
Exploring Relations within Software Systems Using Treemap Enhanced
Hierarchical Graphs

Michael Balzer Oliver Deussen

Department of Computer and Information Science
University of Konstanz, Germany

{balzer | deussen}@inf.uni-konstanz.de

Abstract

The clear and meaningful visualization of relations be-
tween software entities is an invaluable tool for the com-
prehension, evaluation, and reengineering of the structure
of existing software systems. This paper presents an inter-
action and representation scheme for the visualization and
exploration of complex hierarchical graphs to analyze re-
lations within software systems. Thereby aggregated parts
of the software system are represented as treemaps that vi-
sualize the structure of the contained software entities. An
adaption of existing rectangle-based treemap algorithms for
layouts within convex polygonal bounding geometries is in-
troduced to allow for a differentiation of various entity types
in the graph visualization. Furthermore, a visual cluster-
ing method based on implicit surfaces is presented to create
meaningful visualizations of distorted hierarchical graphs
of software systems.

1 Introduction

Modern software systems are very complex structures
consisting of thousands of entities and millions of lines of
code. The entities are organized in a hierarchy that reflects
the architecture of the software system. Typical hierar-
chy levels of software entities are nested subsystems, pack-
ages, modules, functions, classes, methods, and attributes,
whereby in large systems one may find up to 20 or more
of these levels. In particular, object-oriented software sys-
tems are constructed using an explicit and rich hierarchi-
cal structure provided by modelling and programming lan-
guages like UML and Java/C++.

Among the hierarchy of the entities, the relations be-
tween the entities provide important information about the
structure of a software system. Examples for such relations
are method calls, read or write accesses to attributes, and in-

heritance of classes. In contrast to the hierarchy that reflects
the intended structure of the system, these relations provide
insight into the inner dependencies of the entities as they
arise during the development and reengineering process.

Software visualization can help to understand the struc-
ture of complex software systems. The approach of
treemaps [10] is commonly used for visualizing hierar-
chical structures, and it is also applied to software struc-
tures [2, 13]. Another common method in the field of soft-
ware visualization are graphs [11, 15, 17]. They are espe-
cially used for the representation of relations and dependen-
cies within software structures. Additionally, they may be
extended to hierarchical graphs [8, 12], thereby allowing the
visualization of the hierarchical structure simultaneously.

For the comprehension, evaluation, and reengineering of
existing software systems, it is necessary to provide views
on different levels of abstraction. For example, global views
illustrating dependencies between packages, detailed views
showing relations of specific methods or attributes, and
mixed views presenting relations between some selected
classes and other packages. In most of these views, parts
of the data is aggregated according to the hierarchical struc-
ture. This focus and context approach is necessary to fil-
ter the often immense amount of presented information ac-
cording to the user’s demand. The challenging task is to
represent the aggregated parts of the system without losing
information of their contained structure and complexity.

This paper presents a technique that creates meaningful
visualizations of the relations within hierarchical software
structures by enhancing graphs with treemaps. Thereby
each aggregated node in the graph is represented by a
treemap that reflects the contained structure of the node that
is hidden in the graph layout. By interactively collapsing
and expanding the presented parts of the data, the user is
able to stepwise explore the dependencies even within very
complex software systems.

http://www.sdml.info/vissoft05/
http://www.ub.uni-konstanz.de/kops/volltexte/2007/2719/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27194


2 Background

2.1 Hierarchical Graphs

A graph G = (V,E) consists of a finite set of nodes V

and a finite set of edges E with E ⊆ V × V . A directed
graph is a graph whose edges possess a direction given by
a source node s and a target node t with t, s ∈ V .

A hierarchical graph H = (G,T ) consists of a directed
graph G and a rooted tree T , such that the nodes of G are a
subset of the nodes of T . The tree T is called the hierarchy
tree of H and the directed graph G is called the underlying
graph of H . Figure 1 presents an example of a hierarchical
graph where the nodes are represented as boxes, the black
edges represent the directed graph G and the gray edges
illustrate the rooted tree T .

