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Abstract

Building architects, but also civil or mechanical engineers often build from their
designs physical 3D models for a better presentation, comprehension, and communi-
cation among stakeholders. Software engineers usually create visualizations of their
software designs as digital objects to be presented on a screen only. 3D software visu-
alization metaphors, such as the software city metaphor, provide a basis for exporting
those on-screen software visualizations into physical models. This can be achieved by
3D-printers to transfer the advantages of real, physical, tangible architecture models
from traditional engineering disciplines to software engineering.

We present a new research perspective of using physical models to support
software engineering. Furthermore, we describe four envisioned usage scenarios for
physical models which provide a plethora of new research topics. As proof of concept,
we investigate the first usage scenario by evaluating the impact of using physical
models on program comprehension in teams through a first controlled experiment.

Our experiment reveals that the usage of physical models has a diverging influence.
However, they improve the team-based program comprehension process for specific
tasks by initiating gesture-based interaction. Therefore, the experiment shows that
physical models can provide a promising future research direction.



1 Introduction

As stated by [Ball and Eick 1996] in 1996, “software is intangible, having no physical
shape or size.” However, effective program comprehension requires abstractions
from source code in larger projects. To overcome this challenge, many software
visualization techniques exist. Such software visualizations often rely on metaphors,
such as the 3D software city metaphor [Knight and Munro 2000].

Although 3D visualizations can deliver more information compared to 2D vi-
sualizations due to its further dimension, it is often difficult for users to navigate
in 3D spaces using a 2D screen and a 2D input device [Teyseyre and Campo 2009].
As a consequence, users may get disoriented [Herndon et al. 1994] and thus the
advantages of the third dimension may be abolished.

One solution candidate for the navigation issue is Virtual Reality (VR). It provides
benefits via stereoscopy in combination with specialized hardware [Ware et al. 1993;
Ware and Mitchell 2005]. However, it relies on — sometimes expensive — extra
equipment which has to be purchased and might not function in every environment.

Traditional engineering disciplines overcome these issues by building physical 3D
models. Beneath resolving navigation issues, the physical models are used for better
presentation, comprehension, and communication among stakeholders.

In this paper, we present a new research perspective to transfer these advantages
to software engineering by building physical models following the 3D software city
metaphor through 3D-printing. Furthermore, we describe four envisioned, potential
usage scenarios for physical models and formulate possible research questions. To the
best of our knowledge, we are the first to envision and create such physical models
of software visualizations.

As a proof of concept to show the potential of using physical models, we conduct
a first controlled experiment for our first envisioned usage scenario, i.e., in the con-
text of program comprehension. Gestures support in thinking and communication
processes [Goldin-Meadow 2005] and thus can enhance program comprehension in
groups. We hypothesize that physical models support in gesticulation. In our experi-
ment, we compare the usage of an on-screen model to the usage of a physical model
for program comprehension in small teams (pairs). To facilitate the verifiability and
reproducibility of our results, we provide a package [Fittkau et al. 2015] containing all
our experimental data including the raw data and 112 recordings of the participant
sessions.



In summary, our main contributions are:

1. a new research perspective to transfer the advantages of physical models to
software engineering through 3D-printing,

2. four envisioned usage scenarios for physical models, and

3. the reusable design and execution with 56 teams of a controlled experiment
comparing the usage of an on-screen model to the usage of a physical model in
typical program comprehension tasks.

The remainder of this paper is organized as follows. The envisioned usage scenarios
and possible research questions for physical models are described in Section 2. Then,
Section 3 introduces our virtual models and how we create physical models of them.
Section 4 presents a first controlled experiment to evaluate the impact of using
physical models for program comprehension. Related work is discussed in Section 5.
Finally, we draw the conclusions and illustrate further future work in Section 6.

2 Envisioned Usage Scenarios

Physical models provide a plethora of future research possibilities. We envision
several potential usage scenarios for physical models which we will outline in the
following and propose selected research questions.

2.1 Program Comprehension in Teams

Gestures support in thinking and communication processes [Goldin-Meadow 2005].
Since physical models are more accessible than 2D screens and provide a natural
interaction possibility, they might increase the gesticulation of users. This might lead
to faster and better understanding when applied in a team-based program compre-
hension scenario due to its supporting nature. Furthermore, the advantages might
increase when applied in larger teams. Since software systems are often changing,
the model should only be printed for special occasions, e.g., a new developer team or
upcoming major refactorings.

