
© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Facilitating Conversational Interaction
in Natural Language Interfaces for Visualization

Rishab Mitraπ * Arpit Narechaniaπ † Alex Endert‡ John Stasko§

Georgia Institute of Technology

ABSTRACT

Natural language (NL) toolkits enable visualization developers, who
may not have a background in natural language processing (NLP),
to create natural language interfaces (NLIs) for end-users to flexibly
specify and interact with visualizations. However, these toolkits
currently only support one-off utterances, with minimal capability
to facilitate a multi-turn dialog between the user and the system.
Developing NLIs with such conversational interaction capabilities
remains a challenging task, requiring implementations of low-level
NLP techniques to process a new query as an intent to follow-up on
an older query. We extend an existing Python-based toolkit, NL4DV,
that processes an NL query about a tabular dataset and returns an
analytic specification containing data attributes, analytic tasks, and
relevant visualizations, modeled as a JSON object. Specifically,
NL4DV now enables developers to facilitate multiple simultaneous
conversations about a dataset and resolve associated ambiguities,
augmenting new conversational information into the output JSON
object. We demonstrate these capabilities through three examples:
(1) an NLI to learn aspects of the Vega-Lite grammar, (2) a mind
mapping application to create free-flowing conversations, and (3) a
chatbot to answer questions and resolve ambiguities.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools—Visualization toolkits; Human-centered
computing—Human computer interaction (HCI)—Interaction
techniques—Text input

1 INTRODUCTION AND BACKGROUND

Natural language interfaces (NLIs) for databases [5,13,14,21,28,31,
44, 49] and visualizations [4, 10, 16, 18–20, 27, 29, 35–38, 41–43, 47]
have shown great promise, democratizing access to data through the
querying power and expressivity of natural language (NL). Given
a dataset (e.g., movies), an NLI for visualization receives an NL
query (e.g., “Show the distribution of budget”) as input, extracts data
attributes (Production Budget) and analytic tasks (Distribution), and
recommends one or more relevant visualizations (Histogram). Many
of these NLIs also help resolve ambiguities that may occur during
query interpretation. For example, DataTone [10] presents ambigu-
ities through interactive GUI-based widgets (e.g., dropdowns) for
disambiguation. Implementing such NLIs, however, requires experi-
ence with natural language processing (NLP) techniques and toolkits
(e.g., NLTK [23], spaCy [15]) as well as GUI and visualization de-
sign tools (e.g., D3.js [6], Vega-Lite [33]), making it challenging for
developers without the necessary skillset.

Recently, NL toolkits [9, 22, 25, 29] have enabled visualization
developers, who may not have a background in NLP, to create new

*e-mail: rmitra34@gatech.edu
†e-mail: arpitnarechania4@gatech.edu
‡e-mail: endert@gatech.edu
§e-mail: stasko@cc.gatech.edu

π authors contributed equally

visualization NLIs or incorporate NL input within their existing sys-
tems. For example, given a tabular dataset and an NL query about
the dataset, NL4DV generates an analytic specification comprising
data attributes, analytic tasks (based on [2]), and visualizations (as
Vega-Lite specifications [33]) modeled as a JSON object. How-
ever, these toolkits currently support one-off utterances (singleton
queries) only, with minimal capability to facilitate a multi-turn dia-
log between the end-user and the system, e.g., by following-up on
a previous query. Because of this, end-users would have to specify
longer NL queries (e.g., “Show the relationship between budget and
rating for Action and Adventure movies that grossed over 100M”)
to accomplish more complex tasks. These types of queries may also
have a greater chance of failing (e.g., attribute detection can fail;
filter operators may be incorrect), eventually warranting several para-
phrasing attempts. We believe specifying multiple short queries in a
natural sequence can enable end-users to incrementally accomplish
a complex task, fix minor errors, and also make debugging easier, as
in [3, 11, 16, 35, 38, 40]. This is called conversational interaction –
“face-to-face or technology-mediated forms of interaction that use
language, encompassing a wide range of different types of talk” [12].

