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Figure 1: The interactive analysis tool ASEVis: A programming interface (a) allows for the definition of time-dependent measures as
well as aggregations. Aggregated measures are shown in a heatmap (b) while the aggregation over time is visualized in the timeplot
(d). Detail visualizations for single ensemble members include animations (c), a line plot, and a scatter plot matrix (SPLOM).

ABSTRACT

Simulation ensembles are a common tool in physics for understand-
ing how a model outcome depends on input parameters. We analyze
an active particle system, where each particle can use energy from
its surroundings to propel itself. A multi-dimensional feature vector
containing all particles’ motion information can describe the whole
system at each time step. The system’s behavior strongly depends
on input parameters like the propulsion mechanism of the particles.
To understand how the time-varying behavior depends on the input
parameters, it is necessary to introduce new measures to quantify the
difference of the dynamics of the ensemble members. We propose
a tool that supports the interactive visual analysis of time-varying
feature-vector ensembles. A core component of our tool allows
for the interactive definition and refinement of new measures that
can then be used to understand the system’s behavior and compare
the ensemble members. Different visualizations support the user in
finding a characteristic measure for the system. By visualizing the
user-defined measure, the user can then investigate the parameter
dependencies and gain insights into the relationship between input
parameters and simulation output.
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1 INTRODUCTION

Numerical simulations are frequently applied in physics because they
allow for studying the dependence of a system’s behavior on input
parameters. One example are active particles, which are particles
like bacteria or other microorganisms that can propel themselves.
Here, simulations are used to identify how the propulsion mechanism
of the particles as well as the distances between them influence the
system’s behavior. The analysis can result in identifying different
states of matter formed by active particles.

In this article, we want to investigate a so-called active crys-
tal, which is a crystal formed by active particles. Active crystals
show interesting properties and might allow for the creation of
programmable materials. Each self-propelled particle is fixed in
a certain 3D location but can rotate freely in all three dimensions.
Considering a small crystal of k particles, where each particle is
characterized by a 3-dimensional orientation vector, each state of
the system (i.e., each time step of a simulation) can be described
by a 3k-dimensional feature vector. Then, the task is to study the
evolution of a 3k-dimensional vector over time and compare it to
other ensemble members. The overall goal is to define a measure
that describes the evolution of each ensemble member. This mea-
sure shall characterize the differences in temporal evolutions of the
ensemble members. Many measures exist to describe certain charac-
teristics of 1D time series (such as frequency for a periodic signal),
but which measure is most suitable for a given ensemble depends on
the dynamics and is a priori unclear. Hence, the temporal evolution
of ensemble members needs to be explored in an interactive visual
analysis to define (and refine) a suitable measure. In particular,
the measure needs to capture the evolution of all 3k dimensions
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of the feature vector in an aggregated form. Statistical measures
such as mean, median, standard deviation, etc. may be applicable
to aggregate over dimensions, but again it is unclear a priori which
measure is most suitable. Altogether, the overall measure to be
defined shall aggregate over time and dimensions to distinguish the
dynamic characteristics of different ensemble members.

We present an interactive visual analysis system to analyze ensem-
bles of multivariate time series, which facilitates the definition and
refinement of suitable measures for describing the main dynamics
of the system. The visualization of single ensemble members can be
used to investigate their dynamical behavior. An interactive program-
ming interface directly embedded into the visual analysis tool then
allows for defining measures for capturing the observed dynamical
behaviors and reducing the complexity of the data. These measures
can be defined for individual time steps or aggregated over time. The
definitions can be evaluated interactively, where respective visual
representations allow for comparing different ensemble members
and analyzing the dependence of the user-defined measure on the
system’s input parameters. We evaluate our approach by presenting
a case study of how our tool was used to define suitable measures.
In fact, by using our tool a new measure was defined, which was
used in a recent publication [10]. While that article focuses on the
results obtained when using the new measure, this paper focuses on
the design of the visualization tool and investigates our learnings
in the analysis process from a visualization perspective. Our main
contributions can be summarized as follows:

• A requirement analysis and task abstraction for studying com-
plex systems in active particle physics.

• A process to interactively define measures that allow for a
comparison of ensemble runs, which are described by the
evolution of multidimensional feature vectors.

• An interactive visual analysis tool that emerges from the re-
quirement analysis and a use case to show how it is used to
interactively define a new measure.

2 RELATED WORK

Recently, a wide range of visualization approaches that focus on
different aspects of ensemble data from different domains have been
proposed [14, 25, 27, 33]. One key aspect is the analysis of the
ensemble’s input parameter space [5, 8, 9, 29] which also motivates
our work. For example, Fofonov et al. [11] proposed a visual analysis
approach, where they represent each run as a line and color-code
the lines according to the simulations’ parameter values. To provide
an overview of the parameter space, an important challenge is the
definition of derived data [1, 7, 32].