Potential Research Questions

In which scenarios/tasks do physical models provide benefits? Does the additional
usage of physical models provide advantages compared to sole on-screen tooling?
How large is the impact of gesticulation on correctness and time spent in team-based
program comprehension tasks?



2.2  Educational Visualization

2.2 Educational Visualization

A further usage scenario is the usage of 3D models for educational purposes. Like
an anatomic skeleton model used in a biology course, 3D models of design patterns,
architectural styles, or reference architectures could be 3D-printed. Advantages
include the possibly increased interest of the students and due to a 3D visualization
and the possibility to touch the model, there might be a higher chance to remain in
memory. Further interaction possibilities, e.g., plugging mechanisms, with the 3D
model could be developed to support the learning process of the students.

Potential Research Questions

Which software visualization metaphor provides the best basis for representing design
patterns? How large is the impact of using physical models for educational purposes?
How to display the dynamic behavior in physical models which is often defined by a
design pattern?

2.3 Effort Visualization in Customer Dialog

A further potential field of application are dialogs with customers. Customers often
see the GUI as the program since the actual program logic code is often invisible for
them. Therefore, the — possible large — effort to add a feature or to refactor the code
is also often invisible for them. Presenting a physical 3D model of the status quo
and another physical 3D model of the desired state, might convince the customer of
the effort of the required change. This could also be achieved with two on-screen
software visualizations but a touchable and solid 3D model might provide higher
conviction.

Potential Research Questions

Do customers accept physical models to show the effort? Does the usage of physical
models increase the conviction of effort in a customer dialog? How much impact
does a physical model provide in this process (e.g., measured in amount of money
for the effort)?

2.4 Saving Digital Heritage

We envision physical models to be a step toward saving the digital heritage of
software visualizations. Compared to programs, physical models do not depend on
the availability of SDKSs, library versions, or hardware and thus are less vulnerable



to changes of external environment. Often it is uncertain, if the code can still be
run in thirty years. In contrast, depending on the material (e.g., resin or metal),
physical models might last hundreds of years. One might argue that pictures of the
visualizations are sufficient. However, they do not provide interaction possibilities
and can suffer from occlusion. Contrary, physical models still provide the possibility
to interact (e.g., rotate) avoiding possible occlusion.

Potential Research Questions

How to provide an omni accessible archive for physical models? How to convert 2D
software visualizations to 3D physical models?

3 From Virtual to Physical Models

3.1 Our Virtual Models in a Nutshell

This section briefly introduces our web-based ExplorViz! visualization which provides
the 3D model data for 3D-printing and forms the basis for our controlled experiment.

Figure 1 displays our application-level perspective utilizing the city metaphor.
Compared with previous publications [Fittkau et al. 2013], we changed the on-
screen visualization to investigate the impact of physical models. These changes
are described in Section 4. The visualization is constructed from an execution
trace of PMD? used as the object system in our controlled experiment. The flat
green platforms (@) in our visualization represent packages showing their contained
elements. The green boxes on the top layer are packages (@) hiding their internal
details. The two green tones serve to differentiate the hierarchy levels. Classes are
visualized by purple boxes (®). The height of classes maps to the active instance
count. The layout is a modified version of the layout used in CodeCity [Wettel 2010].
The user can rotate, pan, and zoom the visualized model.

3.2 Creating Physical 3D-Printed Models

After creating the on-screen model in ExplorViz by monitoring a PMD run, we
exported the model as an OpenSCAD? script file. To fit the build platform of our
low-budget 3D-printer (a Prusa i3), we split the exported model into twelve jigsaw

1h’rtp: / /www.explorviz.net
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Figure 1. On-screen, web-based application-level perspective of ExplorViz visualizing PMD

pieces and exported these as STL* files as input for the 3D-printer. After printing each
piece, we glued them together. The fully assembled physical PMD model is 334 mm
wide and 354 mm deep. At last, we manually painted the single-colored model. The
overall building time of the physical PMD model sums up to 58 hours and the costs
of material are about 9€ on our low-budget, self-built, and rather slow 3D-printer.
On a modern multi-color printer, 3D-printing the model would take only a small
fraction of the building time (i.e., a few hours) and save several of the described
working steps.

