

MosaiCode: Visualizing Large Scale Software
A Tool Demonstration

Jonathan I. Maletic1, Daniel J. Mosora1, Christian D. Newman1,
Michael L. Collard2, Andrew Sutton3, Brian P. Robinson4

1Department of
Computer Science

Kent State University
Kent, Ohio, USA

{jmaletic, dmosora,
cnewman}@kent.edu

2Department of
Computer Science

The University of Akron
Akron, Ohio, USA

collard@uakron.edu

3Dept. of Computer
Science & Engineering

Texas A&M
College Station, Texas
asutton@cse.tamu.edu

4ABB Corporate
Research

Raleigh, NC, USA
brian.p.robinson@

us.abb.com

Abstract—A software visualization tool called MosaiCode is
introduced and described. MosaiCode uses a Seesoft metaphor to
support the visualization and understanding of various
characteristics for large scale software systems. A usage scenario
is given to demonstrate the tool.

Keywords: software visualization, seesoft, maintenance

I. INTRODUCTION
Project managers and system architects often need to

examine and explore a software system for evidence of code
churn and hotspots. These are typically good indicators of a
need to refactor a part of the code or, minimally, determine
what is causing the behavior. Managers and architects also
need to understand the impact of a proposed change or new
feature in order to assess the risk and cost of such
enhancements. Both of these tasks are difficult to undertake
because of the large amount of data (source code) that needs to
be visualized and explored.

Here we present a tool, MosaiCode, which supports
multiple coordinated views of large software systems. It
leverages one of the most successful and well-known software
visualization metaphors, namely that of SeeSoft [1], which was
proposed by Eick in the early 90’s. The metaphor is successful
mainly due to its direct mapping from the visual metaphor back
to the source code (or data). This leads to natural navigation of
the representation. It makes the visualization easy to
understand for programmers, managers, and architects. Color
and pixel maps are used to represent physical software
concepts such as lines of code, functions, files, and subsystems.
The metaphor is 2D and is fairly scalable.

We take advantage of this metaphor and incorporate other
coordinated views to assist in navigation and understanding of
the visualization. Additionally, drill down and abstraction
mechanisms are utilized for this same end.

In this presentation, we introduce the tool and many of its
features. A description of usage scenarios is given in the
context of problems we have addressed at ABB Inc. (A large
international engineering firm). The demonstration involves
using software data from ABB projects to address the types of
maintenance tasks mentioned previously.

II. MOSAICODE
MosaiCode consists of multiple coordinated views with

controls to allow users to easily traverse large amounts of data.
A screenshot of the tool is given in Figure 1. The views
include the Mosaic, Container, and Summary views. The
mosaic view, Figure 1 (A), displays the system as a whole with
the primary SeeSoft [1] metaphor visualization. The entities
are displayed as tiles and arranged into containers. These tile
boxes are arranged as rectangles with a golden ratio of
approximately 0.62. The container view, Figure 1 (B), shows
the hierarchical structure in the form of a file system tree layout
and is based on a path attribute in the data set. The summary
view, Figure 1 (C), is a histogram showing the amount of each
colored tile (characteristic) present in the current version of the
selected container. This also indicates the range covered by the
different colors. More detailed information about a selected
attribute is given in a tooltip, with the full path and the current
numeric value of this attribute, and in the Entity View, Figure 1
(D), which displays the rest of the attributes and their values.

In MosaiCode, the visualization and data generation are
separate for maximum flexibility. Data for visualization is
created separately by analysis tools and then converted into a
XML or CSV format for input to the tool. The data formats are
generic to allow for display of different types of data, not just
that of source-code files. The XML format is based on the data
format for the sv3d tool [2] and primarily consists of containers
and entities, e.g., directories and files. Containers form a list
and are not arranged hierarchically in the input data for
maximum flexibility of display in the tool. For each entity, a
set of attributes is given with a value. The attributes may have
numeric or textual values. Numeric-valued attributes are
displayed visually and textual attributes are only used for
context in the Entity View. Each container and entity has an
attribute name used to form the hierarchical arrangement of the
entities. The CSV format only requires a header line for the
names of the attribute fields, which each row corresponding to
an entity. Since the attribute name may not exist, the user is
given the choice of which field to use for this attribute.

