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Figure 1: Pathlines for two examples from the Colliding Drops dataset. Droplets exhibit large translational (a) and rotational (c)
velocity components that overshadow the internal flow. (b),(d) Droplet-local flow reveals more detailed flow patterns. Glyphs replace
removed velocity components: translation (round arrow) and rotation (bent arrow and axis). Flow direction from white to red.

ABSTRACT

Line integration of stream-, streak-, and pathlines is widely used and
popular for visualizing single-phase flow. In multiphase flow, i.e.,
where the fluid consists, e.g., of a liquid and a gaseous phase, these
techniques could also provide valuable insights into the internal flow
of droplets and ligaments and thus into their dynamics. However,
since such structures tend to act as entities, high translational and
rotational velocities often obfuscate their detail. As a remedy, we
present a method for deriving a droplet-local velocity field, using a
decomposition of the original velocity field removing translational
and rotational velocity parts, and adapt path- and streaklines. Gen-
erally, the resulting integral lines are thus shorter and less tangled,
which simplifies their analysis. We demonstrate and discuss the util-
ity of our approach on droplets in two-phase flow data and visualize
the removed velocity parts employing glyphs for context.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Scientific visualization;

1 INTRODUCTION

Simulation and investigation of multiphase flow are driving topics of
today’s computational fluid dynamics research. Applications include
the development of combustion engines, spray cooling systems for
food storage, as well as improving models for weather forecasts. In
this area, interesting topics include the study of droplet interactions,
but also the analysis of flow dynamics within individual droplets. In
helping domain experts understand the results of their simulations,
visualization plays an important role.

One of the most widely used techniques for flow visualization
are line integration methods. Stream-, streak-, and pathlines were
originally developed for single-phase flow. While their application
to two-dimensional data is straightforward, application to three-
dimensional flow already poses challenges such as occlusion. To
this end, much work has been published to address the reduction
of visual clutter. Notable techniques include line placement for
sparse seeding of integral lines [15, 18], as few lines usually suf-
fice to describe the overall flow behavior. This can be extended to
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view-dependent visualization [14]. Another set of methods employs
opacity adjustment. Here, an importance criterion is mapped to the
opacity of the integral lines, blending out “irrelevant” parts [7, 8]. A
different concept is to replace flow lines with glyphs, where one can
simultaneously visualize different aspects of the flow [4] or reduce
overdraw and highlight regions [11]. While our method reduces vi-
sual clutter, we do not aim to replace the aforementioned techniques
but provide an approach that can be employed complementarily.

Vector field decomposition has often been investigated in flow
analysis and visualization. For example, by employing the
Helmholtz–Hodge decomposition [3] or the Green function [13], the
vector field can be decomposed into an incompressible, irrotational,
and harmonic part. In our work, the components of interest are trans-
lation, rotation, and a “droplet-local” term. Contrary to Karch et
al. [12], who extract the rotation of a droplet from its shape by using
principal component analysis, we use the underlying velocity field.
This way, angular velocity is computed directly from inertia and
angular momentum. This bares the advantage of a more robust com-
putation for spherical and oscillating droplets. Choosing appropriate
frames of reference has been discussed before in order to visualize
vortices [6,19]. Hadwiger et al. [9] bridged the gap between a single,
global frame of reference and calculating a frame of reference for
each individual position. Our method, on the other hand, proposes a
single frame of reference for each individual droplet. Additionally,
we employ glyphs for visualizing these frames of reference.

To the best of our knowledge, no research has been conducted
explicitly on integral lines in three-dimensional multiphase flow.
Addressing this lack, our paper aims at providing the means neces-
sary for domain experts to visually analyze such flow. This entails
gaining an overview for fast-moving and strongly rotating droplets,
as well as allowing domain experts to study the interdependence
between internal flow and forces acting on droplet interfaces, e.g.,
on droplet breakup. To this end, the contributions of this work are:

• a physically interpretable droplet-local velocity field,
• the adaptation and generalization of streak- and pathlines, and
• glyphs conveying the frames of reference.

