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Compact Phase Histograms for Guided Exploration of Periodicity
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Fig. 1. Our approach is centered around the phase histogram widget (a), which indicates the von Mises distribution [36] for given
period lengths as a row-wise heat map (b). The duration of the period can be adjusted by vertically scrolling the heat map. The
current period length is indicated by a frame (c) and visualized additionally as a bar chart (d). The quality measures for period lengths
are visualized as a vertical bar chart (e). Bigger changes of the period length or picking a dedicated one is possible with the time
slider (f). Other interesting period lengths that are fractional multiples of the current one are suggested above (g) the slider.

Abstract—Periodically occurring accumulations of events or measured values are present in many time-dependent datasets and can
be of interest for analyses. The frequency of such periodic behavior is often not known in advance, making it difficult to detect and
tedious to explore. Automated analysis methods exist, but can be too costly for smooth, interactive analysis. We propose a compact
visual representation that reveals periodicity by showing a phase histogram for a given period length that can be used standalone
or in combination with other linked visualizations. Our approach supports guided, interactive analyses by suggesting other period
lengths to explore, which are ranked based on two quality measures. We further describe how the phase can be mapped to visual
representations in other views to reveal periodicity there.

1 INTRODUCTION

Many datasets contain temporal information. For many years, visual-
ization techniques have been used to understand developments, trends,
and other temporal patterns in such time data series [1]. Such patterns
include periodically occurring accumulations of events, measured val-
ues, or frequencies. In time series data, one or more attributes depend
on time: a(t). Accordingly, periodic behavior of period length τ can
be seen as a similarity of the characteristics of a(t) in the intervals
[t0 +kτ, t0 +kτ + τ] , k ∈ Z. A special case are event data, where the
temporal distribution of data points is of interest, rather than the dis-
tribution of values over time. Periodic behavior can be interesting for
analyses; for instance, to predict future values of a data attribute, or to
find hidden dependencies in the data. Several well-known automated
procedures for detecting periodic effects exist, such as Fourier trans-
forms [6], seasonal-trend decomposition based on Loess (STL) [10],
and dynamic mode decomposition (DMD) [20,27]. However, some of
these methods require the period length of interest as an input parame-
ter, or can be expensive regarding the compute time.

In certain situations, the interactive visual identification and explo-
ration of periodic effects has benefits over automatic procedures and
static visual approaches; for example, if the interplay of periodicity
in events with their geographical location or other data attributes is
of interest. Different periodicities can be explored without making
presumptions on interesting periods. In addition, important facets
of the time-dependent data become visible immediately. Various ap-
proaches [5, 19, 30, 35, 37] map phase and time to positions in a grid-
or spiral-based layout, revealing periodicity in an intuitive manner. We
extend previous work with a compact, aggregated, and interactive rep-
resentation (Fig. 1a) of time series data that reveals periodic behavior
even for datasets with larger temporal extent. We offer guidance [9] in
the form of suggestions (Fig. 1g) and quality measures [28, 36]. Since
exploring the interplay with other data attributes can be interesting,
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our approach can be integrated within a larger, multiple-view visual-
ization.

The contributions of the approach presented in this work comprise
the introduction of a new composite widget that (i) helps users detect
and explore periodic occurrences of aggregated quantitative informa-
tion in long time series data, (ii) offers guidance to point users to po-
tentially interesting periods exhibiting seasonal effects, and (iii) lets
users pick suitable mappings including glyphs and color scales to un-
derstand periodicity in other views.

2 RELATED WORK

We briefly discuss related automatic methods for analyzing periodic
behavior, but focus on interactive visual approaches. Various possibili-
ties for representing cyclical temporal data exist [1,5]. Hence, we limit
our discussion here to approaches closely related to ours.

