
Efficient Interpolation-based Pathline Tracing with B-spline Curves in
Particle Dataset

Haoyu Li *

The Ohio State University
Tianyu Xiong †

The Ohio State University
Han-Wei Shen ‡

The Ohio State University

ABSTRACT

Particle tracing through numerical integration is a well-known ap-
proach to generating pathlines for visualization. However, for par-
ticle simulations, the computation of pathlines is expensive, since
the interpolation method is complicated due to the lack of connec-
tivity information. Previous studies utilize the k-d tree to reduce
the time for neighborhood search. However, the efficiency is still
limited by the number of tracing time steps. Therefore, we propose a
novel interpolation-based particle tracing method that first represents
particle data as B-spline curves and interpolates B-spline control
points to reduce the number of interpolation time steps. We demon-
strate our approach achieves good tracing accuracy with much less
computation time.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Scientific visualization

1 INTRODUCTION

Pathline tracing is a popular technique for flow visualization and
analysis, for its ability to depict scientific features in different do-
mains such as aerodynamics and cosmology. Eulerian and La-
grangian flow simulations generate flow fields in two different for-
mats: mesh-based and particle-based. For the meshed-based flow
fields, velocities are stored at the vertices of the mesh, while the
particle-based method stores the velocity information at particle
positions without explicit connectivity defined between particles.
For certain particle simulations such as smoothed particle hydrody-
namics (SPH), even though the trajectories of the particles already
exist, to have a clear view of the underlying features, sometimes it
is necessary to have more pathlines around the locations of interest.
The widely used numerical integration approaches, such as Euler or
Runge-Kutta methods for computing pathlines, require an extensive
amount of velocity interpolation both spatially and temporally to
obtain reasonable accuracy. The computation time of numerical
integration largely depends on the number of integration steps and
the complexity of the interpolation method. For large-scale datasets,
the I/O overhead can also be very high. Therefore, for particle-based
flow fields, using numerical integration to generate pathlines is very
expensive.

However, the positions of a particle, or the particle displacement,
over time often show particular patterns governed by the underly-
ing physical conditions. Making use of the particle displacement,
previous study [3] proposed an interpolation-based tracing approach
for particle datasets, where they avoid performing velocity interpo-
lations at every time step needed by numerical integration. Instead,
they directly use particle displacement between time steps to gener-
ate particle traces. The performance of their method is determined
by three factors: neighborhood search time, the number of interpo-
lated pathlines, and the number of interpolation steps. Neighborhood

*e-mail: li.8460@osu.edu
†e-mail: xiong.336@osu.edu
‡e-mail: shen.94@osu.edu

search time is optimized using a modified k-d tree data structure
in their work and pathline advection from different starting points
can be parallelized. However, the tracing time for each pathline
cannot be easily reduced. Considering that current flow simulations
can output data at higher spatial and temporal resolutions, a large
number of tracing steps introduces a computational challenge.

To solve the aforementioned challenge, we propose a new ap-
proach for interpolation-based pathline tracing. B-spline [6] curves
are used first to fit the traces of existing particle data. We optimize
the accuracy by using an adaptive knot placement method [16] in
B-spline approximation, where more control points are placed at
the positions of higher complexity in the curve. Interpolation is
performed only between the control points of the parametric curves
instead of the original particles, which reduces the number of advec-
tion iterations from the number of particle integration steps to the
number of control points used. With our method, we demonstrate
a significant reduction in the computation cost for particle tracing
while achieving similar tracing quality.

2 RELATED WORKS

Most of the approaches to calculating pathlines rely on particle trac-
ing by numerical integration [12, 14]. Since regular grid flow field
particle tracing is a well-studied area with mature techniques, while
studies on particle-based flow field pathline generation are relatively
scarce, we focus on the related works to pathline generation for
particle-based flow fields in this section. One of the most relevant
studies to our work is interpolation-based pathline tracing [3], where
next time step particle location is calculated based on the neighbor-
hood particle position displacement. Their method avoids multiple
neighborhood searches needed by numerical integration at each time
step. However, their approach faces the problem that the total trac-
ing time is dominated by the number of time steps of the existing
pathlines. Particle-based flow fields can also be interpreted as flow
maps stored at scattered point locations. Many recent research that
use machine learning techniques to generate [7, 10] or super-resolve
flow maps [9, 15] are also related to this study. However, machine-
learning-based methods usually face the problem of long training
time and unbounded tracing errors.