4 Proof of Concept: First Evaluation for Program Com-
prehension
Beneath introducing physical models in this paper, we present a first evaluation

for the envisioned physical models as proof of concept. We compare the impact
of using either an on-screen model or a physical model to solve typical program

4http://www.ennex.com/—~fabbers/5tL.asp



Figure 2. Physical 3D-printed and manually painted city metaphor model of PMD (334 mm
wide and 354 mm deep)

comprehension tasks in a team-based scenario. As object system we use PMD and
measure the time spent and correctness for each task typically used in the context
of program comprehension [Rajlich and Cowan 1997]. Afterwards, we analyze the
employed strategies and possible differences between both groups.

Since we disabled some interaction possibilities of the on-screen model, the
comparison seems unfair at first sight. However, our goal of the evaluation is to
investigate if there is any difference in using physical models compared to on-screen
visualization. If we would not have disabled some interaction possibilities, we
would have tested for the current shortcomings of our physical model, rather than
investigating if physical models provide any benefits. Further experiments should
examine, for instance, if the combination of using a physical model and an on-screen
model compared to solely using an on-screen model provides further advantages.

We describe the design of our controlled experiment, its operation, data collection,
analysis, results, discussion, and threats to validity.



4.1 Experimental Design

4.1 Experimental Design

In addition to general software engineering experimentation guidelines [Kitchenham
et al. 2002; Jedlitschka and Pfahl 2005; Di Lucca and Di Penta 2006; Di Penta et al.
2007; Sensalire et al. 2009], we follow the experimental designs of Wettel et al. [Wettel
et al. 2011] and of Cornelissen et al. [Cornelissen et al. 2009]. Similar to them, we use
a between-subjects design. Thus, each subject only solves tasks with either using the
on-screen or the physical model. Following GOM [Basili and Weiss 1984], we define
the goal of our experiment as quantifying the impact of using either the on-screen or
the physical model for program comprehension.

We name the control group On-Screen Model and the experimental group Phys-
ical Model. Due to space constraints, we abbreviate the groups as On-Screen and
Physical in figures and tables. To circumvent confusion with the control group and
experimental group, we name each group of two participants (a pair) as a team and
not as a group.

4.1.1 Research Questions & Hypotheses

We define three research questions (RQ) for our defined goal:

> RQ1: What is the ratio between On-Screen Model and Physical Model in the time
required for completing
typical program comprehension tasks?

> RQ2: What is the ratio between On-Screen Model and Physical Model in the
correctness of solutions to typical program comprehension tasks?

> RQ3: Which typical program comprehension tasks benefit more from using the
on-screen model and which benefit more from using the physical model?

Accordingly, we formulate two hypotheses:

= H1 On-Screen Model and Physical Model require different times for completing
typical program comprehension tasks.

= H2 The correctness of solutions to typical program comprehension tasks differs
between On-Screen Model and Physical Model.

The null hypotheses H1p and H2, follow analogously. For RQ3, we conduct an
in-depth analysis of the results and analyze the recorded sessions of each team in
detail.



4.1 Experimental Design

4.1.2 Dependent and Independent Variables

The independent variable is the model employed for the program comprehension
tasks, i.e., on-screen model or physical model. We measured the accuracy (correctness)
and response time (time spent) as dependent variables. These are usually investigated
in the context of program comprehension [Wettel et al. 2011; Rajlich and Cowan 1997;
Cornelissen et al. 2009].

4.1.3 Treatment

The control group used the on-screen model to solve the given program comprehen-
sion tasks. The experimental group solved the tasks utilizing the physical model.

4.1.4 Tasks

We used the framework of Pacione et al. [Pacione et al. 2004] to create our task set.
The framework describes categories of typical program comprehension tasks.

We selected a medium to large-sized object system (PMD) for our experiment
since it provides a well designed software architecture. The function of PMD is
reporting rule violations on source code. Therefore, it takes source code and a rule
configuration as input parameters. To generate our city metaphor visualization of
PMD, we monitor the analysis run of PMD on a simple source code file (Simple.java
by Cornelissen et al.) and the default design.xml of PMD version 5.1.2. The resulting
model visualizes 279 used classes of PMD.

In Table 1, our defined tasks including their context and achievable maximum
points is displayed. Furthermore, the covered categories of the framework of [Pacione
et al. 2004] are shown. Due to space constraints, we refer to their paper for a detailed
explanation of the categories. To prevent guessing, all tasks were given as open
questions. Our task set starts with less complex tasks (identifying the class with the
most instances) and ends with a more complex design understanding task. This
enabled each team to get familiar with the model in the first tasks and raises the level
of complexity in each following task.