Developing NLIs with such conversational interaction capabilities
remains a challenging task, however, requiring implementations of
low-level NLP techniques to process a new query as an intent to
follow-up on an older query, e.g., replacing an existing attribute with
a new one. To the best of our knowledge, no NL toolkit facilitates
conversational interaction, yet. Hence, in this work, we extend a
Python-based toolkit, NL4DV [29], in order to enable visualiza-
tion developers to facilitate multiple simultaneous conversations
(through manual specification as well as automatic detection of in-
tents to follow-up) and resolve associated ambiguities through an
easy-to-use application programming interface (API). As a result,
NL4DV also augments additional conversational information into
the output JSON. We demonstrate these capabilities through three
examples: (1) an NLI to learn aspects of Vega-Lite – an implementa-
tion of a grammar for interactive graphics [33], (2) a mind mapping
application to create free-flowing conversations about a dataset,
and (3) a chatbot to answer questions and resolve ambiguities in
collaboration with the enduser. To support development of future
systems, we open-source NL4DV and the described applications at
https://nl4dv.github.io/nl4dv/.

2 CONVERSATIONAL INTERACTION WITH NL4DV

Listing 1 illustrates the basic Python code for developers to enable
conversational interaction in their own applications using NL4DV.
Given a tabular dataset on Houses (adapted from [7]; accessible
at [17]) and a query string specified by the end-user, “Show average
prices for different home types over the years”, with a single function
call analyze query(query) (lines 1-3), NL4DV first determines
it as a standalone query (as it is the very first query), extracts data
attributes and analytic tasks, recommends visualizations, and then
assigns new objects that identify that conversation (dialogId=“0”)
and the corresponding query (queryId=“0”) as part of the output
JSON (lines 4-5). After observing the output visualization, if the end-
user wants a bar chart instead of a line chart, they may ask, “As a bar
chart” with a new parameter, dialog=“auto”. NL4DV automatically

1

ar
X

iv
:2

20
7.

00
18

9v
3

 [
cs

.H
C

]
 1

2
A

ug
 2

02
2

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://nl4dv.github.io/nl4dv/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

1 from nl4dv import NL4DV

2 nl4dv_instance = NL4DV(data_url="housing.csv")

3 resp_1 = nl4dv_instance.analyze_query("Show average prices

for different home types over the years.")↪→

4 print(resp_1)

5 # a new dialogId and a queryId get created.

{

"dialogId": "0",

"queryId": "0",

...

}

6 # this query is automatically inferred as a follow-up.

7 resp_2 = nl4dv_instance.analyze_query("As a bar chart.",

dialog="auto")↪→

8 print(resp_2)

{

"dialogId": "0",

"queryId": "1",

"followUpConfidence":

"high", ...

}

9 # this query is a new, standalone query.

10 resp_3 = nl4dv_instance.analyze_query("Correlate Price and

Lot Area.", dialog=False)↪→

11 print(resp_3)

{

"dialogId": "1",

"queryId": "0",

...

}

12 # this query follows up a specific, older query.

13 resp_4 = nl4dv_instance.analyze_query("Just show condos and

duplexes.", dialog=True, dialog_id="0", query_id="1")↪→

14 print(resp_4)

{

"dialogId": "0",

"queryId": "2",

...

}

Listing 1: Python code illustrating how developers can enable
conversational interaction in their applications using NL4DV.

determines this as a follow-up to the previous query (with a heuristi-
cally determined followUpConfidence=“high”) and directly mod-
ifies its analytic specification, retaining the dialogId=“0” but gen-
erating a new, now incremented queryId=“1” as the second query
in the conversation (lines 6-8). If the end-user is suddenly curious
about how house prices compare with area, they may ask, “Corre-
late price and area”, explicitly specifying the query as standalone
(dialog=False). This time, NL4DV increments dialogId=“1” and
resets queryId=“0” since this is now the first query of a new, sec-
ond conversation (lines 9-11). If the end-user wants to resume their
original conversation and only focus on certain home types, they may
ask, “Just show condos and duplexes”, this time explicitly specifying
the query as a follow-up (dialog=True) with additional parameters:
dialog id=“0”, query id=“1”, that correspond to the first conver-
sation (lines 12-14). As expected, the resultant dialogId=“0” and
queryId=“2”, along with the filtered bar chart.

