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Abstract—Existing high-level, source-to-source compilers can
accept input programs in a high-level language (e.g., C) and
perform complex automatic parallelization and other mappings
using various optimizations. These optimizations often require
trade-offs and can benefit from the user’s involvement in the
process. However, because of the inherent complexity, the barrier
to entry for new users of these high-level optimizing compilers can
often be high. We propose visualization as an effective gateway
for non-expert users to gain insight into the effects of parameter
choices and so aid them in the selection of levels best suited to
their specific optimization goals.

A popular optimization paradigm is polyhedral mapping
which achieves optimization by loop transformations. We have
augmented a commercial polyhedral-model source-to-source
compiler (R-Stream) with an interactive visual tool we call the
Polyhedral User Mapping and Assistant Visualizer (PUMA-V).
PUMA-V is tightly integrated with the R-Stream source-to-source
compiler and allows users to explore the effects of difficult
mappings and express their goals to optimize trade-offs. It
implements advanced multivariate visualization paradigms such
as parallel coordinates and correlation graphs and applies them
in the novel setting of compiler optimizations.

We believe that our tool allows programmers to better
understand complex program transformations and deviations
of mapping properties on well understood programs. This in
turn will achieve experience and performance portability across
programs architectures as well as expose new communities in the
computational sciences to the rich features of auto-parallelizing
high-level source-to-source compilers. 1

I. INTRODUCTION

As highlighted in [?], there is a constant need to optimize
and parallelize codes for newer architectures. However, aside
from utilizing the limited number of expert engineers, achiev-
ing optimal performance is often difficult, but sophisticated
compilers can aid in optimizations and auto-parallelization.

High-level source-to-source compilers are powerful tools
for generating optimized versions of complex input codes for
specific architectures, or they can be utilized for translating
codes from one hardware specification to another. These tools
additionally often require users to be involved in the mapping
process due to various parameter choices to guarantee optimal
outputs. In order to address these issues for users, we have
developed PUMA-V , which uses visualizations to guide
users through the mapping process. In particular, we have

1This material is based upon work supported by the U.S. Department of
Energy under Award Number DE-SC0009678.
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Fig. 1. R-Stream’s architecture

built PUMA-V to be used with the R-Stream compiler, a
source-to-source compiler based on the polyhedral model [?],
a mathematical abstraction to represent and reason about
programs in a compact representation [?]. We chose the R-
Stream compiler for incorporation into PUMA-V due to its
various strengths and its flexibility. In particular, R-Stream ac-
cepts input programs in a high-level language (e.g., C) and
performs automatic parallelization and other mappings using
optimizations framed in the polyhedral model and outputs a
program to be processed by a low-level compiler. For example,
R-Stream can produce output in C+OpenMP, which can be
accepted by scalar compilers like icc, or in CUDA, which
can be accepted by the Nvidia compiler. R-Stream performs
optimizations such as parallelization, tiling, direct memory ac-
cess (DMA) communication generation, distributed scratchpad
memory management, and can target a range of symmetric,
heterogeneous, and hierarchical targets under the control of a
machine model description.

The polyhedral representation of programs makes it possible
to compactly construct a search space of all the legal loop
transformations for a given program. The polyhedral model
and R-Stream topics are too rich to fully cover here, so we
give a brief overview in section II and refer to [?] for more
detail and [?], [?] for the origins of the polyhedral model.

Source-to-source compilers such as R-Stream are powerful
tools for accelerating runtimes; however, as mentioned, the
complex nature of these tools are often a barrier-to-entry for
new users. For example, simple matrix multiplication has 912
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Fig. 2. Top Left: The Tactic Tree View (TTV) lists transformations selected and applied by R-Stream. Multiple branches in the tree represent different potential
sequences of transformations; Top Center: the Source Code View (SCV) shows the original source code on which the transformations will be applied; Top
Right: the Beta Tree View (BTV) shows the “BetaTree” representation of the source code, the relative lexicographic nesting of each statement with respect
to other statements. The leaves of the tree represent statements, and the inner nodes of the tree represent loops at various nesting levels. ; Bottom Left: the
GDG View (GDGV) shows a textual representation GDG for the transformed source code; Bottom Center: the Transformed Code View (TCV) shows the
resulting transformed code, a pseudo-code representation resulting from the current sequence of transformations. The number of vertical lines, covering the
textual length of each loop, determine the nesting depth, and the lines are color coded to show the amount of parallelism at the corresponding loop (i.e, green
for maximum parallelism, yellow for some, and red for none); Bottom Right: the Transformed Beta Tree View (TBTV) shows the beta tree representation of
the transformed code, often the most convenient form to view the effects of a transformation.

possible transformations. Visualization techniques can help
new and experienced users to see the trade-offs for various op-
timization decisions made through an underlying cost model.
In [?] a visualization framework utilizing the polyhedral model
was developed to allow users to manipulate the iteration
space of a program. Similarly, PUMA-V uses many state-
of-the-art visualization techniques to make interaction with
the polyhedral method more intuitive and interactive. With
PUMA-V the user influences the optimization choices by
modifying the cost model as opposed to in [?], where the user
explicitly defines the transformation by altering the iteration
space. Further, PUMA-V scales to deeper loop nests since the
number of views increases by

(
N
2

)
for a loop nest of depth N .