4.1.5 Population

The participants were students from the course “Software Engineering”. They re-
ceived one exercise point for successfully solving each task. For the weekly assigned
exercise points, they received bonus points for their exam at the end of the term. To
further motivate the participants for the experiment, they could win one of ten gift
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4.1 Experimental Design

Table 1. Description of the Program Comprehension Tasks for the experiment

ID

Category Description

Score

T1

A{3,5,6,8}

Context: Metric-Based Analysis

Find the package containing the one class having the most
instances in the application. How is the package named? How
many classes (and subpackages if existing) does it contain?
Please write down the full package path.

T2

Al6,8}

Context: Structural Understanding

What are the names of the three packages directly containing
the most classes (without their subpackages)? Please order your
answer by beginning with the package containing the most
classes and write down the full path.

T3

A{1,3,7}

Context: Concept Location
Assuming a good design, which package could contain the
Main class of the application? Give reasons for your answer.

T4

A{3,4}

Context: Structural Understanding

Which package name occurs the most in the application? In
addition, shortly describe the distribution of these packages
in the system. Hint: Have a look at the different levels of the
packages. There are exactly two types of distribution.

T5

A{1,2,3,9}

Context: Design Understanding

What is the purpose of the lang package and what can you
say about its content regarding PMD? Are there any special
packages? Do they differ by size? Ignore the xpath and dfa
packages and name three facts in your answer. Hint: Remember
the received paper about the introduction to PMD.

11



4.2 Operation

cards over 10 € for the sole participation and the best eight teams each received a gift
card over 20 €.

The teams were assigned to the control or experimental groups by random
assignment. To validate the equal distribution of experiences, we asked the teams to
perform a self-assessment on a 5-point Likert Scale [Likert 1932] ranging from 0 (no
experience) to 4 (expert with years of experience) before the experiment. The average
programming experience in the control group was 1.89 versus 1.8 in the experimental
group. The average software architecture experience was 1.11 in the control group
and 1.00 in the experimental group. Since the experience was self-assessed and both
values are within a close range, we assume that random assignment succeeded.

4.2 Operation

Next, the operation of our experiment is detailed.

4.2.1 Generating the Input

We generated the input for the control group directly from the execution of PMD.
ExplorViz persists its data model into files which act as a replay source during the
experiment. How we build the physical model from this on-screen model, was
already detailed in Section 3.

4.2.2 Tutorials

We provided automated tutorials for both groups of the experiment. This enhanced
the validity of our experiments by eliminating human influences. For the tutorial
system, we used a small mockup of Neo4] to make the teams familiar with the
visualization. For the control group, we integrated an interactive tutorial such that the
teams can directly test the functionality on-screen. As tutorial, the experimental group
received a physical tutorial model which can be seen in Figure 3. Their explanation
text was shown on a screen in addition to a photo of the model.

Both groups had the same explanation text for the tutorial except how the control
group could interact with the on-screen model, i.e., rotation, panning, and zooming.

4.2.3 Disabled Features of the On-Screen Model

To investigate the impact of physical models, we disabled some features in the on-
screen visualization. Otherwise, we would only have tested the current limitations of
the physical models.

12



4.2 Operation

Figure 3. Physical model of a mockup of Neo4] used during the tutorial

For the experiment, we hide class names and communication lines, since the
physical model cannot provide this information at the moment. In ExplorViz, classes
can be highlighted to see its communication. We also disabled this feature, since
the physical model does not provide such capabilities. The interactive opening and
closing of packages to show or hide their internal details is also disabled.

As ExplorViz provides a periodically updated live visualization, a further main
feature is time shifting. It is designed for analyzing specific situations of interest,
for instance, performance anomalies [Ehlers et al. 2011]. Since the physical model is
static and having multiple points in time would require multiple physical models, we
disabled this feature for our experiment.

Source code viewing is considered important [Koschke 2003]. Therefore, ExplorViz
provides the possibility to open a dialog that displays the source code for each class,
if available. Similarly to the previous features, we have disabled it for the experiments
due to its absence in the physical model.

4.2.4 Questionnaire

We utilize an electronic questionnaire for both experiment groups. An electronic
version provides three advantages over using sheets of paper for us. First, the teams

13



4.3 Data Collection

are forced to input valid answers for category fields, e.g., existing experience. Second,
manual digitalization can be error-prone in itself and we avoid this by direct electronic
capture. Lastly, the timings are automatically recorded for each task and thus time
cheating by the teams is impossible.