Please note that the research presented in this paper originates from
a collaborative interdisciplinary project on droplet interfaces [1]
and that its idea and preliminary results were already shortly pre-
sented, among other results, in an overview article [16] and at a
project workshop [17] as an extended abstract. In this article, we
now present the technical details of our method, together with the
following contributions that have been added:

• calculation of droplet rotation based on rigid body mechanics,
• glyphs conveying the frames of reference, and
• discussion and implementation of a static frame of reference.
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2 DROPLET-LOCAL VELOCITY

High translational and rotational velocity components tend to ob-
fuscate details of the droplet-local flow. For example, following
a collision, a droplet may be separated and ejected at a relatively
high velocity. Thus, its pathlines would be almost straight lines and
hence overshadow local detail. Additionally, rotational motion can
lead to visual clutter, overdrawing other integral lines. To provide
a droplet-local view, we, therefore, free the original velocity field
from translational and rotational parts. This modified velocity field
can then be used for visualization, using techniques such as stream-,
streak- or pathlines, as well as other flow visualization methods.

To obtain such a reduced velocity field ũ(x, t), the first step is to
decompose the original velocity field u(x, t) into parts:

u = uc +uω + ũ, (1)

with droplet translation uc, velocity uω representing droplet rotation,
and “droplet-local velocity part” ũ. We thus gain our droplet-local
velocity field as ũ = u−uc−uω . This elimination of translational
and rotational velocity parts can be intuitively described as a change
of reference. Instead of a global view of the simulation, each droplet
is assigned an observer that moves with the droplet’s translational
velocity and rotates at the droplet’s angular velocity about its axis.
As a consequence, certain physical properties are maintained, such
as the conservation of mass and volume in case of incompressible
flow, which increases (physical) interpretability.

Note that in contrast to other decomposition schemes, such as
Helmholtz-Hodge, the droplet-local velocity is defined for the whole
droplet as if it was a rigid body. For this, a droplet D is defined as
a connected region of cells that contains the same fluid phase and
which is separated from other droplets by at least one boundary layer
of “empty” cells (cf. Section 5 for a more detailed definition).

As such, a droplet can generally be of arbitrary shape and size.

2.1 Droplet Translation and Rotation
The translational velocity of a droplet D is its linear velocity

uc =

∫
D ρ ·u dV∫

D ρ dV
≈ ∑i ρiVi ·ui

∑i ρiVi
, (2)

with original velocity u, density ρ , and volume V .
Contrary to the translational velocity, which is given for the whole

droplet, the rotational velocity depends on the location relative to
the axis of rotation. This axis goes through the center of mass

rc =

∫
D ρ · r dV∫
D ρ dV

≈ ∑i ρiVi · ri

∑i ρiVi
, (3)

integrated over the positions r. For the calculation of the angular
velocity, positions have to be considered relative to the center of
mass, hence r′ = r− rc. Angular velocity ω is defined as

ω = I−1L, (4)

for which first the inertia tensor I is constructed for a droplet. Its
components are given as

Iqr =
∫
D

ρ ·
(∥∥r′

∥∥2
δqr− (r′)q(r′)r

)
dV (5)

≈∑
i

ρiVi ·
(∥∥r′i

∥∥2
δqr− (r′i)q(r′i)r

)
, (6)

where δqr is the Kronecker delta, and (r′)n is the n-th component
of r′. Next, the total angular momentum L for the rotation of the
droplet around its axis is calculated as

L =
∫
D

ρ ·
(
r′×u

)
dV ≈∑

i
ρiVi ·

(
r′i×ui

)
. (7)

The resulting rotational velocity part is then

uω = ω× r′. (8)

(a) (b) (c)

Figure 2: Time series of the integration within the original velocity
field u (black), and simultaneous integration within the droplet-local ve-
locity field

(
T−1

ω ũ
)

(red). (a) Advection of x(t0) in the original velocity
field u (black arrow), and in the droplet-local velocity field ũ (red arrow).
(b)–(c) In the subsequent time steps, the droplet-local velocities ũ (or-
ange arrows) are sampled at the positions x of the advected original
particle and used to advect the droplet-local particle positions x̃ using
the transformed velocity field

(
T−1

ω ũ
)

(red arrows).

3 LINE INTEGRATION

For static visualization, the droplet-local vector field ũ can be used
directly for streamline computation. However, to apply streak- and
pathlines for visualization of time-dependent flow, these two con-
cepts need to be adapted. This is because (1) the fluid phase moves
over time, and (2) we have a different frame of reference for each
droplet. Additionally, for streaklines, this means that (3) the seed
itself has to move in the droplet’s frame of reference.