Automatic Periodicity Analysis. Fourier analysis [6] converts
an input signal to the frequency domain. This requires a high sam-
pling rate on the input signal, which can be expensive for event data,
where it must be generated as a long, sparse histogram of the events.
Fourier analysis also returns many false positives for non-sinusoidal
periodicity. Cleveland et al. [10] introduced STL, which splits a time-
dependent data signal into a seasonally recurring component, a linear
trend, and a remainder. Constrained DMD (cDMD) [20] produces sim-
ilar results using a different method. Cycle plots [7, 11] produce visu-
alizations that also reveal such seasonal characteristics. While these
methods produce good results even for noisy data, they are usually ex-
pensive to compute, and require prior knowledge on the frequency of
the periodic behavior. STL also requires the period length to be an in-
teger multiple of the sampling rate. Unconstrained DMD [27] does not
require the period length as input, but has similar computation costs as
cDMD [20], and does not always output the expected period length.
Fourier analysis [6], DMD [27], and cDMD [20] find sinusoidal signal
components; but struggle with other signal characteristics that could
occur with event data. In contrast to these methods, we focus on in-
teractive and exploratory analysis of periodic behavior in event data,
often in the context of other data attributes.
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Visualization of Periodicity. Various works have explored non-
linear layouts of data to reveal periodicity. Carlis et al. [8] and Weber
et al. [37] proposed Archimedean spirals, where one turn along the
spiral represents one period. Periodic behavior of that period length
would then appear as lines or cones going radially outward from the
center (Fig. 2i). The same effect can be reached with a line-wise, rect-
angular representation (Figs. 2e to 2g), where each line represents one
period [19]. In both representations, spiral and rectangular, the pe-
riod length can be adjusted interactively, by tightening the spiral or
changing the aspect ratio of the rectangle, to find periodicities. Our ap-
proach focuses particularly on scalability, as well as guidance of users
to interesting period lengths. We show these representations as detail
views on demand. A special case of the rectangular representations
are calendar-based layouts [21, 29, 35], which reveal periodic behav-
ior in human-made time concepts on multiple scales, but are limited
to fixed time concepts. Several visualizations utilizing concentric cir-
cles [2, 3, 16, 23] or stacks [22] also fit this category. Frey et al. [14]
present a matrix representation which reveals self-similar patterns in
time series data, but requires considerable screen estate.

Pinus view [30] shows an aggregated visual summary of a time
series in a triangular fashion, where each position in the triangle cor-
responds with an interval and an offset in the temporal domain of the
dataset. The residuality model by Van de Weghe et al. [34] describes a
similar concept. These concepts, like ours, show a visual summary of
the temporal domain. However, they are orthogonal to ours in that they
consider aggregated intervals, rather than looking at repeating patterns.
Closer to our approach is the work by Suschnigg et al. [31], who com-
pare characteristics between periods via glyphs, or a matrix of anomaly
scores. The approach by Ishii and Misue [17] is also closely related
to our quality metrics, as they essentially visualize the von Mises [36]
vector strength and direction for different data attributes. Recurrence
quantification analysis [24, 25] also share similarities to our work. In
contrast to these works, we focus on interactive discovery of interest-
ing period lengths, and offer a more compact visual representation.

3 APPROACH

Our approach is centered around an aggregated view on all periods
at once for a given period length, which we call the phase histogram.
Periodic behavior for that period length is visible by non-uniform dis-
tribution of values (Figs. 1b, 1d, 2b, and 2c; Table 1). We calculate
quality measures for different period lengths to guide towards interest-
ing ones, focusing on fractional multiples of the current period length
to balance out the challenges discussed in Section 3.2.