4.2.5 Pilot Study

Before the controlled experiment took place, we conducted a pilot study with four
experienced colleagues as participants forming two teams. The received feedback
helped us in improving the material. Furthermore, we added hints to the tasks which
were perceived as too difficult.

4.2.6 Procedure

Our experiment took place at the Kiel University. Each team had a single session of up
to one hour. Therefore, all teams used the same computer. The display resolution was
set to 1920 x 1200 and prior benchmarking had shown that ExplorViz runs smoothly
on this computer.

In order to have recordings of the conducted gesticulation, a Full HD camera
recorded all team sessions. At the beginning, the control and the experimental group
were told that the table is recorded such that only hands are visible on the video.
Furthermore, we explained them that their faces — if they came into the recording
area — get pixelated. Afterwards, each team received a sheet of paper containing
a short introduction to PMD and its features. They were given sufficient time for
reading before accessing the computer. After telling the teams that they can ask
questions at all times, a tutorial for the respective model was started and the Physical
Model group were given the physical tutorial model. Subsequently, the questionnaire
part was started with personal questions and experiences. Afterwards, the program
comprehension tasks begun and the experimental group were handed the physical
PMD model. The session ended with the debriefing questions.

The less complex tasks (T1, T2, T3) had a time allotment of 5 minutes and the
more complex tasks (T4, T5) had 10 minutes. During the task, the elapsed time was
displayed beneath the task description. The teams were instructed to adhere to this
timing but were not forced to end the task. If they reached overtime, the timer was
only highlighted.

4.3 Data Collection

We collected several data points during our experiment.

14



4.3 Data Collection

Table 2. Descriptive Statistics of the Results Related to Time Spent (in Minutes) and Correct-
ness (in Points)

Time Spent Correctness
On-Screen Physical On-Screen Physical

mean 28.11 29.39 11.28 11.62
difference +4.55% +3.01%
sd 5.94 8.46 1.88 1.47
min 16.24 14.54 7 8.5
median 28.46 27.72 11 12
max 40.97 53.48 14 14
Shapiro-Wilk W 0.9894 0.9436 0.9326 0.9566
Levene F 0.6387 0.7095
Student’s t-test

df 50 50

t -0.6326 -0.7283

p-value 0.5299 0.4698

4.3.1 Timing and Tracking Information

Our electronic questionnaire automatically determined the timing information for
each task. In addition to the camera recordings, we directly capture the screen of every
team using a screen capture tool. The screen recordings enabled us to reconstruct
the behavior of the teams and to look for exceptional cases, for instance, technical
problems. If we found such a case, we had to manually correct the timing data.

4.3.2 Correctness Information

Since we chose an open question format for each task, we conducted a blind review
process to rate the answers. After agreeing upon sample solutions, a script ran-
domized the order of the solutions. Thus during the review process, no association
between the answers and a team was possible for the reviewers. After both reviewers
evaluated all solutions independently, any discrepancies in the ratings were discussed
and resolved.

4.3.3 Qualitative Feedback

The participants were asked to give suggestions to improve the model they used for
solving the tasks. Due to space constraints, we only list the top 3 of each group.

15



4.4 Analysis and Results

1) Three teams from the control group missed a feature to highlight entities.
2) Furthermore, three teams would like to have more readable labels at a higher zoom
distance. 3) One team disliked that the camera was not resetable.

1) In the experimental group, two teams wanted to have a legend explaining
the meaning of the entities. 2) One team would like to have more readable labels.

3) Another team proposed that the amount of instances of a class should be color-
coded.

4.4 Analysis and Results

Table 2 provides descriptive statistics of the overall results related to time spent and
correctness for our experiment.

We removed the teams with a total score of less than six points from our analysis.
This effected one team from the control group and three teams from the experimental
group. After watching the recorded sessions, we came to the conclusion that the
teams did not understand the semantics of the visualization and thus their answers
seem guessed.

For our analysis, we use the two-tailed Student’s t-test. To test for normal
distribution, we use the Shapiro-Wilk test [Shapiro and Wilk 1965] which is considered
more powerful [Razali and Wah 2011] than, for instance, the Kolmogorov-Smirnov
test [Pearson and Hartley 1972]. We conduct a Levene test [Levene 1960] to check for
equal or unequal variances.

We used the 64-bit R package in version 3.1.2.% for the analysis. In addition to
the standard packages, we utilize gplots and lawstat for drawing bar plots and for
importing Levene’s test functionality, respectively. Furthermore, we chose & = .05 to
check for significance. The raw data, the R scripts, and our results are available as
part of our experimental data package [Fittkau et al. 2015].