3.1 Pathlines
For the computation of droplet-local pathlines, the idea is to
integrate pathlines L (t) := {x(t)} within the original velocity
field u(x(t), t), and use their positions to sample the droplet-local
velocity field ũ(x(t), t). The extracted droplet-local velocity is then
used to integrate the droplet-local pathline L̃ (t) := {x̃(t)}. This is
illustrated in Figure 2, where the advection of the original particle
is visualized by black arrows and the droplet-local advection by
red arrows. Due to the sampling along the pathline in the origi-
nal field, sample positions are within the correct phase. Using the
droplet-local field for the corresponding time step, we obtain the
droplet-local velocity at the sample positions. This velocity is shown
as orange arrows in the figure. Transformed back, it is then used to
advect the droplet-local particle position (red arrows).

Mathematically, pathlines are expressed as initial value problem:

dx(t)
dt

= u(x(t), t), x(t0) = x0. (9)

In our method, they are used for generating the pathline in the
original vector field. This pathline is not visualized, but its calculated
position x(t) is used to sample the droplet-local velocity:

dx̃(t)
dt

= T−1
ω ũ(x(t), t), x̃(t0) = x0. (10)

Here, the droplet-local velocity field ũ(x(t), t) is used for the cal-
culation of x̃(t). The inverse rotation T−1

ω is used to transform the
velocity back to the droplet’s original coordinate system at seed-
ing time t0. For each of the three axes ei of the droplet’s local,
co-rotating frame, we have

dei

dt
= ω× ei, (11)

ei(t) =
∫ t

t0
ω(t ′)× ei(t ′) dt ′+ ei(t0). (12)

Bases E(t) = 〈e0(t) e1(t) e2(t)〉 and E(t0) = 〈e0(t0) e1(t0) e2(t0)〉
can then be used to calculate the rotation matrix T−1

ω , which trans-
forms E(t) to E(t0). This back-transformation can be observed
in Figure 2. Note that the sampled (orange arrows) and the droplet-
local velocities (red arrows) are rotated by Tω .
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Figure 3: Glyphs conveying the frame of reference. (a) Different
aspects of information surrounding the droplet (black). A circum-
sphere (orange) around the center of mass is constructed for position-
ing, its radius slightly larger than the droplet (indicated in red). The
axis of rotation (blue, middle) goes through the center of mass, its
length the diameter of the sphere. Effective rotation (blue, upper left)
is visualized as a bent arrow (blue) with a corresponding length. The
arrow visualizing translation (blue, right) is also attached to the sphere,
its length coincides with the actual translation. (b) Example droplet
from the Colliding Drops dataset, showing translation (volumetric blue
arrow), axis of rotation (blue tube), and effective rotation (curved flat
arrow with time additionally encoded from white to blue).

3.2 Streaklines

Streaklines can be generated following the same idea as for pathlines.
Again, we use the original velocity field for finding the sample
positions, where we interpolate the droplet-local field to integrate
the droplet-local streakline. Similar to generalized streaklines, which
were introduced by Wiebel et al. [20], the seed has to be moved.
This is, among others, necessary because otherwise, an increasing
number of particles would be inserted outside the correct phase.
While Wiebel et al. keep the seed static relative to a feature, we have
to keep it static relative to the droplet-local coordinate system. For
this, the seed is translated with the droplet’s linear velocity, as well
as rotated around its axis of rotation.

4 FRAME OF REFERENCE

Our previously described method inherently uses a dynamic frame
of reference FD (t). This means that in every time step, we compute
for each droplet a new frame of reference from the instantaneous
velocity field. Thus, the translation and rotation of the droplet, which
form the frame of reference, may change over time.

4.1 Static Frame of Reference

Additionally, we introduce the use of a static frame of reference,
which means that at time t0, each droplet D is assigned its frame of
reference FD (t = t0). This frame of reference then does not change
over time, i.e., FD (t) := FD (t0). To assign a droplet at time step tn
its corresponding frame of reference extracted at time t0, we need to
be able to track droplets over time. Note that this is not necessary
for the dynamic frame of reference, as it only depends on the cur-
rent time step. However, for the dynamic frame, we need to track
droplets over time for our context visualization (cf. Section 4.2).
For this, we employ a similar scheme to that of Karch et al. [12],
advecting the droplets’ centers of mass in both forward and reverse
time. The advected positions are then compared to the droplets in
the respective time step. This way, additionally to finding the cor-
responding droplets in neighboring time steps, we can also identify
droplet collisions (forward time) and breakups (reverse time) by
counting the number of advected centers of mass corresponding to
a droplet at tn+1, and tn−1, respectively. Note that droplet collision
unavoidably forces the integration to stop for the involved droplets
in case of a static frame of reference, as the frame of reference of
the resulting droplet cannot be determined unambiguously, i.e., it
would need to result from two droplets at tn−1.