Figure 1. Hierarchical graph—black edges
represent the directed graph and gray edges
illustrate the rooted hierarchy tree

A view G′ = (V ′, E′) of a hierarchical graph H =
(G,T ) is a directed graph with a set of nodes V ′ ⊂ V that
contains exactly one ancestor of every node of the underly-
ing directed graph G = (V,E) of H according to the rooted
hierarchy tree T of H . Figure 2 presents three examples for
views of the hierarchical graph in Figure 1. In the first view
all nodes are aggregated in node A. In the second view the
nodes G and H are aggregated in node C. The third view
presents all leaf nodes of the hierarchy tree.

Figure 2. Three different views of the hierar-
chical graph in Figure 1

A n-dimensional layout of a directed graph G = (V,E)
is a vector of node positions (pv) with v ∈ V and pv ∈ R

n.
An energy model formalizes what is considered a good lay-
out by assigning an energy value to each layout of a given

graph, whereby smaller energy values indicate better lay-
outs [5, 7, 12]. For the computation of good layouts, which
are based on a given energy model, there exist efficient iter-
ative minimization algorithms [3, 14].

2.2 Treemaps

Treemaps [10] subdivide a given rectangular display
area according to an attributed hierarchy without producing
holes or overlappings. Thereby the term ‘attributed’ signi-
fies that each node in the hierarchy has a value that repre-
sents its size relating to a given measurement.

The construction of treemaps is exemplified in Figure 3.
Each node in the hierarchy has a name and an associated
size, whereby the size of an internal node is the sum of the
sizes of its contained leaf nodes. The treemap is constructed
via recursive subdivision of the initial rectangle. The direc-
tion of each one-dimensional subdivision step alternates per
level: first horizontally, next vertically, again horizontally,
etc. The area size of each sub-rectangle corresponds to the
size of the represented node. As a result of its construction,
the treemap reflects the structure of the tree and the sizes of
its nodes.

Figure 3. Tree and corresponding Treemap—
each node is labeled with its name and size;
the area sizes in the Treemap correspond to
the node sizes

Beside this initial Slice-and-Dice method, more sophis-
ticated treemap layout algorithms emerged, which mainly
address the issue of the bad aspect ratio between width and
height of the rectangles in the treemap by performing a two-
dimensional subdivision in each recursion step. The popu-
lar Squarified treemap algorithm [6] sorts the nodes at each
hierarchy level by their sizes in descending order and gener-
ates layouts with an aspect ratio converging to one. Ordered
treemap [16] layouts preserve a given order of elements by
also maintaining a good overall aspect ratio. In contrast
to all other existing treemap layout algorithms, which are
based on rectangles, Voronoi treemaps [1] are based on the
subdivision of, and into polygons. They maintain a good
aspect ratio of the elements, provide a non-ambiguous inter-
pretability of the hierarchical structure, and enable treemap
layouts within arbitrary polygons.



3 Contribution

The clear and meaningful visualization of relations be-
tween software entities is an invaluable tool for the compre-
hension, evaluation, and reengineering of the structure of
existing software systems. A common method for this task
is the usage of directed graph visualizations. Therefore, the
software entities are represented as nodes of the graph, and
the relations between these software entities are represented
as edges between the according nodes.

Modern software systems are very complex and consist
of thousands of entities and millions of lines of code. If the
graph visualization presents the complete graph, the user is
swamped and is not able to extract the information he/she
is looking for. Thus, the presented data has to be filtered
to views of the complete graph, whereby the user should
decide what information is essential. Therefore, the hierar-
chical structure of the data can be exploited by aggregating
parts of the software system to entities of higher levels in
the hierarchy. The challenging task is to represent these ag-
gregated parts without losing information of their contained
structure and complexity.

In the following Section 3.1 we present the interaction
scheme for handling complex hierarchical graphs, and in-
troduce an approach for the visual representation of aggre-
gated parts of the graph based on treemaps. In Section 3.2
we describe the graph layout method that is used for our
visualization, including their properties. In Section 3.3 we
introduce an adaption of conventional rectangular treemap
layout algorithms for handling convex polygonal bounding
geometries. In Section 3.4 we present an extension of the
visual representation of hierarchical graphs using implicit
surfaces. Results for software visualizations created with
our techniques are shown in Section 3.5.