Another related field to our study is using parameter curves to rep-
resent pathlines or streamlines in flow visualization. An exploratory
research [1] examine different kind of parameter curves and their
fitting quality. Hong et al. [8] make use of Bézier curves for flow
visualization under a compression-based pathline or streamline reuse
framework. Liu and Wang [11] proposed a streamline compression
method using B-spline curves that preserves topological relations
and has bounded error. Chen et al [4] model pathlines with compos-
ite Bézier curves with uncertainty and reduce error using forward
and backward trace. In all of these studies, parameter curves show
small and controllable fitting errors in representing pathlines and
streamlines and fast fitting time.

3 BACKGROUND

In this section, we review the interpolation-based pathline tracing
method introduced by Chandler et al. [3] for particle-based flow
fields. Each pathline in the dataset can be described as a function:
fi : τ 7→ ρ , where τ ∈ N is the time step and ρ ∈ R3 is the particle

ar
X

iv
:2

20
7.

07
22

4v
2 

 [
cs

.G
R

] 
 2

5 
Ju

l 2
02

2



position at that time step. When a new particle is inserted at time τ ,
to compute its trajectory in other time steps, an interpolation-based
pathline tracing method described in the following steps is used:

1. Load all particles of time step τ .
2. Find neighbor particles around the inserted particle.
3. Load all particles of time step τ +1.
4. Calculate the interpolation weights based on the spatial posi-

tions of the neighboring particles and the inserted particle at
time τ .

5. Reconstruct the position of inserted pathline at time τ+1 based
on neighboring particles’ displacement.

6. Update the neighbor particles at time step τ +1.
7. Repeat from step 3 until the desired time step is reached.

The reconstruction step in 5 can be expressed by the following
equation:

finsert(τ +1) = ∑
fi(τ)∈N( finsert (τ))

wi( fi(τ +1)− fi(τ))+ finsert(τ),

(1)
where we use N( finsert(τ)) to denote the set of neighboring particles
of the particle at position ρ = finsert(τ) and wi to denote the interpo-
lation weight. It is worth noting that the interpolation-based pathline
tracing approach is agnostic to the interpolation method and wi is
calculated using the interpolation method of choice, for example,
SPH kernels in their study. A modified k-d tree data structure is
constructed at every time step to accelerate neighborhood search in
their proposed method.

The major limitation of this method is that the total computation
time is determined by the number of integration (time) steps needed
to calculate the pathline. Our method aims to solve this limitation
by applying interpolation-based pathline tracing on B-spline repre-
sentations of the existing particle traces. The interpolation iteration
needed is effectively reduced to the number of control points used
to represent the particle traces.

4 METHOD

Our B-spline curve interpolation-based pathline tracing approach
can be described at a high level in two steps. First, we process the
particle-based flow field and fit a B-spline curve for each existing
particle trace. Second, we perform interpolation-based pathline
tracing on the control points and knots for a given new particle
position and time. We explain these two steps in detail next.

4.1 B-spline Approximation for Particle Traces
A B-spline curve of order k is a piecewise polynomial function of
degree k−1 defined by:

C(u) =
n−1

∑
i=0

Bi,k(u)Pi, u ∈ [t0, tn+k−1], (2)

where Pi denotes one of the n control points and C(u) evalu-
ates the B-spline curve at parameter location u. Knot vector
T = {t0, t1, t2, ..., tn+k−1} defines the parameter u range that is influ-
enced by the control points P. The B-spline basis function Bi,k(u)
is defined recursively with respect to the knot vector and the curve
order k as:

Bi,1(u) =

{
1, if ti ≤ u < ti+1
0, otherwise

,

Bi,k(u) =
u− ti

ti+k−1− ti
Bi,k−1(u)+

ti+k−u
ti+k− ti+1

Bi+1,k−1(u).

(3)

More in-depth content about B-spline curves can be found in this
book by Farin [5].