A. Architecture & Implementation
Visualization with MosaiCode follows a four-step process

before control is passed to the user. This involves loading the
XML or CSV input, parsing the data, analyzing and

summarizing the data, and building the UI components for
exploration. Parsing occurs on the input data and the raw
attribute values are recorded. In the analysis and summary
steps, the tool determines a few common statistics of each
attribute and establishes a threshold for clipping extreme
outliers in the data set. Once the analysis is complete, the
exploration of the data using the visualization can begin. We
will now describe each view of the visualization in more detail.

B. Multiple coordinated views
The Mosaic View, Figure 1 (A), shows the entity nodes

(visualized as tiles in the mosaic) logically grouped by top-
level containers in the hierarchy and arranged and drawn as
rectangular boxes. Selection of what numeric attribute is being
displayed is controlled in the toolbar. The number of divisions
of data (i.e., the number of colors) and the tile size is also
controlled by the toolbar. The full path of an attribute, along
with the numeric value of the current attribute, is available for
each entity via a tooltip. Traversal of the hierarchy is made
available visually through the use of a drill down/roll up
functionality between hierarchical levels. The user may
double-click on a container for drill down, and double-click on
blank areas to roll up. In addition, during drill down the
container can be opened for display in another tab. Individual
containers can also be selected, which ties into other views.
Additionally, it is possible to remove unwanted clutter in the
mosaic view without drilling down by disabling and enabling
entities from within the tree view.

The Container View, Figure 1 (B), shows the hierarchical
structure of the data that comes from the name field. It allows
for quick searching over the entire data set. If the user is
looking for one specific file, then the hierarchy view will allow
them to find the file by name. It will then allow the user to
enable or disable the entity or container that the file is
associated with or enable/disable other entities and containers
in order to view specifically the entity they originally searched
for. Furthermore, when an item is selected in the hierarchical
tree view, it may be highlighted temporarily in the mosaic by
holding down the Shift key. This is to aid in locating a certain
container or entity among the large amount of data.

C. Summary Views
The Summary View, Figure 1 (C), shows common

summary statistics calculated for each attribute. Values
calculated during the analysis phase help determine the upper
threshold of clipping outlier data points and the appearance of
the summary histogram, and include the minimum, maximum,
mean, median, range, and standard deviation. The tool
compresses the data set using a natural logarithm and then uses
the standard deviation of each attribute to detect extreme
outlier data points and set a visualization threshold. This
threshold is valued at three times the standard deviation from
the median for that specific attribute and version.

Figure 1 The MosaiCode tool consists of the primary Mosaic visualization (A) with multiple tabs for additional views of the same data
set, the Item Selection (B) which selects what entities are shown in the Mosaic, and a Summary View (C) showing a histogram of the

data currently shown in the Mosaic. For more specific data on an entity, the tooltip shows the full path and the value of the currently
selected attribute, while additional attributes are shown in the Entity View (D). From left to right, the toolbar (E) allows for choice of

displayed attribute, display characteristics, and control for the display of multi-version data.

D. Entity Information
The Entity Information View, Figure 1 (D), provides a

fine-grained look into the data that determines the color that an
entity assumes on the mosaic. It lists the attributes and their
values for the currently selected entity in the mosaic. It also
colors these attribute names in order to make it easy for the
user to understand the state of the attribute. When a user
clicks on an attribute within the Entity Information View, the
mosaic automatically switches to that attribute.

E. Support for Historical Data
The tool supports multiple versions of each attribute and

provides media-player style control buttons to switch between
different versions. This allows the user to understand how the
attributes have changed over the development of a software
package. Furthermore, the impact of changes can be
interpreted and communicated more easily when alternating the
visualization between two versions. An example of viewing
two different versions of data is given in Figure 2.