RQ1 (Time Spent)

We start by checking the null hypothesis H1j. On the left side of Figure 4 a box plot
for the time spent is displayed. In Table 2 the differences between the mean values of
On-Screen Model and Physical Model are shown.

The Shapiro-Wilk test for normal distribution in each group succeeds and hence
we assume normal distribution. The Levene test also succeeds and hence we assume
equal variances between both groups. The Student’s t-test reveals a probability value
of 0.5299 which is larger than the chosen significance level and we fail to reject the
null hypothesis H1y.

5http://www. r-project.org
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4.5 Discussion
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Figure 4. Overall time spent and correctness for our experiment

RQ2 (Correctness)

Next, we check the null hypothesis H2y. On the right side of Figure 4 a box plot for
the overall correctness is shown. Similar to RQ1, the Shapiro-Wilk tests and Levene
test succeed. The Student’s t-test reveals a probability value of 0.4698 which is larger
than the chosen significance level and we fail to reject the null hypothesis H2y.

4.5 Discussion

The time spent in the experimental group is slightly higher than the time spent in
the control group. However, since we failed to reject H1, this could also be caused
due to randomness. The analysis also reveals a slightly higher correctness in the
experimental group. However, since we failed to reject H2, this could also be caused
due to randomness.

Since time spent and correctness of the solutions are in a close range, we conclude
that there is only a non-determining overall impact when using physical models for
our task set. However, analyzing each task reveals that there is an actual impact in
four tasks as can be seen in Figure 5. However, the effects of each task compensate
each other for our chosen task set resulting in a close ranged overall result.

17
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Figure 5. Average time spent per task and average correctness per task

To investigate the impact of using physical models in each task and the reasons for
this impact, we conducted an in-depth analysis of the camera and screen recordings.
In the following, used strategies and possible differences between the two groups are

described.

T1

The control group often used the rotation feature to find

the highest class. However,

they sometimes rotated the model longer than required for the task. Since the
experimental group has never seen anything similar to our physical models, the
participants often first investigated the whole model. We assume this as the reason
for the increased time needed for this task. The correctness in the experimental group

18



4.5 Discussion

is increased by 15%. We attribute this fact to an easier navigation to find the highest
class. Furthermore, the control group often missed the second part of the task, i.e.,
counting the classes in the contained package. In comparison, the experimental group
was more attentive to the task description.

T2

Often the On-Screen Model group turned the model to have a bird’s-eye view for
a better view of the packages and their contained classes. Furthermore, often the
gestures (if any were conducted) were only implied such that the monitor screen was
not touched. In the Physical Model group, the gesticulation was more pronounced.
One team partner often touched the physical model and showed his teammate the
package he was talking about. Furthermore, the package path was often dictated to
the partner for writing down the answer, while going through the path having the
tingers on the labels (see, for instance, camera recording of Team 6). However, the
task might have been too small or easy to show any effect of the gesticulation in the
experimental group.

T3

We often observed decisions via exclusion procedure in both groups. However, the
experimental group outperformed the control group by 19% in average correctness
while using roughly the same time. In the control group, the team partner often had
to search for the package name that the teammate was talking about. In contrast,
the experiment group often used gestures to show the package under investigation.
Furthermore, all packages could be clearly seen without scrolling or rotating. A
turther reason for the outperformance might be that the package hierarchies were
more clear to perceive.

T4

Finding the most occurring package name was more difficult for the experimental
group, which needed more time for a lower correctness. We assume that the uneven
size of the labels on the physical model causes problems in reading. Especially, the
solution package name “rule” is harder to read on the physical model. In contrast,
the labels in the on-screen model all have the same size.
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4.6 Threats to Validity

T5

The control group required more time for roughly the same correctness score as
the experimental group. We often observed that both team partners used gestures
during discussion in the Physical Model group — also in parallel. In contrast, it was
harder for the On-Screen Model group to use gestures in parallel since one arm often
occludes the screen. These parallel gestures could have increased the efficiency to
solve the task in the experimental group.

Summary

In summary, we observed a higher amount of gestures in the experimental group
compared to the control group. These were used to communicate with the team
partner and reading the package paths. Difficulties with the physical model were
encountered due to less readable labels.