Given a pathline represented by m particles whose positions are
ρ0,ρ1, ...,ρm−1, the approximation of a B-spline curve involves
three steps: First, we need to parameterize the data points into a
monotonically increasing list u0,u1, ...,um−1, which determines the
distribution of data points along the B-spline curve. Second, we
determine the knot vector along the curve, which decides the control
points’ distribution in the parameter space. And last, we optimize
the control point positions with respect to the parameters and the
knot vector as a least-square solution:

argmin
P

m−1

∑
0
‖ρi−C(ui)‖2 (4)

4.1.1 Parameterization
There are two ways to parameterize this trajectory. The first is to
use the time steps as parameters: τ as the parameter for ρ . And the
second is to use the chord length in 4D space-time to determine a
parameter for each particle. We choose to use time steps to parame-
terize the trajectory for its simplicity. When representing the curve
in 4D space, we need to determine how to normalize the spatial
dimensions and the temporal dimension. The choice of different nor-
malizations may have an impact on the fitting accuracy. Moreover,
parameterizing the pathlines by the 4D chord length also requires us
to use 4D control points to describe the B-spline curve, which can
be less efficient when applying the interpolation algorithm. There-
fore, we normalize the time index to be in the range [0,1], and each
B-spline curve is a function from time to 3D spatial positions.

4.1.2 Knot Placement
Considering a B-spline curve of order k, control point Pi is used
when calculating the spline segment between ti and ti+k. Thus, knot
vector T = {t0, t1, t2, ..., tn+k−1} determines the control point density
along the pathline in the parameter space. We duplicate the first k
and the last k knots to ensure the curve passes through the first and
the last control points. Knot placement is a well-known problem in
B-spline approximation to optimize the spline quality. We adopted
a recent fast automatic knot placement method proposed by Yeh et
al. [16] to determine an optimal knot vector for spline fitting.

The automatic knot placement method is inspired by the idea
that an order-k B-spline curve has a piecewise constant (k− 1)th
derivative [16], and derivative discontinuities mark the knot locations.
A feature function is derived from the kth derivative of the data points
and used the cumulative feature function to guide the knot placement
(more knots when the cumulative feature function changes fast).
Their method is empirically found to yield better fitting accuracy
than directly using (k−1)th derivative of the data points.

The only hyper-parameter to choose in automatic knot placement
is the number of knots used. Choosing the number of knots also
determines the number of control points used for B-spline approx-
imation, since the number of knots is n+ k for a B-spline with n
control points and order k. This choice is a balance between pathline
tracing efficiency and accuracy. We discuss in detail the evaluation
of the choice in Sect. 5.1. After a knot vector has been calculated for
the given data points, we find the control points of the approximated
B-spline curve using the least square method following Equation 4.

4.2 Interpolation-Based B-spline Tracing
Based on the method introduced by Chandler et al. [3], we propose
a pathline tracing approach based on B-spline control point interpo-
lation. All particle data are processed first and a B-spline curve C is
generated for each particle trajectory. The B-spline approximation
only needs to be done once. The control points P0,P1, ...,Pn−1 and
the knot vector T : t0, t1, ..., tn+k−1 are saved as the representation
for the data instead of the original particle trajectories. Since the
automatic knot placement algorithm cannot guarantee that the knots
are placed at the same time steps for different pathlines, we need



Figure 1: An example for forward tracing of control points. Given the
pathline tracing starting point (red dot), we first identify the neighbor
curves by evaluating C(u) (blue). We find the nearest knots and control
points (green) to C(u) in future time steps. And then neighbor particles
(blue dots in the square) and the nearest knots and control points
Pd are used to reconstruct knots and control points Pr for the new
pathline. We then similarly interpolate knots and control points to get
the next iteration knots and control points Pr+1 for the new pathline.

to synchronize the control points before interpolation. However,
for higher efficiency, this synchronization is only performed at the
starting point of the traced pathline. For later control points, we
simply choose the nearest neighbors among the next control point
from each pathline, even though these control points may correspond
to the knots of different time steps. The errors introduced by this
choice are small for two reasons. First, nearby pathlines will likely
share similar shapes so that the knot intervals of nearby pathlines
are similar. Second, we interpolate both the knots and the control
points, which is similar to interpolating a point in 4D space-time,
which eases the problem of unsynchronized time steps.

Next, we describe our algorithm in detail. An illustration of the
interpolation scheme can be found in Fig. 1. Given a tracing starting
point (τ,ρ), we present the modified interpolation-based pathline
tracing as follows:

1. Normalize τ to get the parameter u and evaluate all existing
B-spline at u.

2. For each existing B-spline, find the minimum index d ∈
[bk/2c,n+ k− 1−dk/2e] so that td ≥ u. For special cases,
where u = 0 and 1, we define d = bk/2c and n+k−1−dk/2e.