To achieve this kind of conversational interaction, we extended
NL4DV [29]; Figure 1 illustrates the modified technical architec-
ture. The existing Query Processor module parses the input NL
query using NLP techniques such as tokenizing and parts of speech
tagging (Query Parser), extracts data attributes through semantic
and syntactic similarity matching (Attribute Identifier) and analytic
tasks through dependency parsing (Tasks Identifier), and recom-
mends relevant visualizations based on heuristics used in prior sys-
tems [26, 45, 46] (Visualization Specification Generator), that are

Attribute Identifier

Task Identifier

Visualization Spec.
GeneratorQuery Parser“Input

Query”
Output
JSON

Aliases

Parsing rules & Keywords

Query Resolver

Conversation Manager

Query Processor

Figure 1: Original NL4DV architecture [29] (in gray) extended
to support conversational interaction (in orange). The arrows
indicate the flow of information between the modules.

1 all_dialogs = {

2 "0": [{"query":"show the distribution of salaries as a

boxplot",...}, {"query":"How about goals instead?",..}],↪→

3 "1": [{"query": "Show average goals per country",...},

{"query": "now group by foot",...}],↪→

4 "2": [{"query": "correlate age and salary",...}, {"query":

"now show only defenders",...}],↪→

5 "2.0.0": [{"query": "correlate age and salary",...},

{"query": "what about only goalkeepers?",...}] #

follow-up to query with dialog_id="2" and index=0

↪→

↪→

6 }

Listing 2: Data structure to store multiple conversations, in-
cluding branches (multiple follow-ups to the same query).

combined into an Output JSON. The new Conversation Manager
module enables developers to automatically determine or manually
specify a query as a follow-up (or not). This module also determines
the type of follow-up (e.g., add or remove attributes), managing all
operations on the internal data structures. Also new, the Query Re-
solver module facilitates resolving NL ambiguities (e.g., by “medals”
did the end-user mean “{Total | Gold | Silver | Bronze} Medals”?).

2.1 Facilitating Multiple Simultaneous Conversations

Following the dialog shown in Listing 1, whenever the end-user asks
a new, standalone query, the dialog id is also incremented by “1”
and the query id is re-initialized to “0” (identifiers are stringified
after incrementing for efficient handling of data), creating a new dia-
log instance that is uniquely identifiable by dialogId and queryId.
Subsequently, developers can explicitly follow up on specific queries
by passing the follow-up query string along with additional input
parameters: dialog (a boolean flag expressing an explicit intent to
follow-up), dialog id, and query id to analyze query(query).

This design also enables end-users to ask multiple unrelated
follow-ups to the same query. To create such conversational
branches, developers can provide the same dialog id and query id
in repeated calls to analyze query(query). Internally, NL4DV
creates the desired branch point and outputs a new, unique dialogId
with the format: “{dialog id}.{query id}.{branch id}” (similar to
the semantic versioning format [34]), where {branch id} is the in-
dex of the branch stemming from the input parameters: {dialog id}
and {query id}. This naming convention effectively represents the
hierarchy of all entities involved in the conversation. Listing 2
shows how NL4DV stores these conversations in a Python dic-
tionary of lists with dialog ids as the keys and query ids as the
indexes of the corresponding list of queries. This data structure
enables efficient retrieve, append, modify, and delete operations.
Note that calling analyze query(query, dialog=True), with-
out dialog id or query id, will make NL4DV follow up on the most
recent dialogId and queryId; if these too do not exist (e.g., it is
the very first conversation), then an error is thrown.

2

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

2.2 Detecting, Classifying and Processing Follow-ups

To supply dialog, dialog id and query id parameters to
analyze query(query), developers have to provide GUI affor-
dances for end-users, e.g., a checkbox to specify if dialog=True
or not (and which conversation to follow-up on), which can be
an unnatural end-user experience. To alleviate this, NL4DV of-
fers a dialog=“auto” setting (overloading the otherwise boolean
input data type) that automatically determines if the query is
a follow-up or not and outputs a followUpConfidence rating:
{“high”, “low”, “none”} reflecting NL4DV’s confidence in mak-
ing the inference. This rating is heuristically determined based
on the previous query, an explicit followup keywords map – key-
words that convey natural conversational intents to follow-up (e.g.,
“add”, “replace”), and an implicit followup keywords map – key-
words that implicitly convey an intent to follow-up (e.g., “instead
of”, “only”). The implicit followup keywords are further clas-
sified as non-ambiguous – keywords that always convey an in-
tent to follow-up (e.g. “instead of”, “rather than”) and ambigu-
ous – keywords that can occur in a follow-up as well as stan-
dalone context (e.g., “only”). NL4DV assigns queries containing
explicit keywords or implicit non-ambiguous keywords with a high
followUpConfidence rating and implicit ambiguous keywords
with a low followUpConfidence rating. For queries with no
matching keywords, NL4DV compares the attributes, tasks, and
visualizations of the current and the previous query and based on a
heuristics and rule-based decision tree, assigns either a low or none
followUpConfidence rating, the latter corresponding to a new,
standalone query. For example, a query “Show the average now.” is
a compatible follow-up to its predecessor, “Show maximum price
across different home types.”; the desired change from “maximum”
to “average” in the absence of any other follow-up keywords or at-
tributes makes them compatible. Developers can override these
default maps by supplying custom explicit followup keywords
and implicit followup keywords objects through the NL4DV() con-
structor during initialization.