One technique employed by PUMA-V involves parallel
coordinate visualizations [?], an approach that is used to repre-
sent high dimensional and multivariate data and is well-suited
to analyzing the output from high-level compilers. Parallel
coordinate visualizations represent data points as polylines
crossing a series of parallel axes. Each axis represents one data
dimension and the position where a polyline crosses the axis
shows the value of that data point on this dimension. The high-
dimensional space is unrolled into a serialization of axis pairs,
giving good visual access onto the space. Parallel coordinates
render complex datasets in a single 2D image, and with proper
dimension reordering or range brushing, it can further reveal
relationships between neighboring dimensions [?]. Parallel
coordinates have been successfully applied in the area of visual

clustering [?], high dimensional data analysis [?], finance [?]
and even data generation [?]. In [?], parallel coordinates are
used in the EPOsee software package for visualizing software
development archives.

Section II briefly introduces components of the R-
Stream compiler, followed by a deep discussion of the PUMA-
V tool in section III. Section IV presents a user scenario for
a typical input, including a powerful technique for visualizing
performance effects of user decisions and how this guides the
user to better decisions and ultimately accelerated codes.

II. R-STREAM POLYHEDRAL MODEL COMPILER

While R-Stream handles high-level transformations, the re-
sulting source code still needs to be compiled via a traditional
low-level compiler. To utilize R-Stream, regions to be mapped
are tagged with a simple pragma, a compiler directive in
the source code, and R-Stream automatically determines a
mapping based on the target machine and emits transformed
code. R-Stream creates a polyhedral abstraction from the input
source, and this abstraction is encapsulated by the generalized
dependence graph (GDG). Most of the visualizations created
within PUMA-V are generated from the GDG. Ultimately,
changes the user makes through PUMA-V are translated to
changes in the GDG, affecting the transformations that take
place within R-Stream. Fig. 1 shows where the GDG is located
within R-Stream’s pipeline.



In the polyhedral model, the problem of selecting which
transformations to apply is translated to a linear programming
problem. Certain criteria (e.g. execution time) are optimized
subject to specified constraints (e.g. preservation of program
semantics). These constraints and objective functions are en-
capsulated within the GDG and represented via a graph, where
nodes represent strongly connected components (SCC) con-
taining statements and edges indicate statement dependencies.

Since many factors affect the execution time of a program
(e.g. utilization of cache and instruction throughput), a cost
model is integrated into this graph to govern the desirability of
certain transformations. Each node in the graph is augmented
with an “execution cost” variable. This determines how desir-
able it is to parallelize the statement. The edges are augmented
with a “fusion cost” variable which determines whether we
should fuse the loops (where multiple loops are replaced or
fused into a single loop) of those two statements. These costs
are typically determined by R-Stream, but PUMA-V exposes
these costs to the user; thus allowing him to indirectly affect
the transformations chosen by R-Stream.

III. VISUALIZER FOR R-STREAM OPTIMIZATIONS

As a popular open source IDE that facilitates the develop-
ment of software in various languages and due to its strong
track record for supporting the development of plugins, the
Eclipse environment was chosen to augment R-Stream with
visual capabilities for PUMA-V . The Eclipse plugin we
have developed for PUMA-V extends the functionality of R-
Stream by including visualizations to help the user better
understand transformations and optimizations and allowing the
user to guide them in a visually intuitive way.

PUMA-V presents the user with six views as shown in
Fig. 2, providing an overview of the transformations while
preventing the screen from becoming too cluttered. Many of
the visualizations shown are used throughout the polyhdedral
literature, and this “six view” representation has the additional
benefit of linking and brushing between views. For example,
in Fig. 2 the user has clicked on the first “6” node in the
Transform Beta Tree View (TBTV), highlighting the corre-
sponding loop in the transformed code and the corresponding
beta coordinates in the GDG View (GDGV).