3. Find neighboring B-splines C and calculate the interpolation
weights based on ‖ρ−C(u)‖2.

4. Reconstruct the knot tr and the control point Pr−bk/2c of Q
based on neighbor td and Pd−bk/2c, where r denotes the knot
and control point indices for the interpolated pathlines.

5. Load knots td+1 and control points Pd−bk/2c+1.
6. Find the neighbor control points and knots. Calculate interpo-

lation weights for iteration r.
7. Reconstruct the knot tr+1 and the control point Pr−bk/2c+1 for

the inserted pathline based on the interpolation weights.
8. Update the neighbor knots and control points for iteration r+1.
9. Repeat from step 5 until tr > 1.

The steps above describe how we perform forward tracing. Back-
ward tracing, which is necessary to represent the full new B-spline,
can be described similarly. The reconstructions in step 4 and step 7
are defined similarly to Equation 1:

tr = ∑
i

wi · ti,di ,

Pr−bk/2c = ∑
i

wi(Pi,di−bk/2c−Ci(u))+ρ,

tr+1 = ∑
i

wi(ti,di+1− ti,di)+ tr,

Pr−bk/2c+1 = ∑
i

wi(Pi,di−bk/2c+1−Pi,di−bk/2c)+Pr−bk/2c,

(5)

where we use i to denote the indices of all neighbors of the in-
serted pathline. In the first two equations, neighbors are calculated
based on the Euclidean distance between the positions of the syn-
chronized first time step. In the last two equations, neighbors are
calculated using Euclidean distance between the control points of
different B-spline curves. Similar to the original interpolation-based
method, we can use any interpolation method to calculate the inter-
polation weights wi.

5 RESULTS

The dataset that we use to evaluate our B-spline control point in-
terpolation method is generated by a cosmology simulation called
νbhlight [13] for solving general relativistic magnetohydrodynam-
ics. The simulation generates particle traces for 2001 time steps.
We implemented both our method and the baseline method [3] with
Python for a fair comparison. The B-spline approximation is per-
formed using SciPy API to FITPACK, which is a Fortran routine
for B-spline fitting and evaluation. We calculate the knot vectors
for each curve before fitting by implementing the method described
by fast automatic knot placement [16]. Our implementation can be
found here1.

5.1 B-spline Fitting Evaluation
As the first step of our approach, we evaluate the quality of the
B-spline approximation on pathlines. The approximation accuracy
depends on the knot placement and how we parameterize the curve.
We calculated the fitting error as root-mean-squared-error(RMSE)
across different integration steps over time. Overall, we achieve
RMSE of 1.31×10−5, about 0.000095% of the data range, across
all time steps using the 3D B-spline curves with 100 control points
parameterized by time.

We compared the fitting accuracy under two different conditions:
4D curves parameterized by the chord length and 3D curves pa-
rameterized by time with 100 control points as shown in the left
part of Fig. 2, and four different numbers of control points for 3D
curves in the right figure. These errors are calculated by interpo-
lating the B-spline curves at the parameters u0,u1, ...,um−1, which
corresponds to the time steps in B-spline fitting. Since 4D errors
are not comparable to 3D errors, we only calculate the 3D spatial
error in the 4D B-spline case. We can observe that 3D curves have
fewer errors, especially at the first 750 time steps, when the path-
lines have higher curvature in the dataset. The reason for the error
difference is that 4D spatial-temporal curves have more complicated
geometry because of the additional dimension, which means more
control points are needed to achieve a similar spatial error. The
comparison between the different number of control points clearly
shows that increasing from 10 to 100 control points dramatically
decreases the approximation error. However, using more than 100
control points does not decrease the error much, while increasing
the computational burden in spline tracing. Since the RMSE of the
time step with the largest error is already low enough (0.01, 0.07%
of the data range), we choose to use 100 control points for the latter
experiments. For other datasets or under different use cases, we
may also use a linear regression model as a heuristic method [16] to
determine the number of control points.

5.2 Interpolation-based B-spline Tracing Results
In this section, we quantitatively and qualitatively compare the B-
spline tracing results with the particle tracing results. For all 83274
pathlines in the dataset, we randomly sample 25% of them as the
test data. We start the pathline tracing at different time steps using
the sampled test data position. We use the same inverse distance
weighting (IDW) interpolation for both methods for a fair compari-
son. The pathline tracing results are compared with the ground truth
test data to calculate spatial RMSE across different time steps.