4.2 Visualization
To mitigate the loss of information from removing velocity parts uc
and uω , we provide context visualization for each droplet, as illus-
trated in Figure 3. Here, glyphs are added to show droplet trans-
lation and rotation, respectively. To convey translation, a simple
arrow glyph is employed, whose length coincides with the actual
translation of the droplet from t0 to t. For its placement, we use a
circumsphere around the center of mass of the droplet, with a radius
slightly larger than the maximum extent. We then place the glyph
on the sphere in the direction of translation. Rotation, on the other
hand, is depicted twofold—employing a bent arrow glyph as well as
showing rotation axes. The arrow glyph shows the actual rotation
of the droplet from time t0 to t. It is placed on the surface of the
circumsphere and is colored according to integration time. This
way, its temporal information is also accessible when viewed from
above. Further, rotation axes are shown to indicate the orientation of
rotation. These tube glyphs go through the droplet’s center of mass
and are bounded by the circumsphere. As for a dynamic frame of
reference the droplet’s axis of rotation changes over time, we allow
visualizing all axes from discrete integration steps ti ∈ [t0, t] at once.
Mapping color to integration time, the temporal evolution of the
frame of reference can thus be observed. This way, we are also able
to find numerical instabilities indicated by strongly varying axes, e.g.,
in the case of small droplets. As for static frames of reference, we
need to track droplets over time to visualize corresponding glyphs
at the position of the droplet at time t0. To additionally provide the
user with context information independent of camera position, we
further provide options to duplicate the arrow glyphs to opposite
sides of the droplet. Please also see the video in the supplemental
material for further examples.

5 RESULTS

We implemented our method as ParaView [2] plugin, where droplet
extraction, line integration, and context visualization are separate
filters. This modular design allows easy adaptation of our method
to different data. The code can be found on GitHub as part of TPF:
https://github.com/UniStuttgart-VISUS/tpf.

While the presented method can be extended to any kind of
data that allows segmentation into distinct droplets or clusters, we
focus on datasets that stem from direct numerical simulations (DNS)
performed using the computational fluid dynamics (CFD) solver
Free Surface 3D (FS3D) [5] for incompressible multiphase flow.
The data is generated and stored per cell on a rectilinear grid, with a
velocity field u(x, t) and a volume of fluid (VOF) [10] field f (x, t).
The latter indicates the ratio of the fluid phase for a cell, i.e., f = 1
if the cell contains only liquid and f = 0 if the cell is “empty”. For
values 0 < f < 1, the liquid occupies a fraction of the cell and thus
contains the fluid interface (droplet surface). Therefore, we define a
droplet as a connected region of cells for which f > 0. This means
that different droplets are separated by at least one layer of empty
cells. Note that for VOF data, the discrete volume for each cell is
Vi = f ·Vcell . Please also note that particles are considered to be
inside of the droplet if they are in a cell with f > 0, although the
reconstructed interface may indicate otherwise. In the following,
we show the results of our method on the Colliding Drops dataset,
where two equally large droplets collide in an off-center head-on
collision. This leads to the formation of a single large structure,
which eventually disintegrates into a multitude of smaller droplets.

To show the general usefulness of our method, two different
droplets from the Colliding Drops dataset, one with a relatively large
translational and one with a relatively large rotational velocity part,
are visualized in Figure 1. In both cases, we can see that these
large velocity parts hinder us from interpreting the internal flow
directly. For example, in Figure 1(d), removing dominant droplet
rotation reveals slight rotation within the left and right parts in a
counter-clockwise direction. Adding context visualization to the
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Figure 4: Examples from different time steps of the Colliding Drops
dataset in columns. (a)–(d) Original and (e)–(h) droplet-local stream-,
path-, and streaklines. Flow direction is encoded from white to red.

droplet-local pathlines, we are not only provided with the same
information as from the original pathlines but can now observe the
intricate droplet-local flow.

Especially particles seeded in static vector fields exhibiting
large translational velocity tend to quickly leave their respective
phase (Figure 4(a)). Thus, streamlines are often unsuitable and only
show the general movement of the droplet. However, their droplet-
local counterparts may reveal intricate details of droplet-internal
flow (Figure 4(e)). Here, a saddle-like structure can be observed
in the center of the droplet, while to the sides, there are two vor-
tices. But, also pathlines can reveal more details by employing
a droplet-local frame of reference. While for the original vector
field they show the actual flow (Figure 4(b)), applying them to our
droplet-local method much better reveals the separating behavior of
the lower left and the upper right region of the droplet (Figure 4(f)).
Specifically, it can be observed that there exists a plane in between
these two regions that separates flow from going into the upward
or the downward part of the droplet. Similar behavior is apparent
in the example in Figure 4(g). Again, a separation can be observed,
but this time with a more vortical motion in the lower left and upper
right parts. This observation can barely be made from the original
pathlines (Figure 4(c)). Streaklines for this example are additionally
visualized in Figure 4(d) and Figure 4(h).