A. Interfacing with the R-Stream Transformation System

A list of transformations applied to a GDG can be visu-
alized in the Tactic Tree View (TTV) as seen in Fig. 2 (Top-
Left). Left-clicking on a transformation node triggers all the
transformations to be run up to the selected node. This is
particularly useful in understanding the transformation process
by means of inspection of the BetaTree, GDG, and transformed
code after transformations are applied. This process can be
applied iteratively and results in a step-by-step analysis of the
transformations performed by R-Stream.

Some transformation nodes have extra functionality. When
selected, the AffineScheduling node opens a view listing
the strongly connected components (SCC), on which the
AffineScheduling tactic (AST) has operated. Fig. 3 shows the

SCC List View (SCCLV), containing one graph per schedule
dimension and a visualization of a selected SCC graph. Users
can change the costs associated with each SCC node (i.e.,
parallelism score) and each edge (i.e., fusion score). Re-
running the AST, adds a new branch to the SCCLV and updates
other views to reflect changes.

6

35

-48

Fig. 3. Left: SCC List View (SCCLV) of graphs; Right: the corresponding
SCC graph for “SCC Graph 0”.

The ability to explore the solution space, through modifica-
tion of the cost model, allows the user to develop intuitions
about the legal transformation space for an application. This
intuition is further assisted by the Parallel Coordinates View
(PCV) and the Correlation Graph View (CGV).

B. Parallel Coordinates View and Correlation Graph View
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Fig. 4. The PCV shows the performance of different cost models: each line
represents a mapping by R-Streamwith a different, user-defined, cost model.

PUMA-V uses parallel coordinates to visualize the effects
on performance for a particular transformation. In the PCV
each dimension represents either parallelism or locality at a
particular level in the transformed program. This allows the
user to view the various tradeoffs between parallelism and lo-
cality. An example of this within the visual plugin is illustrated
in Fig. 4. In conjunction with the SCCLV, the PCV visually
quantifies the effects of scheduling transformations, thereby
providing a mechanism for systematically searching the space
of available transformations. A user scenario highlighting the
effects of various transformations is presented in section IV.



The CGV acts as an auxiliary view to the PCV. In the
correlation graph, vertices represent parallelism and locality
at the various depths (i.e. dimensions in the PCV), whereas
edges show how the parallelism and locality at the different
depths interact with each other. An example is shown in Fig. 5,
indicating that parallelism at depth 1 is negatively correlated
with locality at depth 1 (edge colored in red).

Fig. 5. The CGV shows tradeoffs between parallelism and locality at various
levels. Red and green edges indicate negative and positive correlations,
respectively, and color intensity is determined by correlation strength.

The benefits of these visualizations are best seen with
PUMA-V’s randomized run functionality, which invokes R-
Stream multiple times. During each invocation, random values
are assigned to the cost model, acting as a “first pass” to
discover transformations R-Stream can produce for a given
application. The user can then fine-tune the transformations,
using the visualization as a guide.

IV. USER SCENARIO

As a practical scenario, let us imagine a physicist, Tom,
modeling particle interactions in a high dimensional space.
During each timestep of the simulation, each particle’s position
is updated through multiplication by a matrix; formed by
successive multiplications of rotation matrices. After some
simple profiling, Tom has identified the function in Fig. 6 as a
major bottleneck. Next, Tom opens the PUMA-V tool, loads
the appropriate C file, and clicks the Apply button to run the
default transformations. After the transformations are applied,
each of the views from Fig. 2 is updated:

• TTV (Tactic Tree View) is updated, displaying the list
of transformations where each node corresponds to a
specific, applied transformation.

• BTV (Beta Tree View) is updated, displaying the relative
nesting of statements in the input code.

• GDGV (GDG View) is updated, giving a more detailed
textual description of the transformations.

• TCV (Transformed Code View) is updated, showing a
pseudo-code description of the current transformation.

• TBTV (Transformed Beta Tree View) is updated, display-
ing the nesting of statements in the transformed code.

void matmult(real_t aA[n][N], real_t aB[N][N]
real_t aC[N][N], real_t aD[N][N]
real_t aE[N][N]) {

int i, j, k;
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
aC[i][j] = 0.0;

}}
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
for (k=0; k<N; k++) {

aC[i][j] += aA[i][k]*aB[k][j];
}}}
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
for (k=0; k<N; k++) {

aD[i][j] += aC[i][k]*aE[k][j];
}}}

Fig. 6. Successive matrix multiply input source code to R-Stream.

Tom starts by clicking on nodes in the TBTV. By doing
this, loops are highlighted in the TCV. This type of linking
and brushing affect gives Tom a better understanding of the
transformations that have taken place.