3.1 Phase Histogram

Our approach considers a time series of events S, |S|= n. The time se-
ries S = {ti | i ∈ {1, . . . ,n} ⊂ N} consists of points in time ti. It has an
extent from t0 to t1: ti ∈ [t0, t1], where t0, t1 ∈ R. For a user-selectable
period length τ , each point in time t has a phase ϕ(t,τ) ∈ [0,2π). The
phase is the offset from the start of the period relative to the period
length, where the first period starts at t0:

ϕ(t,τ) = 2π ·
(t−t0) mod τ

τ

For a given τ , we then calculate a histogram with N bins over
the phases of all time series events (Fig. 2a). The choice of N de-
pends mainly on available space. It affects the granularity of the
resulting phase histogram, as well as the scaling of the entropy es-
timation values. In the subsequent examples, we use N = 25. The
shape of the histogram then reveals potential periodic behavior if one
or some of the bins contain considerably more items than the others.
Figures 2b, c, e to k, and Table 1 (rows 2–5) show some examples
of histograms which represent periodic behavior. Multiples and frac-
tions of the actual periodic behavior’s period length will also produce
interesting-looking patterns. We consider such multiples and fractions
to evaluate whether they show clearer periodic behavior than the cur-
rent period length τ (see Section 3.2). While our approach focuses
on event data, it can also be employed to show periodic behavior of
time-dependent data attributes (Section 3.3). Our representation can

Table 1. Example phase histograms alongside the two quality measures
used: Shannon entropy [28] and von Mises vector strength [36]. For the
vector strength, the distribution of the data points on the unit circle (blue)
and their barycenter (red) are also visualized.

uniform random

0.079 Sh4.5

sharp peak

1 Sh0

soft peak

0.78 Sh3.5

two symmetric peaks

0.0037 Sh3.3

three symmetric peaks

0.01 Sh4

Phase histogram Distribution Vector strength Entropy

be understood as a vertical aggregation of the rectangular binned rep-
resentations [19, 21, 29, 35], which reveals overarching patterns in all
rows (see Fig. 2a).

3.2 Pre-calculation and Guidance

Interesting period lengths are those that match periodically reoccurring
events in the data. In these cases, the phases of a larger-than-average
number of events are similar, and the phase histogram is not uniform.
Our approach calculates two quality measures that help decide which
period lengths show promising patterns. The first measure is the Shan-
non entropy [28] of a phase histogram. Shannon entropy is high for
more uniformly distributed histograms, and low for histograms with
clear peak outliers (Table 1). The second measure is von Mises vector
strength [36], which is a measure between 0 and 1, and is highest when
the phases of all data points are the same. Von Mises vector strength
is approximated by the distance from the center of a unit circle to the
barycenter of all data points after these have been projected onto the
unit circle at the angle of their respective phase. Both measures are
suited for the task, since they generally indicate when the phase his-
tograms are not uniformly distributed. They are also fast to compute,
and so can be used as part of a highly interactive exploration approach.
They have individual downsides, which is why we calculate both for
a more nuanced view on the data: For Shannon entropy, the values
quickly rise with only little noise. Von Mises vector strength cannot
recognize whole multiples of the period length of periodic behavior, as
the barycenter then moves to the center of the unit circle (Table 1, last
two rows).

For a dataset, our approach initially pre-calculates the histograms
and quality measures for a set of period lengths between a lower bound
(e.g., 1 min) and an upper bound (the temporal extent of the dataset).
Within this range, multiples of time units are sampled (1 . . .59min,
1 . . .23h, etc.). In addition, exponentially increasing period lengths
are included. Data for additional period lengths can then be requested
during analysis, and are calculated ad-hoc.

We also offer suggestions based on the current period length as a
guidance. A key challenge here is to determine the actual frequency
or period length of periodic behavior: A repeating pattern of period
length τ looks repeating also for multiples of τ (Table 1 and Fig. 2f),
but also for fractions thereof, if only an aggregation of all periods is
considered (Fig. 2g). Furthermore, fractions of multiples (such as 4/3rds