3.1 An Interaction and Representation Scheme
for Hierarchical Graphs

The starting point for the user of our visualization of the
software system as a hierarchical graph, is the representa-
tion of the complete system solely by the root node of the
graph as its simplest view. In the next step the user expands
this view by expanding the root node into its child nodes at
the first hierarchy level that are related to the child entities
of the root entity in the software system. The user analyzes
the relations between the entities and further explores the
dependencies in other views by expanding the nodes that
represent the entities he/she is interested in. Complemen-
tary to the expansion step, it is also possible to collapse
parts of the presented directed graph to entities at higher
hierarchy levels. With this interaction scheme between dif-
ferent views of the same graph, the user is able to reduce the
amount of presented information with regard to his analysis

task, and to stepwise explore the relations within the soft-
ware system.

To provide an insight into the aggregated parts of the
software system that are each represented just by a single
node in the view of the graph, these graph nodes are not only
represented as simple geometric shapes, but rather visual-
ized as treemaps. Each treemap representation of a graph
node is generated according to the hierarchical structure of
the represented aggregated part of the software system. The
size of an entity in the treemap is related to the number of its
connected relations. This enables the illustration of the in-
ternal structure of the aggregated parts of the software sys-
tem, and the identification of the degree of connectivity of
each aggregated entity simultaneously. For our treemap lay-
outs we use the approach of Squarified treemaps [6], which
sorts the nodes in the treemap by their sizes allowing a fast
detection of entities with a high degree of connectivity.

Figure 4 exemplifies this interaction and representation
scheme by an elementary data set. The first view shows
a single treemap within a quad that represents the root
package of the software system and reveals the hierarchical
structure of all contained packages and classes. Large en-
tities in the treemap indicate a high degree of connectivity.
In the next step this root package is expanded to the con-
tained two child packages, which each again visualizes its
hierarchical structure of the contained entities by a treemap.
In steps three and four these two packages are expanded as
well, finally revealing all classes of the software system that
are represented by circles.

Figure 4. Stepwise exploration of a hierar-
chical graph—aggregated nodes are repre-
sented as treemaps illustrating their con-
tained structure; the size of the entities in-
dicate their degree of connectivity



3.2 Hierarchical Graph Layouts

The essential requirement for graph-based software vi-
sualizations is the generation of meaningful graph lay-
outs. Existing visualizations present two-dimensional as
well as three-dimensional graph layouts. The results
of empirical studies that compare the effectiveness of
two-dimensional and three-dimensional graph layouts are
mixed: In some studies, 3D visualizations outperformed 2D
visualizations [18], other studies yielded the opposite re-
sult [19]. In our experience with 3D layouts of large graphs,
individual objects are often occluded and therefore barely
recognizable, also orientation is often intricate. For this rea-
son, we are using two-dimensional graph layouts to avoid
visual clutter and to better preserve the user’s mental map.

The quality of graph layouts is directly related to the
properties of the used energy model and its appropriate-
ness for a given visualization task. For our visualization
we adapted the energy model of Noack and Lewerentz [12]
that was developed particularly for software visualization.
This model has several advantages: Firstly, it offers three
parameters (clustering, hierarchicalness, distortion) to in-
fluence the characteristics of the layouts, whereby each pa-
rameter has a clear interpretation. Especially the variable
degree of hierarchicalness allows to directly influence the
importance of the hierarchical structure versus the impor-
tance of the relations in the generated layouts. Secondly,
the node sizes in the graph layout directly correspond to the
number of connected edges of or within each node. Thereby
these node sizes are not independent of the graph layout, but
they are rather directly related to a repulsion force for each
node, which results in energy minimized layouts without
any overlapping of the nodes. Thirdly, clusters are clearly
separated in the energy minimized layouts.

To generate layouts with minimized energy values, we
use an enhancement of the Barnes-Hut algorithm [3] by
Quigley and Eades [14]. The combination of the energy
model and this minimization algorithm allows us to gener-
ate our layouts at interactive rates.

3.3 Rectangular Treemap Layouts for Convex
Polygonal Bounding Shapes

Software systems contain different types of entities, and
relations often occur between these different entity types.
Thus, the graph nodes have to be represented differently for
each entity type. Here it is most appropriate to use well-
defined geometric shapes. These shapes are also the bound-
ing geometries for our treemap representations of the aggre-
gated nodes, which implies that we need a method for gen-
erating treemap layouts within diverse shapes. One possi-
bility is to use Voronoi treemaps [2], which enable treemap
layouts within arbitrary polygons. However, this method

is not appropriate for our interactive visualization task be-
cause of its time expensive computation. Instead we adapt
the existing rectangle-based treemap layouts to a larger set
of bounding geometries.

