

[6] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster
analysis and display of genome-wide expression patterns. Proceedings
of the National Academy of Sciences, 95(25):14863–14868, 1998.

[7] S. P. Ficklin, L. J. Dunwoodie, W. L. Poehlman, C. Watson, K. E.
Roche, and F. A. Feltus. Discovering condition-specific gene co-
expression patterns using gaussian mixture models: A cancer case
study. Scientific Reports, 7(1):8617, 2017.

[8] L. Garrison, J. Müller, S. Schreiber, S. Oeltze-Jafra, H. Hauser, and
S. Bruckner. Dimlift: Interactive hierarchical data exploration through
dimensional bundling. IEEE Transactions on Visualization and Com-
puter Graphics, 27(6):2908–2922, 2021.

[9] S. M. Holland. Principal components analysis (pca). Department of
Geology, University of Georgia, Athens, GA, pages 30602–2501, 2008.

[10] T. Höllt, N. Pezzotti, V. van Unen, F. Koning, E. Eisemann,
B. Lelieveldt, and A. Vilanova. Cytosplore: interactive immune cell
phenotyping for large single-cell datasets. 35 issue 3:171–180, 2016.

[11] T. Höllt, N. Pezzotti, V. van Unen, F. Koning, B. P. Lelieveldt, and
A. Vilanova. Cyteguide: Visual guidance for hierarchical single-cell
analysis. IEEE Transactions on Visualization and Computer Graphics,
24(1):739–748, 2017.

[12] M.-W. Hu, D. W. Kim, S. Liu, D. J. Zack, S. Blackshaw, and J. Qian.
Panoview: An iterative clustering method for single-cell rna sequencing
data. PLoS computational biology, 15(8):e1007040, 2019.

[13] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang.
iPCA: An interactive system for pca-based visual analytics. Computer
Graphics Forum, 28(3):767–774, 2009.

[14] E. L. Kaplan and P. Meier. Nonparametric estimation from incom-
plete observations. Journal of the American statistical association,
53(282):457–481, 1958.

[15] V. Y. Kiselev, T. S. Andrews, and M. Hemberg. Challenges in unsuper-
vised clustering of single-cell rna-seq data. Nature Reviews Genetics,
20(5):273–282, 2019.

[16] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[17] C. Lin, S. Jain, H. Kim, and Z. Bar-Joseph. Using neural networks
for reducing the dimensions of single-cell rna-seq data. Nucleic acids
research, 45(17):e156–e156, 2017.

[18] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay. An interactive
approach to multiobjective clustering of gene expression patterns. IEEE
Transactions on Biomedical Engineering, 60(1):35–41, 2012.

[19] J. S. Parker, M. Mullins, M. C. Cheang, S. Leung, D. Voduc, T. Vickery,
S. Davies, C. Fauron, X. He, Z. Hu, et al. Supervised risk predictor of
breast cancer based on intrinsic subtypes. Journal of clinical oncology,
27(8):1160, 2009.

[20] K. Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine
and journal of science, 2(11):559–572, 1901.

[21] C. M. Perou, T. Sørlie, M. B. Eisen, M. Van De Rijn, S. S. Jeffrey,
C. A. Rees, J. R. Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, et al.

Molecular portraits of human breast tumours. nature, 406(6797):747–
752, 2000.

[22] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hi-
erarchical stochastic neighbor embedding. Computer Graphics Forum,
35(3):21–30, 2016.

[23] M. V. Sabando, P. Ulbrich, M. Selzer, J. Byška, J. Mičan, I. Ponzoni,
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