Next, the explicit followup keywords map classifies the follow-
up query as one of three types: add, remove, or replace (inspired by
Evizeon’s continue, retain, shift transitional states [16]) and maps
it to one or more components of an analytic specification: data
attributes, analytic tasks, and visualizations. Note that the resultant
combinations (e.g., replace + data attribute) are not always mutually
exclusive, e.g., replacing an attribute can sometimes also modify the
task(s) and/or the visualization(s). Lastly, NL4DV references the
parent query’s (the query being followed upon) analytic specification
and makes necessary associations (e.g., creating new conversational
branches) and modifications (e.g., dropping an existing attribute),
eventually generating a new specification as a JSON object.

By configuring the keyword maps and supplying methods with
appropriate parameters, end-users can add, remove, or replace data
attributes, either explicitly, e.g., “Replace budget with gross”–which
makes a direct reference to the data attributes and the follow-up
task; or implicitly, e.g., “Now show only budget”–which indirectly
suggests to remove all other attributes except “Production Budget”.
Unlike attributes, following up on tasks is different because end-
users are unaware of the associated technical jargon, e.g. “Add Find
Extremum to Worldwide Gross” is not a natural query an end-user
would ask; they would rather say, “Show me the highest grossing
movie”, which would then infer the Find Extremum task [2] (through
‘highest’). Thus, most queries that follow-up on tasks are implicit in
nature. NL4DV currently supports sort (e.g., “Sort by budget in an
ascending order”), find extremum (e.g., “Which of these genres has
the smallest budget?”), filter (e.g., “Now show only action movies”),
and derived value (e.g., “Replace average with sum”) tasks [2]. A
follow-up to add (or remove) a visualization is meaningless as there
will (or must) always be some recommended chart. Replace is the
only meaningful task and it can be explicit (e.g., “Replace this line

1 from nl4dv import NL4DV

2 nl4dv_instance = NL4DV(data_url="olympic_medals.csv")

3 init_response = nl4dv_instance.analyze_query("Show medals in

hockey and skating by country.")↪→

4 # Multiple ambiguities are detected from the query.

5 print(init_response)

{ "dialogId": "0", "queryId": "0",

"ambiguities": {

"attribute": {

"medals": { "options": ["Bronze Medal","Gold

Medal","Silver Medal", "Total Medal"],↪→

"selected": null}},

"value": {

"skating": { "options": ["Figure Skating", "Short Speed

Skating", "Speed Skating"],↪→

"selected": null},

"hockey": { "options": ["Hockey", "Ice Hockey"],

"selected": null}}

}, ... }

6 resolved_response = nl4dv_instance.update_query({"attribute":

{ "medals": "Total Medal" }, "value": {"skating": "Speed

Skating", "hockey": "Ice Hockey"}})

↪→

↪→

7 print(resolved_response)

8 # The "selected" property is updated in the response.

{"dialogId":"0","queryId":"0","ambiguities":{...}, ...}

Listing 3: Python code illustrating how NL4DV helps resolve
ambiguities via update query(obj) (line 6).

chart with a bar chart”) or implicit (e.g., “As a bar chart instead”).

2.3 Resolving Ambiguities during Query Interpretation
Natural language (NL) is often ambiguous and underspecified,

e.g., consider the query, “Show medals in hockey and skating by
country” regarding a dataset on Olympic Medals (adapted from [32];
accessible at [30]). Here, “medals” (attribute) could be mapped to
either of [“Total Medals”, “Gold Medals”, “Silver Medals”, “Bronze
Medals”], “hockey” (value) could be mapped to either of [“Ice
Hockey”, “Hockey”], and “skating” could be mapped to either of
[“Figure Skating”, “Speed Skating”, “Short Speed Skating”].