The principle mechanism of all rectangle-based treemap
algorithms is to split a given area into two subareas by a
straight horizontal or vertical line according to a given ra-
tio between the subarea sizes. To achieve this, we have to
restrict the bounding geometries to convex polygons, since
the split of non-convex polygons may result in more than
two subareas. This restriction is acceptable as the set of
convex polygons offers a sufficient number of distinguish-
able shapes.

The horizontal or vertical split of rectangles is trivial. For
the split of arbitrary convex polygons, we first have to find
the trapezoid in which the split occurs. We use a scan line
parallel to the splitting direction that allows us to test for
each vertex in the polygon whether the split occurs before
or after the current scan line position. If the split has to oc-
cur before the current position, we determine the trapezoid
formed by the scan lines at the current and the foregoing
position, and the edge segments of the initial polygon that
are positioned between these two scan line positions. Then
the exact split of this trapezoid is calculated. This split al-
gorithm is applicable to all treemap layout algorithms based
on rectangles.

This procedure is further illustrated by Figure 5: The
given polygon ABCDE has to be horizontally subdivided
into two polygons p1 and p2 according to their desired area
sizes. The two vertices between which the split occurs have
to be found. These two vertices B and D and the corre-
sponding two vertices at the opposite side of the polygon
H1 and H2 form a trapezoid. The split points S1 and S2

are computed within this trapezoid, which is mathemati-
cally trivial.

Figure 5. Example for a horizontal split oper-
ation of a convex polygon used for the subdi-
vision step in treemap layouts



3.4 Implicit Surfaces for Visual Graph Clustering

The representation of the hierarchical structure of nodes
in a hierarchical graph is rather difficult, because of the dis-
tortion originated by the relations between different parts of
the hierarchy. An obvious and appropriate method for our
software visualization is to color each node by its member-
ship in a package, which means that each package and its
contained entities are assigned to an individual color. Nev-
ertheless, it is difficult to locate all entities that are contained
in a specific package due to the distortion of the graph. To
further support the user, we additionally implemented a vi-
sual clustering technique based on implicit surfaces [4] fol-
lowing the approach presented in [9]. We generate a two-
dimensional implicit surface for each package in the graph
that encloses all nodes that represent entities of this package
with a color similar to the color of the package. The advan-
tage of this implicit surface technique in comparison with
the usage of simple boxes or circles, is that the areas highly
adapt their shape to the distribution of the nodes resulting
in an individual characteristic shape for each cluster. These
shapes may also be made up of two or three independent
areas for each cluster, which is a meaningful indication of
the disruption of the according package.

3.5 Results

Finally, we present three exemplary results of our vi-
sualization: Figure 6 presents the complete call graph be-
tween classes of two main packages of the software system
‘JFree’. In Figure 7 the involved entities of unwanted write
accesses of attributes between two packages in ‘JFree’ are
worked out, whereby uninvolved entities are aggregated.
Figure 8 visualizes the inheritance relations between the top
level packages of the ‘Java Development Kit 1.4.2’.

Nodes in the graph visualization that represent packages
are drawn as quads, classes as circles, methods as triangles,
and attributes as diamonds. The color of a node represents
its package membership. The direction of an edge is indi-
cated by a gradient from dark to bright. The width of an
edges indicates the number of represented relations.

4 Conclusion

We presented a new interaction and representation
scheme for the visualization and exploration of complex
hierarchical graphs to analyze relations within software
systems. Thereby aggregated parts of the software sys-
tem are represented as treemaps that visualize the struc-
ture of the contained software entities. To adapt exist-
ing rectangle-based treemap layout algorithms to convex
polygonal bounding geometries, we introduced an alterna-
tive method for the horizontal and vertical subdivision of

Figure 6. Call graph between classes of two
main packages of the software system ‘JFree’

convex polygons. This method allows the usage of differ-
ently shaped treemap bounding geometries in order to dif-
ferentiate between the entity types in the hierarchical graph.
Furthermore, we implemented a visual clustering based on
implicit surfaces to create meaningful visualizations of dis-
torted hierarchical graphs.