For the XML input, the historical values for each attribute
are stored as bar (‘|’) separated values. The result is that the
data for multiple versions has the same number of XML
containers, entities, and attributes as a single-data version. The
root XML element also contains an attribute version that uses
the same attribute format to store descriptive names for each
version, e.g., a timestamp or revision number. For CSV data,
an additional field is used to store the name for each version,
and each entity is repeated for each version. This allowed a
simpler conversion process for CSV data. With multiple
versions, the specific set of entities in each version of the input
data may not be the same. Thus, it is able to reflect the
addition or deletion of entities.

Once in MosaiCode, the particular version of interest can
be selected using the controls in the toolbar, Figure 1 (E). The
name of each version is displayed for context. Multi-version
data can be animated to visually indicate growth of a particular
point of interest, playback can be customized to loop and adjust

the delay between version switching. As versions are displayed

in the Mosaic View, the Summary View is also updated to the
particular version.

F. Import/Export of Data
As mentioned previously, MosaiCode is able to import

both XML and CSV file formats. It may also export to either
format. This allows the user to directly take the data from
their tool as CSV, import it into MosaiCode choosing which
field to use for the name, and exporting the file to XML for
future uses or conversely, to import from XML and export as
CSV for use by additional analysis tools. Importing uses a
SAX parser for XML because of its speed and generally low
memory requirements. For exporting data, MosaiCode allows
the user the option of either exporting the entire dataset, or a
subset of the data. This allows for saving the particular area of
interest for future visualizations.

G. Implementation
The tool was developed in C++ using Qt (qt.nokia.com).

Qt provides the graphical and XML parsing tools needed. The
tool is available for Windows, Linux, and OS X.

III. DEMONSTRATING MOSAICODE
The original motivation and support for the construction of

MosaiCode was to support software maintenance tasks by ABB
Inc. We use what was learned from the application of
MosaiCode at ABB for the tool demonstration examples. ABB
has used the tool to support two different software engineering
activities.

First, project managers and software architects have used
the tool to visualize data on code hot spots. That is, what are
areas of the code with high code churn or high defect counts.
These parts of the code are then prioritized for improvement in
future releases. Before using the tool, managers could not
readily use the hot spot information, as it was just a large .csv
file. After deployment, management can now actively look at
the results and are using it to visualize weekly churn data in
ongoing development projects.

Figure 2 The MosaiCode tool supports multiple versions of the data. On the left is version 0.3 and on the right is version 1.0. The user can
move between versions, or play them as part of an animation.

For this type of activity, managers/architects start with the
output of their analysis tools in CSV format. With MosaiCode,
they input the data choosing the field to use for the entity name.
Once loaded, the entire mosaic is shown with the
corresponding summary. The particular attribute of interest is
then chosen. Additional tabs can be created to show more
detailed views of specific directories. The context of specific
value ranges is viewed in the summary. As
managers/architects are exploring, particular entities are
selected and viewed with the tooltip and with the entity
information. In addition, the entity information can be used to
turn the display to another attribute. For example, for the
attribute complexity of a specific entity they may observe that
the number of changes attribute is high and use that to turn the
entire visualization. If the data has multiple versions, then they
can quickly move through the data to see where the attributes
values start to change. Once finished exploring, the original
CSV data can be exported to XML for later presentation. This
can be all of the original data or a subset consisting of only the
particular subsystem and versions of interest.

To properly address this usage scenario, the visualization of
large amounts of data is necessary. In some cases for ABB, up
to 130,000 entities in over 100,000 containers are used. For
data with lower amounts of entities, up to 61 attributes were
included. While much of this is metric data, there is also quite
a bit of textual data needed for context. For this data, the files
size can often be over 40MB in the XML format, and 13 MB in
the equivalent CSV format.

Developers and release managers also use the tool to
visualize the impact that a change has on other parts of the
software. This impact is calculated by a tool called Imp [3],
which outputs raw results in a CSV file. When we first showed
the raw results to developers, they were not using the data due
to the complexity and size of the output file. Once the data was
visualized with the tool, they started to use it to determine the
magnitude of the risk of including late bug fixes into releases,
as well as determining which areas to regression test due to
code changes.