These ambiguities can cause problems while processing am-
biguous follow-up queries (e.g., “Sort by medals”–Which type
of “medals”?), and hence must be resolved a priori. NL4DV
detects these attribute-level and value-level ambiguities and
makes them accessible in the output JSON under a new key,
ambiguities. In addition, NL4DV now provides a new function
update query(obj), to help developers design experiences that
resolve ambiguities directly through the toolkit, also enabling accu-
rate processing of subsequent follow-up queries. Listing 3 illustrates
how update query(obj) (line 6) takes a Python dictionary as in-
put, that includes the types of ambiguities (“attribute” and “value”),
the corresponding keywords in the query (“medals”, “hockey”, and
“skating”), and the corresponding entities selected by the end-user
for resolution. NL4DV then updates the selected entities under
ambiguities as well as the attributeMap and the taskMap, rec-
ommending a new visList (visualizations). Note that developers
may not always provide end-users with affordances to resolve such
ambiguities. In these cases, NL4DV automatically resolves ambigui-
ties by itself, selecting the entities that have the highest string-based
similarity score with the corresponding query keyword, and calling
update query(obj). In case of ties, entities that were detected
first are selected.

3 CREATING VISUALIZATION SYSTEMS WITH NL4DV
3.1 NL-Driven Vega-Lite Learner
The NL-Driven Vega-Lite Editor in NL4DV [29] demonstrated how
NL can be used to create, edit, and hence learn the Vega-Lite [33]
grammar. However, end-users of this system need to be proficient
with the Vega-Lite syntax (e.g., properties and operators) to be able

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Figure 2: An NLI that helps users learn Vega-Lite syntax (e.g.,
the transform property to apply filters), through NL queries.

Ask a new
follow-up
query

Ask a new
standalone
query

Figure 3: A mind mapping app that enables users to have
free-flowing conversations about a dataset. Three dialogs with
follow-ups are connected to the “Dataset” via dashed lines.

to successfully edit the specifications output by NL4DV. Figure 2 il-
lustrates the user interface of a similar NL-Driven Vega-Lite Learner
that demonstrates how conversational interaction can help users
learn this grammar better by sequentially processing short, specific
NL intents and incrementally building the Vega-Lite specification,
helping users learn the syntax changes required to achieve the corre-
sponding intents. Users ask a series of short NL queries and observe
the resultant Vega-Lite specifications. These queries are chained
together, forming a conversation. Users can see the diff (i.e., added
and removed entities) between the Vega-Lite specifications of the
selected query and its predecessor through code highlights (green
implies addition; red implies deletion). For example, a follow-up
query to apply a filter, “Now show only Action movies” generates a
Vega-Lite specification that differs from the previous query’s specifi-
cation in terms of the transform property, helping the user learn how
Vega-Lite filters are specified. To develop this interface, develop-
ers can sequentially call analyze query(query, dialog=True)
and then focus on computing the diffs between the Vega-Lite specifi-
cations of the query and its predecessor and programming the layout,
styling, and interactivity aspects using HTML, CSS, JavaScript.

3.2 Mind Mapping Conversations about a Dataset

In this second use-case, we demonstrate how the input parame-
ters: dialog, dialog id and query id in analyze query(query)
can help end-users engage in multiple simultaneous conversations,
unlike the NL-Driven Vega-Lite Learner, that supports only one
conversation at-a-time. Figure 3 illustrates the user interface of a
mind mapping application that helps users engage in free-flowing
conversations regarding a European soccer players dataset (adapted
from [1]; accessible at [8]). Listing 2 shows the corresponding data
structure maintained by NL4DV. Through speech or text input, users
can ask standalone queries (e.g., “Correlate age and salary”) as well
as follow-up queries (e.g., “Now show only defenders”) by clicking

Figure 4: A chatbot where the system collaborates with the
user to resolve ambiguities during query interpretation.

the plus icon, enabled by hovering on the corresponding mind map
node (the rectangular block). Users can also follow-up on already
followed-up queries, forming new conversational branches (e.g.,

“What about only goalkeepers?”). To develop this interface, de-
velopers can call analyze query(query, dialog, dialog id,
query id), supplying the dialog and query identifiers based on the
corresponding query that is to be followed-upon. Then, based on
the newly generated dialogId and queryId, a new node is created
and appended to the corresponding predecessor query node.