To summarize the impact of using physical models in our task set: Two tasks
(T3 and T5) were positively influenced by the physical model. In contrast, T4 was
negatively influenced. T2 did not show any differences in using either the on-screen
or the physical model. The achieved correctness in T1 increased with the physical
model but also the time spent increased, leading to no clear statement of the impact.

4.6 Threats to Validity

In this section, we discuss the threats to internal and external validity [Shadish et al.
2002; Juristo and Moreno 2010; Wohlin et al. 2012] that might have influenced our
results.

4.6.1 Internal Validity

We split the internal validity into three parts for our experiment: threats concerning
the subjects, the tasks, and miscellaneous threats.

Subjects One threat is that the subjects” experience might not have been fairly
distributed across the control group and the experimental group. To mitigate this
threat, we randomly assigned the subjects to the groups. These random assignment
resulted in a fair self-assessed experience distribution as described in Section 4.1.5.
Another threat is that the subjects might not have been properly motivated. In
addition to the lottery, the students received only bonus points for the participation
and thus were not forced to take part. Furthermore, we encountered no unmotivated
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4.6 Threats to Validity

Table 3. Debriefing Questionnaire Results for our Experiment 1 is better — 5 is worse

On-Screen Physical
mean stdev. mean stdev.

Time pressure (1-5) 204 065 204 079
Tool speed (1-5) 148 0.64 - -
Tutorial helpfulness (1-5) 211 085 220 1.08
Tutorial length (1-5) 330 047 320 050
Achieved PMD comprehension (1-5) 3.00 083 3.08 076
Perceived task difficulty (1-5)
T1 1.74 066 212 0.73
T2 207 073 208 057
T3 274 071 288 0.53
T4 356 070 3.68 048
T5 341 069 3.60 0.65

user behavior in the screen recordings with the exception of the four teams scoring
below six points that we have excluded from our analysis (Section 4.4). Hence, we
assume that the remaining teams were properly motivated.

A further threat is that the subjects might not have been sufficiently compe-
tent. At the beginning of the questionnaire, most teams stated beginner or regular
programming experience. This should be sufficient for our rather easy task set.

Tasks The tasks might have been biased towards one kind of model. We mitigated
this threat by disabling some features in the on-screen model to provide equal
functionality.

A turther threat is the incorrect or biased rating of the solutions. We reduced this
threat by conducting a blind review where two reviewers independently reviewed
each solution. There were seldom discrepancies in the ratings with at most one point
suggesting a high inter-rater reliability.

Another threat is that the tasks might have been too difficult. Teams from both
groups achieved the maximum score in each task. Furthermore, the average perceived
task difficulty, shown in Table 3, is never between difficult (4) and too difficult (5).

Miscellaneous The results might have been influenced by time constraints that
were too loose or strict. Contrary, the average perceived time pressure was slightly
above little (2) for both groups and thus the time pressure well fitted.
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The experimental group had to switch between the physical model and the
keyboard. This could have led to a disadvantage of this group. This threat is
mitigated by the fact that one team member could stay at the keyboard and the other
one could tell him what he should write.

Another threat concerns the possible different quality of the tutorials. In both
groups, the teams had the possibility to continue to use the tutorial until they felt
confident in their understanding of the semantics. Furthermore, both groups had the
same tutorial text except the explanation of interaction with the on-screen model.

4.6.2 External Validity

Experimenting with only one single object system is not representative for all available
systems. Therefore, further experiments with different object systems should be
conducted. Another threat concerns the program comprehension tasks, which might
not reflect real tasks. We used the framework of [Pacione et al. 2004] to define the
task set and to mitigate this threat.

Our subjects were made up of students. Therefore, they might have acted differ-
ent to professional software engineers. Replications with professionals should be
conducted to quantify this impact. Furthermore, the teams were made up of only two
persons. The impact of using physical models in larger teams should be investigated
in further experiments.

5 Related Work

Since we are — to the best of our knowledge — the first creating physical models of
software visualizations, there is only related work to our visualization and evaluation
methodology. First, we discuss related work concerning the city metaphor. After-
wards, we describe virtual reality approaches, which also aim for a more natural
impression and intuitive navigation in software visualizations. Finally, software visu-
alization experiments, which compare themselves to other software visualizations,
are discussed. Since out of our focus, we do not discuss experiments comparing
software visualizations to IDEs and refer to [Wettel et al. 2011] for more details.