IV. RELATED WORK
The design of MosaiCode is largely motivated by the

Seesoft application [1]. They both address the same
requirement: visualizing a large volume of source code data in
a single view. This can be done using Seesoft by minimizing a
line of code to either a line of pixels or a single pixel [4]. The
idiom has also been extended to 3 dimensions to support even
greater dimensionality [2] in the tool sv3D.

The Seesoft idioms are used to visualize source code
information to support a diverse set of engineering tasks.
AspectBrowser uses the line view to display aspect dispersion
[5]. Tarantula uses the same technique to visualize fault
information from test cases for each line of code in a file [6].
An adapted version of the pixel view supports the detection of
duplicated code by line using Duploc [7] and by token using
CCFinder [8]. The idiom has also been exploited to visualize
metrics supporting parallelization using SUIF’s CodeViewer
[9] and distributed collaboration using Augur [10].

V. CONCLUSIONS & FUTURE WORK
The experience of using MosaiCode with industrial data

from ABB greatly influenced the design of the tool. The direct
use of the output data from the various analysis tools used by
ABB led to a need for more flexibility in the input format. This
is what led to the CSV import feature, the associated
interaction with the user, and the export features. As can be
seen with the ABB examples, scalability was, and continues to
be, a major concern with the tool. All parts of the tool, from
the input of the data to the graphics, were tuned to support both
the large amount of data to store, and the speed and
interactivity of the display. We continue to look at ways of
improving both of these aspects.

We plan to add and improve filtering options to assist in
exploring the visualization. Also, we are working on improved
layouts and groups of the mosaic in coordination with a
hierarchical view.

ACKNOWLEDGMENT
This work was supported in part by funding from ABB Inc.

Additionally, it was supported in part by a grant from the U.S.
National Science Foundation under NSF grant CCF 08-11-21.

REFERENCES
[1] S. G. Eick, J. L. Steffen, and E. E. J. Sumner, "Seesoft--A Tool for

Visualizing Line Oriented Software Statistics," IEEE Transactions on
Software Engineering, vol. 18, pp. 957-968, Nov 1992.

[2] A. Marcus, L. Feng, and J. I. Maletic, "3D Representations for Software
Visualization," presented at the 2003 ACM Symposium on Software
Visualization (SoftVis'03), San Diego, California, 2003.

[3] M. Acharya and B. Robinson, "Practical change impact analysis based
on static program slicing for industrial software systems," in 33rd
International Conference on Software Engineering, Waikiki, Honolulu ,
HI, USA, 2011, pp. 746-755.

[4] T. Ball and S. G. Eick, "Software Visualization in the Large," Computer,
vol. 29, pp. 33-43, Apr 1996.

[5] W. G. Griswold, K. Y. Yoshikiyo, and J. J. Yuan, "AspectBrowser: Tool
Support for Managing Dispersed Aspects," presented at the 1st
Workshop on Multi-Dimensional Separation of Concerns in Object-
Oriented Systems, Denver, Colorado, 1999.

[6] J. A. Jones, M. J. Harrold, and J. Stasko, "Visualization of Test
Information to Assist Fault Localization," presented at the 24th
International Conference on Software Engineering, Orlando, Florida,
2002.

[7] S. Ducasse, M. Rieger, and S. Demeyer, "A Language Independent
Approach for Detecting Duplicated Code," presented at the 15th
International Conference on Software Engineering (ICSM'99), Oxford,
England, 1999.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code," IEEE Transactions on Software Engineering, vol. 28, pp. 654-
670, Jul, 2002 2002.

[9] S.-W. Liao, A. Diwan, R. P. J. Bosch, A. Ghuloum, and M. S. Lam,
"SUIF Explorer: An Interactive and Interprocedural Parallelizer,"
presented at the 7th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Atlanta, Georgia, 1999.

[10] J. Froehlich and P. Dourish, "Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development Teams," presented at
the 26th International Conference on Software Engineering (ICSE'26),
Edinburgh, United Kingdom, 2006.