Luboschik et al. [20, 21] focus on the influence of parameters on
trajectories. Similar to other works [22, 23] they use a set of pre-
defined features for the analysis, assuming that the feature of interest
is known from the beginning. Zhao et al. [35] propose to create a
pipeline that supports creating derived time series interactively, but
they do not allow for the definition of aggregations of the data. On
the other hand, different approaches tackle the problem of finding
features in multidimensional data [12, 16, 30], but do not support
the derivation of measures used in other visualizations. In general,
the majority of work focuses on 2D or 3D trajectories [15, 19].
Recently, a method for the generalization to 4D trajectories has been
proposed [3] as well as dimensionality reductions even to single
dimensions [34].

Common approaches for the analysis of data with new user-
defined measures are provided by interactive notebooks like Jupyter
notebook [18]. It is also possible to use programmable filters
in ParaView [2] that allow for deriving data that are then used
for visualization. However, interactions in those approaches are
limited. Observable notebooks [24] support interactions, but being
JavaScript-based, they do not allow access to the standard data
processing libraries. Furthermore, the notebook-based approaches

are very general and do not include ready-to-use visualizations.
Cellpackexplorer [28] is a visually aided tool that supports model
building but does not target the definition of derived measures.
Paraglide [6], however, proposes an interactive system to analyze
the dependence of simulation data on input parameters that can be
closely integrated into different programming environments. They
identify the construction of derived variables and measures as one
requirement for their system, but they do not tackle time-dependent
data, which adds an additional layer of complexity.

3 REQUIREMENT AND TASK ANALYSIS

Active matter, which describes systems that consume energy from
their surrounding, have raised a lot of interest recently [4]. Nano- or
microparticles with this property are called active particles. They
use the energy for self-propulsion and are out of equilibrium as all
kinds of active matter. This leads to fascinating behavior and exotic
properties such as negative viscosities [26]. Active systems have a
rich state diagram containing crystalline phases whose properties
are not yet fully explored. In this paper, we investigate a small active
crystal where the particles are fixed in their positions, as shown
in Fig. 1c, but can rotate freely. They interact via hydrodynamic
interactions that arise from the effect of their self-propulsion on the
surrounding fluid. Thus, the propulsion mechanism and the distance
between the particles determine the interaction and, therefore, the
system’s characteristic behavior. Numerical simulations are a helpful
tool to understand and explore new interesting behavior.

The state of the system at one point in time can be described by
a multi-dimensional vector. In our case study, we observe seven
particles whose orientation is defined by a 3D vector. Combining
these vectors creates a 21-dimensional feature vector containing
the complete information about the system’s state. The simulations
take two input parameters, where one defines the distance between
the individual particles (d) and the other defines the propulsion
mechanism (beta). Considering the variations over time and the
simulation’s input parameters, we can characterize the data as an
ensemble of multi-dimensional trajectories. A common way in
physics to analyze such ensemble data is to use a set of Python scripts
or Jupyter notebooks. However, both cases lead to the creation of
static plots. Exploring the dataset to find interesting properties
and understanding the system’s behavior needs many recreations of
these graphs, which interrupts the workflow. This is especially true
if the analysis includes finding new measures for characterizing and
aggregating the data.

Based on our experience within the project described in [10],
we defined the following set of requirements for an analysis of the
simulation ensemble:
(R1) To understand the underlying data and how they can be summa-
rized in an expressive way, the multi-dimensional time series data for
individual simulation runs shall be visually investigated at different
levels of detail.
(R2) Based on the analysis of single ensemble members, it shall
be possible to define an aggregation measure that reduces the di-
mensionality of the data. This measure facilitates visualizing the
data over time and supports a comparison among different ensemble
members. It also allows for determining interesting time intervals
for the investigation, e.g., by skipping transition phases.
(R3) An aggregation measure over time shall allow for summarizing
the data based on user-defined characteristics. These aggregated
values should be compared for the whole ensemble. Additionally,
it should be possible to relate the values to the parameter space to
see how the user-defined measure varies with changing parameter
settings. This approach allows for defining different states of the
system, which is a common goal in the analysis of active systems.

From these concrete requirements in the domain of active sys-
tems, we can abstract a set of tasks using terms from the field of
visualization: Hence, the methods developed can also be applied to
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Figure 2: Analytical workflow when using ASEVis: Time-dependent
and time-independent measures are defined iteratively and then used
to gain insights into the data.

other domains that deal with multi-dimensional time-series data:
(T1) Visualize a single multi-dimensional time series (R1).
(T2) Interactively define a measure that aggregates the multi-
dimensional time series to one scalar value for each time step (R2).
(T3) Visualize the aggregated multi-dimensional data over time (R2).
(T4) Interactively define a measure that aggregates a time series to
one scalar value (R3).
(T5) Visualize the aggregated time-series data depending on the pa-
rameter values (R3).
In the following, we will explain the design choices to adress these
tasks (T1-T5) to fulfill the requirements (R1-R3).