6 DISCUSSION

A particularity of multiphase flow is that particles, although ficti-
tious, belong to a certain fluid phase. These particles, therefore,
have to stay within the same phase in the course of the simulation.
Additionally, VOF fields cannot be interpolated between time steps
in a way that droplet interfaces are correctly preserved. This makes
it difficult to apply higher-order integration schemes, requiring in-
terpolation between phases at droplet boundaries. Therefore, we
employ Adams–Bashforth integration for streak- and pathline com-
putation, as well as Runge–Kutta 4 for streamline integration. Still,
particles may leave the droplet due to numerical inaccuracy. Then,
the integration of an integral line has to be stopped, as the local
velocity field is only defined for cells within the respective droplet.

Because our method allows the use of a static or a dynamic frame
of reference per droplet, i.e., the frame of reference is either extracted
from the initial droplet at the start of the integration or the frame of
reference is extracted anew for every time step, we can apply our
approach to different scenarios. While a static frame of reference
might be easier to interpret, a dynamic frame of reference can, for
example, be used on datasets where the angular velocity increases
or decreases. This is, e.g., the case in stellar mergers where two
stars rotate around a common center of mass until they finally merge
into a single star. Here, the rotation around this common center

changes over time. To allow domain scientists to observe the mass
transfer between the stars, it is useful to keep them at their respective
positions by applying a dynamic frame of reference.

Co-rotating grids are usually implemented by resampling the
grid. For multiple frames of reference, such as droplet-local frames,
resampling would need to be performed for each droplet separate-
ly. A topological event at a time te, e.g., the collision of droplets,
would then have to be handled explicitly by duplicating a subgrid
at te for two different sources (the two colliding droplets) at their
original positions at start time t0 of the integration. Additionally,
segmentation into droplets might need to be performed on a scalar
field that cannot be resampled, as is the case for a VOF field. On
the contrary, our method does not have to perform resampling, and
topological changes of the droplets, i.e., collisions and breakups, do
not have to be handled explicitly. Droplet tracking from our context
visualization approach can, however, detect such events and gives
feedback to the user. Using a static frame of reference, breakups can
easily be interpreted, as the flow will naturally show this separation
process. When dealing with collisions, an abrupt change in direction
and velocity magnitude occurs. However, information about how the
impact occurred is missing. As collisions are not predictable from
observing droplets separately, this is a difficult challenge. While the
static frame of reference breaks down in such a case, our dynamic
frame of reference yields good results (see supplemental video).

Performance-wise, the most costly part of our approach is data
loading and droplet extraction. Compared to the calculation of tradi-
tional integral lines, the cost for advection is doubled, as now two
lines are integrated simultaneously. To cancel out the rotation, the
sampled droplet-local velocities additionally have to be transformed.
However, if we were to resample the grid to give us a droplet-local
velocity field, this would also entail the previously mentioned steps
for pre-computation. Compared to resampling, our method should
be significantly faster when dealing with a number of streamlines
that is much smaller than the number of grid cells. When dealing
with droplets, this is typically the case.

7 CONCLUSION

In this paper, we have described and shown the utility of visualization
of droplet-local velocity fields in three-dimensional multiphase flow.
To this end, we presented the calculation of said derived velocity
field and introduced a modified, generalized approach for pathline
and streakline computation. Additionally, removed information is
visualized using glyphs for context. We applied our technique to
different droplets, showing the usefulness of our method: droplet-
local line integration yields interesting results for most small and
medium-sized droplets that exhibit individual, characteristic behav-
ior overshadowed by relatively high rotational or translational veloc-
ity. In the case of nearly static droplets, a challenging idea could be
to use clustering to visualize “cluster-local velocity”. This would
lead to a more generalized approach, which would allow the separate
inspection of clusters and, therefore, the analysis of larger and more
complex fluid structures. For future work, an idea is to integrate our
method into an in situ environment. Further, our method can readily
be combined with seeding strategies and opacity optimization to
reduce visual clutter. For a different application, the droplet-local
velocity field could also be used to provide more numerical stability
to feature extraction, e.g., extraction of vortices in droplets.
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