of the actual period length) can look interesting as well in an aggre-
gated view on the data (Fig. 2h). To facilitate discovery of better pe-
riod lengths that are located at such factors, our approach samples a
small set of fractions k/n, where n is a small natural number ≥ 2 and
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Fig. 2. A schematic explanation (a) of our approach: Event data gets binned over the temporal domain. For the Cartesian representations [19,
21, 29, 35] the bins then get placed so that each row represents one period. Our approach shows an aggregated view on this, and varies the
period durations slightly from row to row. The current period length is framed in red in the figure. Example patterns for periodic behavior in our
approach for a sharp (b) and a less sharp (c) periodic pattern, and for uniform noise (d). As a comparison, periodic behavior (e) in the Cartesian
binned representation is shown for the actual signal period length, and for multiples (f), integer fractions (g), and non-integer fractions (h, here 6/5)
thereof. Here, the periodicity manifests as vertical lines. Patterns appear as straight lines emanating from the center in the Archimedean binned
representation (i) [8,37], but are also visible if the period length is nearly right (k).

k ∈ {1, . . . ,2n−1}. Small natural-numbered multiples of the current
period length are sampled as well, and a selection of the best-ranking
suggestions are returned based on available space. This sampling hap-
pens on the fly for the current period length τ .

3.3 Visual Representation

We propose a compact widget (Fig. 1a) that can be included as part
of a larger, coordinated-views visualization. The widget shows the ag-
gregated phase distribution for the currently selected period (Fig. 1d)
length τ , as well as for the immediate neighborhood period lengths.
This context (Fig. 1b) is shown as a pixel-based [18] visualization or
heat map, where each row shows a period length. Each row visualizes
the histogram as a line of colored rectangles, where the bin’s respective
value is mapped to color. The period lengths are shown in ascending
order from the pre-calculated data (Section 3.2 and Fig. 2a), with a
context of n rows above and below the current row, which is located
at the center of the heat map (Fig. 1c). By scrolling on the heat map
with the mouse wheel, or clicking on rows, users can browse the rows,
changing the current period length accordingly. By default, the color
of the heat map cells represents the number of data items in that his-
togram bin. It is also possible to map this to other measures calculated
on these subsets of data, such as the mean value or variance of another
data attribute (shown in Fig. 1g for the number of sun spots per day).

To the right of the heat map, an interest measure is indicated for
each row by a vertical bar chart (Fig. 1e). For the vector strength
(Section 3.2), which is shown by default, the measure is mapped di-
rectly. For the entropy, the highest possible entropy (least interesting)
is mapped to an empty bar, and the lowest possible entropy (most in-
teresting) is mapped to a full bar. At the top of the widget, the current
period length’s histogram is visualized again, as a bar chart (Fig. 1d).
In applications where the phase is mapped to visual attributes in other
views (see Section 3.4), this visual mapping is displayed in a legend
(Figs. 3d and 3e) below the bar chart.

Our approach also contains a time slider (Fig. 1f), which represents
the domain of possible period lengths on a logarithmic scale and can
be used for larger adjustments to the current period length τ . Period
lengths with the highest-ranked quality measure values are indicated
as longer tick marks to guide users. During exploration, multiples
and fractions for the current period length are sampled. The sampled
period lengths are ranked by the selected quality measure, and the most
promising ones are suggested as small thumbnails (Fig. 1g) above the
time slider. Clicking on one such thumbnail changes the current period
length to that of the thumbnail.

3.4 Visually Mapping the Phase

The presence of periodicity in the context of other data attributes can
be of interest as well. For example, users might be interested in under-
standing whether certain events displayed on a map occur at recurring

times (see Section 4). We have tested this mapping with position-based
visualizations in our approach, but it could be extended to other visu-
alization types. Our prototype implementation contains a scatter plot
(Fig. 3a), which represents the spatial attribute of the data. To reveal
spatio-temporal periodicity patterns, we propose two different types of
mapping that can be applied to the markers of the scatter plot: color
and shape (Fig. 3).