3.3 Collaboratively Resolve Ambiguities in a ChatBot

In this third use-case, we demonstrate how NL4DV’s Query Re-
solver can help resolve ambiguities that often occur in natural lan-
guage. Figure 4 illustrates a standard chatbot user interface that
presents DataTone-like [10] “ambiguity widgets”–dropdowns and
buttons. End-users can disambiguate by interacting with the widgets,
notifying NL4DV through a function call to update query(obj).
After all ambiguities are resolved, the system renders the now-
unambiguous visualization. To develop this interface, developers
can loop through the ambiguities object in the output JSON and
present corresponding options to the end-user, e.g., as options in a
select dropdown. As the end-user makes their choices, a function
call to update query(obj) will resolve the ambiguity, updating
the selected properties in the output JSON. Listing 3 illustrates
this data exchange between the user interface and NL4DV.

4 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we extend an existing natural language (NL) for data
visualization toolkit, NL4DV, to enable developers to integrate con-
versational interaction capabilities within natural language interfaces.
We demonstrate NL4DV’s capabilities through three examples and
open-source the toolkit at https://nl4dv.github.io/nl4dv/.

While testing, we noted certain conversational ambiguities, e.g.,
if a query, “Show only Action movies” is followed-up with “What
about R-rated movies?” does the user mean to augment the previ-
ous filter or replace it with the new one? Consider another query,

“Visualize budget distribution as a histogram instead of a boxplot”;
here, the user means to ask a standalone query, but the presence
of “instead of” (an implicit follow-up keyword) will make NL4DV
wrongly treat it as a follow-up. We will address these ambiguities
and translation errors in future releases. We also plan a formal per-
formance evaluation of the toolkit. However, unlike conversational
text-to-SQL dataset benchmarks (e.g., CoSQL [48]), there are cur-
rently no such benchmarks for visualization tasks. An area of future
work, thus, for current text-to-visualization datasets [9, 24, 39], that
focus on singleton utterances, is to include multi-turn utterances.

4

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://nl4dv.github.io/nl4dv/

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

ACKNOWLEDGMENTS

This work was supported in part by an NSF Grant IIS-1717111. We
thank Arjun Srinivasan and the Georgia Tech Visualization Lab.

REFERENCES

[1] G. Aisch. The Clubs That Connect The World Cup. https:

//www.nytimes.com/interactive/2014/06/20/sports/

worldcup/how-world-cup-players-are-connected.html,
2014.

[2] R. Amar, J. Eagan, and J. Stasko. Low-level Components of Ana-
lytic Activity in Information Visualization. In IEEE Symposium on
Information Visualization, 2005. doi: 10.1109/INFVIS.2005.1532136

[3] Amazon Alexa. https://www.amazon.com/

smart-home-devices.
[4] Amazon Quicksight. https://aws.amazon.com/quicksight/.
[5] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger.

SODA: Generating SQL for Business Users. Proceedings of the VLDB
Endowment, 2012. doi: 10.14778/2336664.2336667

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents.
IEEE TVCG, 2011. doi: 10.1109/TVCG.2011.185

[7] D. De Cock. Ames, Iowa: Alternative to the Boston Housing Data as
an End of Semester Regression Project. Journal of Statistics Education,
2011. doi: 10.1080/10691898.2011.11889627

[8] euro.csv. https://github.com/nl4dv/nl4dv/blob/master/

examples/assets/euro.csv.
[9] S. Fu, K. Xiong, X. Ge, S. Tang, W. Chen, and Y. Wu. Quda: Nat-

ural Language Queries for Visual Data Analytics. arXiv preprint
arXiv:2005.03257, 2020.

[10] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Data-
Tone: Managing Ambiguity in Natural Language Interfaces for Data
Visualization. In ACM UIST, 2015. doi: 10.1145/2807442.2807478

[11] Google Home. https://developers.google.com/home.
[12] M. Haugh. Conversational Interaction. The Cambridge handbook of

pragmatics, 2012. doi: 10.1017/CBO9781139022453.014
[13] P. He, Y. Mao, K. Chakrabarti, and W. Chen. X-SQL: Reinforce

Schema Representation with Context. arXiv preprint arXiv.1908.08113,
2019.