The presented techniques enable the stepwise explo-
ration of relationships such as inheritances, method calls
or attribute accesses even within complex software systems.
The user driven generation of views of a software system al-
lows to work out single dependencies of entities or subsys-
tems of the software as well as to create overviews of the
relations within the complete software system or its parts.
With these views, it is possible to validate the architecture,
to identify problem areas, and to analyze reengineering al-
ternatives.



Figure 7. Entites that are involved in unwanted write accesses between two packages in ‘JFree’

Figure 8. Inheritance relations between the
top level packages of the ‘JDK 1.4.2’

References

[1] M. Balzer and O. Deussen. Voronoi treemaps. In Proceed-
ings of the IEEE Symposium on Information Visualization.
IEEE Computer Society, 2005.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps
for the visualization of software metrics. In Proceedings of
the 2005 ACM symposium on Software Visualization, pages
165–172. ACM Press, 2005.

[3] J. Barnes and P. Hut. A hierarchical O(NlogN) force-
calculation algorithm. Nature, 324(4):446–449, Dec. 1986.

[4] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, 1982.

[5] U. Brandes. Drawing on physical analogies. In M. Kauf-
mann and D. Wagner, editors, Drawing Graphs: Methods
and Models, pages 71–86. Springer-Verlag, Berlin, 2001.

[6] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified
treemaps. In Proceedings of the Joint Eurographics and
IEEE TCVG Symposium on Visualization, pages 33–42.
IEEE Computer Society, 2000.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, 1999.

[8] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. A. Müller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, 1997.

[9] M. Gross, T. C. Sprenger, and J. Finger. Visualizing in-
formation on a sphere. In Proceedings of IEEE Informa-
tion Visualization ’97, pages 11–16. IEEE Computer Soci-
ety, 1997.

[10] B. Johnson and B. Shneiderman. Tree maps: A space-
filling approach to the visualization of hierarchical infor-
mation structures. In Proceedings of the 2nd International
IEEE Visualization Conference, pages 284–291. IEEE Com-
puter Society, 1991.

[11] C. Lewerentz and A. Noack. CrocoCosmos – 3d visualiza-
tion of large object-oriented programs. In M. Jünger and
P. Mutzel, editors, Graph Drawing Software, pages 279–
297. Springer-Verlag, 2003.

[12] A. Noack and C. Lewerentz. A space of layout styles for
hierarchical graph models of software systems. In Proceed-
ings of the 2005 ACM symposium on Software Visualization,
pages 155–164. ACM Press, 2005.

[13] A. Orso, J. A. Jones, and M. J. Harrold. Visualization of
program-execution data for deployed software. In Proceed-
ings ACM 2003 Symposium on Software Visualization, pages
67–76. ACM Press, 2003.

[14] A. J. Quigley and P. Eades. FADE: Graph drawing, cluster-
ing and visual abstraction. In Proceedings of The Eighth In-
ternational Symposium on Graph Drawing, pages 197–210.
Springer-Verlag, 2000.

[15] S. P. Reiss. An engine for the 3d visualization of program
information. Journal of Visual Languages and Computing,
6(3):299–323, 1995.

[16] B. Shneiderman and M. Wattenberg. Ordered treemap lay-
outs. In Proceedings of the IEEE Symposium on Information
Visualization, pages 73–78. IEEE Computer Society, 2001.

[17] M.-A. Storey and H. A. Müller. Manipulating and docu-
menting software structures using SHriMP views. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 275–284. IEEE Computer Society, 1995.

[18] C. Ware and G. Franck. Evaluating stereo and motion cues
for visualizing information nets in three dimensions. ACM
Transactions on Graphics, 15(2):121–140, 1996.

[19] U. Wiss and D. A. Carr. An empirical study of task sup-
port in 3d information visualizations. In Proceedings of the
International Conference on Information Visualisation (IV),
pages 392–399. IEEE Computer Society, 1999.


	Text74: First publ. in: Proceedings / IEEE International Workshop on Visualizing Software for Understanding and Analysis (VisSoft), 2005, pp. 89-94
	Text77: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2007/2719/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27194