4 VISUAL ANALYSIS SYSTEM

Based on the identified tasks, we designed the interactive analysis
system ASEVis that combines visualizations at three different levels
of detail, see Fig. 1, which we will explain in detail in this section.
The whole analysis process shown in Fig. 2 focuses on an inte-
grated programming interface that allows for the definition of new
characteristic measures based on preliminary insights into the data.

A typical analytical workflow starts with a bottom-up analysis:
By investigating some simulation runs in detail (T1), the user can
identify characteristic behavior to define a measure that aggregates
the data for each time step by inserting the definition directly into the
interface (T2). This measure is then plotted over time for a selection
of ensemble members and shown in a line plot (T3). After some
iterative refinement of the time-step measure, if necessary, the user
can define a time-series aggregation measure that results in a single
number for each ensemble run (T4). This overall measure is visual-
ized in a heatmap providing an overview of the whole ensemble’s
dependence on the parameters (T5). This bottom-up procedure can
be followed by going top-down again. To start with, the heatmap can
interactively be explored by showing the distribution of the values of
individual ensemble members that have been used for the aggrega-
tion for validation and further insights. It is further possible to select
a set of runs in the heatmap for which the user-defined measure
is shown over time (T3). It is also possible to select a single run
that, e.g., shows an interesting behavior based on the user-defined
measure. This run can then be investigated in detailed visualizations
to understand what causes the extraordinary behavior (T1).
Detail Visualizations To understand the dynamic behavior of single
runs, we combine three different visualizations. The first one is
an animation that directly visualizes the orientation of all particles
over time, see Fig. 1c. It provides a descriptive impression of the
simulation run that directly shows the system’s behavior. However,
animations rely on the viewer’s memory, and the cognitive demands
increase with the number of animations that need to be compared to

cover the ensemble structure of the data [13]. Therefore, we also in-
clude a visualization of one component (i.e., x-, y-, or z-coordinate)
of the individual particle vectors over time. For our system, this
results in a line plot with seven lines for the seven particles, as shown
in Fig. 3a and c. Even though this visualization does not capture
the complete data but leaves out two components for each particle,
it covers the range of features whose identification is more acces-
sible than in an animation. To cover the whole multi-dimensional
trajectory in a static visualization, we include a scatter plot matrix
(SPLOM), see Fig. 3b and d. Instead of directly showing the single
coordinates of the multi-dimensional feature, we perform a principal
component analysis (PCA) [17] and show the principal components
that cover 99.9% of the data (optionally with a maximum number
of components), which allows us to identify features in the data by
taking the complete information into account. At the same time, the
intrinsic dimensionality of the data is identified, which supports find-
ing suitable measures for differentiating regions in parameter space.
Integration of Measure Definition For showing aggregated infor-
mation (T2, T4), we include an interactive programming interface in
our analysis tool, see Fig. 1a. It allows users to include the definition
of suitable measures directly into the tool and explore the data based
on it. We use Python for the programming interface, because it is
commonly used in the domain and allows the use of a wide range of
libraries like “numpy” and “scipy”. A function template is provided
for implementing the measure that can be used as a starting point.
The only restriction is given by the function’s signature, which needs
to be kept. However, due to the clear purpose of the measures, this
does not impose restrictions. The interface supports the use of the
aggregation measure defined per time step to define the overall ag-
gregation measure. Furthermore, the measures can be assigned a
name, which is then used to label the visualizations.
Comparative Time-dependent Analysis To allow for a compara-
tive visualization of different ensemble members over time (T3), we
include an additional line plot that directly shows the user-defined
measure over time, to which we refer in the following as timeplot.
Here, the measure per time step is evaluated and plotted, see Fig. 1d.
To understand how different parameter settings influence the behav-
ior over time, we include the option to color-code the data based
on parameter values. The user can interactively switch between
color-coding the distance d or the parameter tuning the propulsion
mechanism beta.
Ensemble Overview An overview of all runs and their dependence
on parameters is provided by a heatmap visualization. Here, we
chose a heatmap because it resembles a state diagram, which is
commonly used in active matter physics. As the parameter space is
often sampled irregularly, we fill the gaps by extending the segments
around each data point along the axes. However, this encoding
makes it hard to identify the exact location of data points. Therefore,
we visualize the positions of the samples on top of the heatmap as
points. If a run is selected for an analysis in the more detailed views,
this point is color coded in red, otherwise in black. These colors do
not infer with the perceptually uniform viridis color map, which
we chose for encoding the values of the aggregated measure [31]. Se-
lections of regions in the heatmap are shown in full saturation, while
the saturation of the unselected cells in the heatmap is decreased
to 0.5. When selecting data points in the heatmap, the temporal
evolution of the respective simulation runs is shown in the timeplot.
Moreover, when hovering over single cells, a tooltip provides not
only the precise numerical values for the measure, but also contains
a histogram that shows the distribution of the aggregated data. The
histogram allows for a validation of the choice of the aggregation
measure as well as additional information about the different runs.