5.1 City Metaphor

Knight and Munro [Knight and Munro 2000] were the first to transfer the city
metaphor to software visualization. In their visualization Software World, the buildings
represent methods, and classes are mapped to districts.
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5.2 Virtual Reality for Software Visualization

Panas et al. [Panas et al. 2003] developed a city metaphor where classes are
mapped to buildings and a city represents one package. They focused on providing a
visualization looking as real as possible, e.g., with trees and photo-realistic textures.

Wettel and Lanza [Wettel and Lanza 2007] created the tool CodeCity which also
uses the city metaphor. In addition to Panas et al. [Panas et al. 2003], they use the
width and depth of the buildings to represent, for instance, the amount of attributes
of a class. Furthermore, the package hierarchy is represented by stacking districts
similar to our ExplorViz visualization.

EvoSpaces, developed by Alam and Dugerdil [Alam and Dugerdil 2007], in-
troduces a day and night mode utilizing the city metaphor. While the day mode
provides information gathered from static analysis, the night mode displays dynamic
information as connections between each building.

In contrast to the aforementioned approaches, we enable the user to create physical
models from the on-screen presentation to facilitate, for instance, more intuitive
navigation.

5.2 Virtual Reality for Software Visualization

Imsovision [Maletic et al. 2001] aims at representing object-oriented software in a
virtual reality environment. The user is tracked with electromagnetic sensors attached
to the shutter glasses and a wand which is used for the 3D navigation.

SykscrapAR [Souza et al. 2012] is an augmented reality approach employing the
city metaphor to visualize software evolution. The user can interact with a physical
marker platform in an intuitive way while the actual visualization can be seen only
on the monitor.

Contrary to both approaches, our physical models do not require any additional
devices once they are created.

5.3 Experiments Comparing Software Visualizations

Storey et al. [Storey et al. 1997] compared three software visualizations in an experi-
ment. The authors performed a detailed discussion of the tools” usage but provided
no quantitative results.

Lange and Chaudron [Lange and Chaudron 2007] investigated the benefits of their
enriched UML views by comparing them with traditional UML diagrams. In contrast,
we compare the impact of using physical models on program comprehension.
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6 Conclusions And Outlook

In this paper, we presented the vision of transferring the advantages of physical,
tangible models to support software engineering. We described four potential usage
scenarios, and investigated — as a proof of concept — the impact of using physical
models on program comprehension in a team-based scenario by conducting a first
controlled experiment.

In our experiment, we identified two tasks that benefit from using physical models
in comparison to using on-screen models. However, our experiment resulted in no
overall impact neither on time spent nor on correctness of solutions to the program
comprehension tasks, since the effects of each task compensate each other for our
chosen task set.

Our in-depth analysis of the strategies supports our hypothesis that physical
models provide an appropriate, complementary communication basis and increase
interaction when solving comprehension tasks in teams. In the analysis, we observed
an increase in the amount of performed gestures when using the physical model.

We provide a package containing all our experimental data to facilitate the verifia-
bility and reproducibility for replications and further experiments [Crick et al. 2014].
It contains the employed version of ExplorViz v0.6-exp (including source code and
manual), input files, STL files for 3D-printing the used models, tutorial materials,
questionnaires, R scripts, dataset of the raw data and results, and 112 screen and
camera recordings of the participant sessions. The package is available online [Fittkau
et al. 2015] with source code under the Apache 2.0 License and the data under a
Creative Commons License (CC BY 3.0).

In the context of program comprehension, future work is manifold. To validate our
observations in the controlled experiment for program comprehension and provide a
higher external validity, further replications should be conducted. Further approaches
to overcome current limitations of our physical models should be investigated. For
instance, the naive mapping of communication lines to the physical models creates a
set of confusing, overlying lines — since missing the possibility to interactively hide
communication. Furthermore, our experiment design should be tested with a larger
team size where gesticulation and communication can have a higher impact, and
with professionals as subjects. Further experiments should examine the combination
of using a physical model and an on-screen model compared to solely using an
on-screen model. Likewise, physical models should be compared to Virtual Reality.

On a more general perspective, we only investigated a part of the first usage
scenario of the four envisioned scenarios revealing a promising future research
direction. The other scenarios should also be evaluated and investigated in, for
instance, controlled experiments.
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Another direction is the creation of physical models of other 3D software visual-
ization metaphors, e.g., trees [Kleiberg et al. 2001], spheres [Balzer et al. 2004], or solar
systems [Graham et al. 2004]. Every usage scenario might reveal different results
with different representation of physical models.
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