[14] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos.
TAPAS: Weakly Supervised Table Parsing via Pre-training. arXiv
preprint arXiv:2004.02349, 2020.

[15] M. Honnibal and I. Montani. spacy 2: Natural Language Understand-
ing with Bloom Embeddings. Convolutional Neural Networks and
Incremental Parsing, 2017.

[16] E. Hoque, V. Setlur, M. Tory, and I. Dykeman. Applying Pragmatics
Principles for Interaction with Visual Analytics. IEEE TVCG, 2018.
doi: 10.1109/TVCG.2017.2744684

[17] housing.csv. https://github.com/nl4dv/nl4dv/blob/master/
examples/assets/data/housing.csv.

[18] J.-F. Kassel and M. Rohs. Valletto: A Multimodal Interface for Ubiqui-
tous Visual Analytics. In ACM CHI Extended Abstracts, 2018. doi: 10.
1145/3170427.3188445

[19] D. H. Kim, E. Hoque, and M. Agrawala. Answering Questions about
Charts and Generating Visual Explanations. In ACM CHI, 2020. doi:
10.1145/3313831.3376467

[20] A. Kumar, J. Aurisano, B. Di Eugenio, A. Johnson, A. Gonzalez, and
J. Leigh. Towards a Dialog System that Supports Rich Visualizations
of Data. In SIGDIAL, 2016. doi: 10.18653/v1/W16-3639

[21] F. Li and H. V. Jagadish. NaLIR: an interactive natural language
interface for querying relational databases. In ACM SIGMOD, 2014.
doi: 10.1145/2588555.2594519

[22] C. Liu, Y. Han, R. Jiang, and X. Yuan. ADVISor: Automatic Visualiza-
tion Answer for Natural-Language Question on Tabular Data. In IEEE
PacificVis, 2021. doi: 10.1109/PacificVis52677.2021.00010

[23] E. Loper and S. Bird. NLTK: The natural language toolkit. arXiv
preprint cs/0205028, 2002.

[24] Y. Luo, N. Tang, G. Li, C. Chai, W. Li, and X. Qin. Synthesizing Natu-
ral Language to Visualization (NL2VIS) Benchmarks from NL2SQL
Benchmarks. In ACM SIGMOD, 2021. doi: 10.1145/3448016.3457261

[25] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin. Natural Language
to Visualization by Neural Machine Translation. IEEE TVCG, 2021.
doi: 10.1109/TVCG.2021.3114848

[26] J. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic Pre-
sentation for Visual Analysis. IEEE TVCG, 2007. doi: 10.1109/TVCG.
2007.70594

[27] Microsoft Power BI. https://powerbi.microsoft.com/en-us.
[28] A. Narechania, A. Fourney, B. Lee, and G. Ramos. DIY: Assessing the

Correctness of Natural Language to SQL Systems. In ACM IUI, 2021.
doi: 10.1145/3397481.3450667

[29] A. Narechania, A. Srinivasan, and J. Stasko. NL4DV: A Toolkit for
Generating Analytic Specifications for Data Visualization from Natural
Language Queries. IEEE TVCG, 2021. doi: 10.1109/TVCG.2020.
3030378

[30] olympics medals.csv. https://github.com/nl4dv/nl4dv/blob/
master/examples/assets/data/olympics_medals.csv.

[31] P. Pasupat and P. Liang. Compositional Semantic Parsing on Semi-
Structured Tables. In ACL IJCNLP, 2015. doi: 10.3115/v1/P15-1142

[32] rgriffin (Kaggle username). 120 years of Olympic history: athletes
and results. https://www.kaggle.com/datasets/heesoo37/

120-years-of-olympic-history-athletes-and-results.
[33] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-

Lite: A Grammar of Interactive Graphics. IEEE TVCG, 2016. doi: 10.
1109/TVCG.2016.2599030

[34] Semantic versioning. https://semver.org/.
[35] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang.