5 USE CASE

In the following use case, we showcase how our tool was used to
define the order parameter used in the respective study [10]. The
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Figure 3: Visualizations for the investigation of single runs. a The line plot showing the variation of the x-coordinate for the single particles
(beta=−2.7, d=2.3) indicates a periodic motion. b The SPLOM showing the PCA of the complete data confirms this. c The line plot for the run with
beta=0.0, d=2.3 shows no clear patterns. d The SPLOM also does not reveal a pattern. Here, we need 20 dimensions to cover 99.9% of the data
but show only the first 8 dimensions.

workflow is also shown in the accompanying video. The dataset
contains 30 runs with 465 to 6,664 time steps that cover a time of
1,000R/B1 (dimensionless time units). The goal of the simulation
ensemble is the study of the influence of the parameters d, which
describes the distance between the particles, and beta, which in-
fluences their propulsion mechanism. Here, it is of special interest,
to see if the systems form different states of matter based on these
parameters and where the boundaries of those states of matter are.

We start by analyzing individual runs. Here, we can already spot
characteristically different behaviors as shown in Fig. 3. For the run
shown in Fig. 3a, we observe that the systems performs a periodic
motion. To confirm if the motion is completely periodic or if this
is an artifact by using only part of the data, we visualize the PCA
outcome in the SPLOM starting from 300R/B1 (see Fig. 3b). We
observe that we only need four principle components to capture
99.9% of the data and that the data indeed exhibit a periodic motion
in the 4-dimensional space. However, when investigating a different
run, we cannot identify such a periodic motion, neither in the line
plot nor in the SPLOM. Thus, the goal is to find a measure that
allows us to differentiate these types of motion. This corresponds to
a so-called order parameter that would also allow to characterize
the transition between the states.

In a first step, we tried to use the distance to the first feature
vector because this measure would become 0 every time the system
repeats its behavior and thus capture its periodicity. However, by
observing this measure for different runs in the timeplot, we found
that it does not yield meaningful results for non-periodic cases and
strongly depends on the choice of the first time step. Therefore,
we adapted our definition and, after some further refinement steps,
we came up with a measure that uses for each timestep the closest
Euclidean distance to a position to which the trajectory comes back
to. Observing the measure in the timeplot, we found that it allows
for a clear separation between different types of runs. Further, it
allows us to determine the end of the transition phase to a periodic
motion because this measure equals 0 for periodic cases.

For the aggregation over time, we chose to use the mean over
the selected time. The resulting heatmap is shown in Fig. 1b. Here,
we can clearly separate the regions with periodic behavior (small
values of d) from other regions. We also see a continuous increase

in direction of d and discontinuities in direction of beta. Hovering
over the heatmap reveals different distributions for the different
behaviors. To obtain a better understanding, we can select a set of
runs in this direction and investigate it in the timeplot, see Fig. 1d.
We also color-code the behavior depending on parameter beta and
see that two runs with beta=-2.3 and beta=-3.4 show small values
all the time, while those of the other runs exhibit high values (at least
partially). The time evolution for beta=-4.5 sticks out, because it
shows a jump around 700R/B1. To understand this phenomenon,
we select this run and analyze it in the animation as well as the other
detail visualizations. This reveals that until 700R/B1, the motion is
close to a periodic pattern, while it seems chaotic for larger times.

6 DISCUSSION AND CONCLUSION

We presented an approach for the analysis process in active parti-
cle physics. After deriving requirements and abstracting tasks, we
proposed a visual system that supports the definition of measures
for analyzing complex systems that can be represented by a time-
varying multi-dimensional feature vector. Even though our workflow
is derived from the domain of active matter physics, it can be gen-
eralized to other domains that use ensembles of multi-dimensional
trajectories. Only the detail visualizations are domain-specific. Our
approach scales well to larger systems because we use dimensional-
ity reductions by a user-defined measure. However, depending on
the number of particles, the detail visualizations should be adapted
to avoid overplotting. Our heatmap visualization is currently limited
to analyzing two parameters that suffice for the given application
scenario. However, future research directions can target the analy-
sis of higher-dimensional parameter spaces in this context or adapt
existing tools [20]. Additionally, our tool focuses on exploring the
data for defining new measures, but is not optimized for creating
paper-ready figures targeted at presenting the results, which would
improve the practical usefulness of the tool. We provide our source
code at https://github.com/marinaevers/asevis.
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