Next, Tom clicks on the PerfVis menu item, opening a
parallel coordinates view with four dimensions (vertical lines).
This view visualizes performance counter data, gathered from
profiled executions of the transformed code. To generate this
data, we used the HPCToolkit [?], a collection of tools to
measure program performance, which uses PAPI [?] to obtain
the hardware performance. The four dimensions of the parallel
coordinates are Level 3 cache miss rate, Level 2 cache miss
rate, Instructions per cycle, and execution time.

The first thing Tom notices when looking at this view is
that it is devoid of polylines because no physical executions
of the code have occurred. To gather performance data, Tom
clicks the Execute menu item, and two polylines are drawn:
one for the input code, and one for the default transformation.
The lines drawn are shown in Fig. 8 as Blue for the original
input code and Orange for default transformation.

Tom is pleased as the default transformation leads to a sig-
nificant improvement in performance. He suspects, however,
that he can do better. The L2 miss rate is quite high: the cost
model may favor parallelism over locality, so Tom decides
modify the cost model to favor locality.

First he clicks on the affine scheduling node (as) in the
Tactic Tree View. This causes the SCC List View to open (Fig. 3
Left); displaying a list of strongly connected components
representing R-Stream ’s cost model. By clicking on the first
SCC node, a view displaying the SCC graph opens (Fig. 3
Right), allowing him to affect transformations at the outermost
loop level. To improve locality, Tom sets the weights on the
edges of the graph to be very high. Tom does this by clicking
on each edge in the graph, and setting the numerical value to
1000. The cost model will now heavily favor locality and fuse
loops wherever possible.



Tom then runs the transformation with the new cost model
and clicks Execute to generate a new polyline in the parallel
coordinate view (Green in Fig. 8). He is disappointed. The
L2 miss rate was only reduced a small amount, while the
total execution time has increased compared to the default
transformation. To better understand what is happening he
looks more closely at the Transformed Code View. A snippet
of this view is shown in Fig. 7. Tom notices the locality of
the array accesses of statement matmult_6 shows B’s access
pattern is cache-inefficient since each iteration of the k loop
requires a value that is N elements away.

doall (j = 0; j <= 1023; j++) {
reduction_for (k = 0; k <= 1023; k++) {

matmult_6(<>aC[i,j],<aA[i,k],<aB[k,j])
}

}

Fig. 7. Snippet from the TCV.

Tom notices that the loops are parallel. He suspects that R-
Stream has again favored parallelism over locality; this time
at the innermost loop level. He goes back to the SCC List
View, and this time he clicks on the last SCC node; allowing
Tom to affect transformations at the innermost loop level. He
clicks on each of the nodes in the corresponding SCC graphs
allowing him to modify the execution cost of each statement.
He does so by setting the cost to zero; thus greatly reducing
parallelism at the innermost loop level. After running the new
transformation, a new polyline is generated (Red in Fig. 8).
Tom is thrilled to see that the L2 miss rate has been greatly
reduced, resulting in reduced execution time as well.

V. CONCLUSION

We have presented the novel PUMA-V tool for visualizing
complex transformations and optimizations performed by the
high-level source-to-source R-Stream compiler, allowing a
user-in-the loop to guide R-Stream to desirable results using
intuitive visualization techniques. Through a user scenario we
have further shown how PUMA-V allows a user to delve
deeply into the finer details of compiler optimizations for a
variety of machine models. To the best of our knowledge, this
is the first interactive visualization tool allowing for direct
manipulation of the polyhedral cost model.

The incorporation of HPCToolkit performance counters into
PUMA-V has opened up a new avenue for visualization within
our tool. Currently, we visualize performance counters at
the function level. HPCToolkit, however, is able to gather
performance counters at the loop, and even statement level. We
are currently working to incorporate this finer level of detail,
allowing the user to select a node in the beta tree, view its
performance data, and thereby identify where the performance
bottlenecks are in the application.

Future plans include exposing the user to more direct
control over the output code. For example, allowing the user
to interchange loops by dragging nodes in the beta tree

Fig. 8. PCV for performance evaluation of user-guided R-Stream transforma-
tions. Blue: No transformations; Orange: Standard R-Stream optimizations
result in high L2 cache miss rate; Green: Heavily favoring fusion in the cost
model shows slight improvement in cache performance though the miss rate
is too high; Red: By discouraging inner loop parallelism through the GCCV,
the user guides R-Stream to the desired result with PUMA-V .

would permit imply interchanging loops without having to
change the cost model. Additionally, we plan to test the tool
more extensively with users (compiler experts and novices)
, evaluate the performance gains from tuning optimizations
identified through visualizations, and ascertain the level of
background and training necessary to allow users to optimally
tune their source codes.
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