Eviza: A Natural Language Interface for Visual Analysis. In ACM
UIST, 2016. doi: 10.1145/2984511.2984588

[36] V. Setlur, M. Tory, and A. Djalali. Inferencing Underspecified Natural
Language Utterances in Visual Analysis. In ACM IUI, 2019. doi: 10.
1145/3301275.3302270

[37] A. Srinivasan, B. Lee, N. H. Riche, S. M. Drucker, and K. Hinckley.
InChorus: Designing Consistent Multimodal Interactions for Data
Visualization on Tablet Devices. In ACM CHI, 2020. doi: 10.1145/
3313831.3376782

[38] A. Srinivasan, B. Lee, and J. T. Stasko. Interweaving Multimodal
Interaction with Flexible Unit Visualizations for Data Exploration.
IEEE TVCG, 2020. doi: 10.1109/TVCG.2020.2978050

[39] A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. Stasko.
Collecting and Characterizing Natural Language Utterances for Speci-
fying Data Visualizations. In ACM CHI, 2021. doi: 10.1145/3411764.
3445400

[40] A. Srinivasan and V. Setlur. Snowy: Recommending Utterances for
Conversational Visual Analysis. In ACM UIST, 2021. doi: 10.1145/
3472749.3474792

[41] A. Srinivasan and J. Stasko. Orko: Facilitating Multimodal Interaction
for Visual Exploration and Analysis of Networks. IEEE TVCG, 2018.
doi: 10.1109/TVCG.2017.2745219

[42] Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: A Semi-automated
Model for Translating Natural Language Queries into Meaningful
Visualizations. In Proceedings of the International Symposium on
Smart Graphics, 2010. doi: 10.1007/978-3-642-13544-6 18

[43] Tableau Ask Data. https://www.tableau.com/about/blog/

2018/10/announcing-20191-beta-96449.
[44] C. Wang, K. Tatwawadi, M. Brockschmidt, P.-S. Huang, Y. Mao,

O. Polozov, and R. Singh. Robust Text-to-SQL Generation with
Execution-Guided Decoding. arXiv preprint arXiv:1807.03100, 2018.

[45] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations. IEEE TVCG, 2015. doi: 10.1109/
TVCG.2015.2467191

[46] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting Visual
Analysis with Partial View Specifications. In ACM CHI, 2017. doi: 10.
1145/3025453.3025768

[47] B. Yu and C. T. Silva. FlowSense: A Natural Language Interface for
Visual Data Exploration within a Dataflow System. IEEE TVCG, 2020.
doi: 10.1109/TVCG.2019.2934668

[48] T. Yu, R. Zhang, H. Y. Er, S. Li, E. Xue, B. Pang, X. V. Lin, Y. C. Tan,
T. Shi, Z. Li, et al. CoSQL: A Conversational Text-to-SQL Challenge

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://www.nytimes.com/interactive/2014/06/20/sports/worldcup/how-world-cup-players-are-connected.html
https://www.nytimes.com/interactive/2014/06/20/sports/worldcup/how-world-cup-players-are-connected.html
https://www.nytimes.com/interactive/2014/06/20/sports/worldcup/how-world-cup-players-are-connected.html
https://www.amazon.com/smart-home-devices
https://www.amazon.com/smart-home-devices
https://aws.amazon.com/quicksight/
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/euro.csv
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/euro.csv
https://developers.google.com/home
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/data/housing.csv
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/data/housing.csv
https://powerbi.microsoft.com/en-us
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/data/olympics_medals.csv
https://github.com/nl4dv/nl4dv/blob/master/examples/assets/data/olympics_medals.csv
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
https://semver.org/
https://www.tableau.com/about/blog/2018/10/announcing-20191-beta-96449
https://www.tableau.com/about/blog/2018/10/announcing-20191-beta-96449

© 2022 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Towards Cross-Domain Natural Language Interfaces to Databases. ACL
EMNLP-IJCNLP, 2019. doi: 10.18653/v1/D19-1204

[49] V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating Structured
Queries from Natural Language using Reinforcement Learning. arXiv
preprint arXiv:1709.00103, 2017.

6

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

	Introduction and Background
	Conversational Interaction with NL4DV
	Facilitating Multiple Simultaneous Conversations
	Detecting, Classifying and Processing Follow-ups
	Resolving Ambiguities during Query Interpretation

	Creating Visualization Systems with NL4DV
	NL-Driven Vega-Lite Learner
	Mind Mapping Conversations about a Dataset
	Collaboratively Resolve Ambiguities in a ChatBot

	Conclusion, Limitations, and Future Work