The first variant maps the phase of the data item to a position on
a continuous color scale. Cyclical color scales, such as a rainbow
color scale, can be a reasonable choice in this case. However, some
datasets might favor color scales with a clear cut between the end and
the beginning. The second variant maps to a visual mark with a pa-
rameterized shape. For our prototype, we offer a mapping to a moon
phase-like mapping, or the angular rotation within [0,π) of a rectangle,
both cyclical. As acyclic mappings, we offer star shapes that morph
into circles. Previous works [4,12,26] on glyph design offer additional
options here. Future work might explore suitable shapes for represent-
ing cyclical data attributes.

Within our central widget, we show a legend (Figs. 3d and 3e) of
this mapping. Especially for the acyclic mappings, it can be beneficial
to change the offset of the mapping. Hence, the offset can be adjusted
from within the legend.

4 CASE STUDY

We tested our approach with various synthetic and real-world datasets.
Here, we demonstrate its applicability on tidal sea level data obtained
from NOAA [32], with two specific datasets. Such data contains var-
ious periodicities pertaining to the rotation of the earth in relation to
the moon, the orbit of the moon around the earth and the earth around
the sun, but also to annual or perennial patterns stemming from me-
teorological phenomena. The interplay of these factors is not always
obvious, demonstrating the need for exploratory analysis of the result-
ing patterns in the data.

The first dataset was generated from hourly measurements of the
mean sea level (MSL) at one station located in Honolulu, Hawai’i [33].
The station measurements cover 118 years, from 1905 to the present
day. We reduced this data to the measurements that exceeded a thresh-
old value (+0.5m), leaving us with 5060 events. Our approach guided
us to find the spring and neap tide periodicity at half a sidereal month
(13.66d, Fig. 1a). We also could see and verify the 18.61-year nodal
cycle discussed by Haigh et al. [15]. By mapping time of year to the x
and year to the y coordinate in a scatter plot (Fig. 3c, days increase to
the right, years to the top), we can also see an increase of events over
the years, and a seasonal yearly component (denser and less dense ver-
tical areas).

The second dataset contains the dates with highest extreme water
levels for all observation stations, as provided by NOAA [32]. Over
a record interval of 122.5 years, this data only contains 571 events,
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Fig. 3. Example mappings of phase to color (a, c) or shape of visual
marks (b) in a scatter plot. Periodic behavior related to the spatial aspect
of the data is revealed by uniform areas. The mapping is shown in our
widget (Fig. 1a) as a legend (d, e) that can be interactively adjusted to
change the mapping of glyph or color to phase.

distributed over 74 unique stations. Hence, the observed patterns are
not as expressive; additional preprocessing of raw data with more do-
main knowledge might yield better results here. Still, we can see some
periodicity at the 18.61-year period length [15]. Furthermore, sea-
sonal differences in events between the US east and west coast are
clearly visible in the mapping of phase to color in a geographical scat-
ter plot (Fig. 3a) for a one-year period length.

5 DISCUSSION

We implemented a web-based prototype for our approach. Its back-
end calculates the required data, as well as additional detail data on
demand. We discuss initial results, and benefits and disadvantages
compared to other visual representations and automated methods.

Suitable Datasets and Use Cases. Our approach can be ap-
plied to use cases where the periodic re-occurrence of events is of in-
terest. Such events can also be generated from general time series data
by determining points in time where time-dependent data values match
some criteria. We demonstrated the viability of this strategy for find-
ing periodic behavior in real-world data in our case study (Section 4).
We offer a few sample datasets in our prototype, but also allow for
arbitrary datasets to be loaded by the user.

Implementation Details and Scalability. Our web-based proto-
type visualizes pre-calculated data, and additional data is calculated
on demand asynchronously in a backend. With this strategy, even
for larger datasets with tens of thousands of events, interaction with
the user interface is very responsive and smooth, with no or very few
frame drops. Suggestions are calculated ad-hoc by the backend and
typically appear within half a second after the last interaction. The
thumbnails at the top (Fig. 1g) work well to guide users to interesting
period lengths. We have found that the two measures supplement each
others’ drawbacks (Section 3.2) quite well. The mapping of phase to
color or shape in the scatter plot has proven useful to detect periodic
behavior that is local in other data attributes (Fig. 3). For performance,
redrawing the scatter plot is the bottleneck, but we have found datasets
with thousands or tens of thousands of data points to still render inter-
actively. The implementation is available on GitHub and Zenodo [13].