1https://github.com/harviu/interp_based_spline_tracing

https://github.com/harviu/interp_based_spline_tracing


Time Step Time Step

R
M

S
E

R
M

S
E

Figure 2: B-spline fitting error in RSME. The left figure compares the
3D curve parameterized by time and the 4D curve parameterized by
chord length. The right figure compares the 3D curve using different
numbers of control points.

Chandler et al.

R
M

S
E

R
M

S
E

Time StepTime Step

Ours
Chandler et al.

Ours

Tracing Start at 
time step 0

Tracing Start at 
time step 750

Figure 3: The pathline tracing results that start at different time steps
(0 and 750) using our method and the method proposed by Chandler
et al. [3]. Our method has a slightly lower error under almost all
conditions.

Quantitative results are shown in Fig. 3. Our method and the com-
pared method have a similar error trend when tracing from different
starting points. Errors are low around the starting points and increase
when the traces advance further. Errors are generally smaller in the
first 100 time steps because the data ranges are smaller in these
time steps, which is the property of this dataset. Our method has
slightly lower tracing error across all time steps, possibly because
the B-spline is a smoother representation of the original particle
trajectories, and thus removing the fluctuations in the original tra-
jectories could lead to lower error. Next, we show the qualitative
pathline tracing results using two different methods in Fig. 4. In
Fig. 4 (a), we show three pathlines (first 100 time steps) generated
by our method, by the baseline method, and from the original test
data. The pathline traced using our method and the baseline method
are similar. The errors between the traced pathline and the ground
truth pathline are accumulated for later time steps. However, this
problem exists for both approaches and can be eased by using a
more sophisticated interpolation method. In Fig. 4 (b), we show
all the traced pathlines from the test dataset. The color denotes
the tracing error at different time steps for each pathline. We can
observe similar tracing quality using two different methods. Since
it has already been shown [3] that the baseline method has similar
tracing accuracy compared to numerical integration methods like
adaptive Runge-Kutta 4/5 [2], our method has a comparable tracing
error with both the baseline method [3] and numerical integration,
and moreover, requires much less computation, which we will show
in the next section.

5.3 Timing
We calculate the B-spline fitting time and the interpolation time
of 20818 test pathlines. All the experiments are performed on the
same machine and with a similar implementation optimization. The
particle dataset is assumed to be pre-arranged in a way that particles
in the same pathline are close to each other in the memory.

We present the B-spline control points tracing computational
time under the conditions of different numbers of control points in
Table 1. The number of control points does not influence the B-
spline fitting time much. However, the interpolation time increases
linearly with the number of control points of interpolation. For the
number of control points 100 that we choose for the experiments,
the interpolation time is about 10% of the particle interpolation

(a)

(b)

Chandler et al.

Ours

Ground Truth

Figure 4: The single pathline tracing results (a) and the tested pathline
tracing results (b). Our method is on the left and the baseline approach
is on the right. Color denotes the error to the ground truth pathlines.
Two methods have similar results both in (a) and (b).

Table 1: B-spline approximation time and control points interpolation
time under the conditions of different numbers of control points. The
ratio shows the computation time compared to the baseline method.

Number of Control Points Fitting Time Interpolation Time Ratio

10 67.36s 3.19s 0.011
25 67.52s 6.50s 0.023
50 68.80s 11.04s 0.040

100 69.28s 26.71s 0.096
Baseline [3] - 278.90s 1

time. For most flow datasets, choosing a number of control points
similar to this dataset ( 5% of the number of time steps) can achieve
high B-spline fitting accuracy [1]. If the flow data is especially
complex, e.g. a lot of fluctuation along the particle trajectories,
and we can not reduce the number of control points much, the
computation cost of our method could exceed the computation cost
of directly interpolating particles. However, this is unlikely for
real flow simulations. The B-spline fitting time is much less than
that of interpolation and the fitting only needs to be done once for
the same dataset. In terms of scalability, the time for the fitting
process and tracing for different pathlines increases linearly to the
number of pathlines. Since the neighborhood search takes most
of the time for interpolating between control points, the time will
increase logistically to the number of pathlines.