Comparison to automated analyses. STL [10] and related
methods [20] allow for the automated analysis of periodic behavior,
and handle noisy data better. These methods require prior knowledge
of the period length for which the periodic behavior should be ana-
lyzed. We compared mean computation time over ten runs of our
method, STL, and DMD for two datasets: For a smaller synthetic
dataset, STL took 227.2ms to calculate for one period length of inter-
est, and 3.45s for the Hawai’i tide dataset [33]. DMD took 2.53s and
1.63s, respectively, to produce decompositions with six components
and a sensible delay parameter, but did not find the expected periodic
behavior. In contrast, our method took 470ms and 589.5ms, respec-
tively, to calculate the phase histograms and quality measures for over
1800 sampled period lengths. The fairly high computation costs of
methods like STL or cDMD prohibit extensive pre-calculations, or on-
the-fly computation during smooth interaction. We also see that DMD

struggles to produce good results for non-sinusoidal periodic behavior.
However, these methods could still be utilized as a second step to ver-
ify results found interactively with our approach on demand. Fourier
analysis [6] is another option, but not always suitable to real-world pe-
riodicity patterns. We argue that automated analysis is most useful for
targeted use cases, but that exploratory analysis, especially in the con-
text of other data attributes (Section 3.4), still requires more interactive
methods.

Comparison to other visual representations. Cycle plots [7,
11] are a powerful way to visualize periodicity, but again presume
knowledge of the periodic behavior. The calendar-based representa-
tions [21, 35] presume specific period lengths as well, but are often
suitable for data based on from human-specified time concepts, such
as months. We think other rectangle- [19] and spiral-based [8, 37] vi-
sualizations show periodic behavior in an intuitive manner, especially
when period length can be adjusted. However; these representations
do not scale well for larger time spans; and interactive use can of-
ten lead to large shifts, bad aspect ratios, and flickering effects. Our
approach condenses these two-dimensional representations down to a
one-dimensional aggregation. This opens up space for visualizing dif-
ferent data attributes to understand relations between them, and allows
showing close-by period lengths as a context to the current one. This
supports users in finding the best local period for periodic events. The
aggregation hides periodicity that only appears for a part of the tempo-
ral extent, and multiples or fractions of the actual periodicity are not
clearly identifiable as such (Section 3.2). Hence, we offer guidance, as
well as detailed views as a tooltip to closer examine interesting period
lengths (Fig. 2).

Open challenges. We demonstrated the general applicability of
our approach with a prototype and different datasets, and plan to ex-
plore its integration into larger visualization systems. Understanding
the best choices with respect to phase mapping (Section 3.4) in differ-
ent scenarios, and determining the most appropriate visual mapping
in terms of color scales and glyph designs to represent periodicity, is
another interesting research direction we plan to pursue. The integra-
tion of other quality measures such as variance of the phase, domain-
specific measures, or the combination of multiple measures, could be
an interesting extension. Incorporating more complex automatic anal-
ysis methods, such as STL, could be another good addition to verify
promising findings on demand.

6 CONCLUSION

We have presented a novel, aggregated visual representation of tem-
poral data to explore periodicity. The time domain is mapped to the
phase or remainder for a given and adjustable period length and vi-
sualized in a binned manner. Patterns that repeat with the same pe-
riod length appear clearly in our representation. Our approach offers
a more compact, interactive alternative to existing representations. It
can be employed as a part of visualization systems with many views
to let users configure the mapping of phases for depicting periodicity
in other visual contexts.
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