6 CONCLUSION AND FUTURE WORKS

We presented an interpolation-based pathline tracing method for
particle simulations on B-spline control points. The B-spline approx-
imation is optimized by using an adaptive knot placement method,
which is fast and has controllable errors. The computation time
for our method is largely reduced due to the reduction of interpo-
lation iteration, and at the same time, our method achieves similar
pathline tracing quality compared to interpolating particles. Besides
the usage for pathline tracing, B-splines can also be applied to data
reduction or as a proxy representation for neural network training.
Our future works will focus on B-spline and neural network repre-
sentations for the pathlines and their application for feature-driven
visualization.

ACKNOWLEDGMENTS

This work is supported in part by US Department of Energy SciDAC
program DE-SC0021360, National Science Foundation Division
of Information and Intelligent Systems IIS-1955764, and National
Science Foundation Office of Advanced Cyberinfrastructure OAC-
2112606.



REFERENCES

[1] R. Bujack and K. I. Joy. Lagrangian representations of flow fields
with parameter curves. In 2015 IEEE 5th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 41–48. IEEE, 2015.

[2] J. R. Cash and A. H. Karp. A variable order runge-kutta method
for initial value problems with rapidly varying right-hand sides. ACM
Transactions on Mathematical Software (TOMS), 16(3):201–222, 1990.

[3] J. Chandler, H. Obermaier, and K. I. Joy. Interpolation-based pathline
tracing in particle-based flow visualization. IEEE Transactions on
Visualization and Computer Graphics, 21(1):68–80, 2015. doi: 10.
1109/TVCG.2014.2325043

[4] C.-M. Chen, A. Biswas, and H.-W. Shen. Uncertainty modeling and
error reduction for pathline computation in time-varying flow fields. In
2015 IEEE Pacific Visualization Symposium (PacificVis), pp. 215–222.
IEEE, 2015.

[5] G. E. Farin and G. Farin. Curves and surfaces for CAGD: a practical
guide. Morgan Kaufmann, 2002.

[6] W. J. Gordon and R. F. Riesenfeld. B-spline curves and surfaces. In
Computer aided geometric design, pp. 95–126. Elsevier, 1974.

[7] M. Han, S. Sane, and C. R. Johnson. Exploratory lagrangian-based
particle tracing using deep learning. arXiv preprint arXiv:2110.08338,
2021.

[8] F. Hong, C. Bi, H. Guo, K. Ono, and X. Yuan. Compression-based
integral curve data reuse framework for flow visualization. Journal of
Visualization, 20(4):859–874, 2017.

[9] J. Jakob, M. Gross, and T. Günther. A fluid flow data set for machine
learning and its application to neural flow map interpolation. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1279–
1289, 2020.

[10] J.-Y. Lee and J. Park. Deep regression network-assisted efficient stream-
line generation method. IEEE Access, 9:111704–111717, 2021.

[11] D. Liu and W. Wang. Topological relation preserving streamline com-
pression based on b-spline curves with bounded error. Journal of
Visualization, 25(1):111–125, 2022.

[12] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over two decades of integration-based, geometric flow visualization.
In Computer Graphics Forum, vol. 29, pp. 1807–1829. Wiley Online
Library, 2010.

[13] J. M. Miller, B. R. Ryan, and J. C. Dolence. νbhlight: Radiation
grmhd for neutrino-driven accretion flows. The Astrophysical Journal
Supplement Series, 241(2):30, 2019.

[14] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch.
Feature extraction and visualisation of flow fields. In Eurographics
(State of the Art Reports), 2002.

[15] S. Sahoo and M. Berger. Integration-Aware Vector Field Super Res-
olution. In M. Agus, C. Garth, and A. Kerren, eds., EuroVis 2021 -
Short Papers. The Eurographics Association, 2021. doi: 10.2312/evs.
20211054

[16] R. Yeh, Y. S. Nashed, T. Peterka, and X. Tricoche. Fast automatic knot
placement method for accurate b-spline curve fitting. Computer-Aided
Design, 128:102905, 2020.


	Introduction
	Related Works
	Background
	Method
	B-spline Approximation for Particle Traces
	Parameterization
	Knot Placement

	Interpolation-Based B-spline Tracing

	Results
	B-spline Fitting Evaluation
	Interpolation-based B-spline Tracing Results
	Timing

	Conclusion and Future Works

