
HAL Id: hal-01185635
https://inria.hal.science/hal-01185635

Submitted on 20 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OrionPlanning: Improving Modularization and Checking
Consistency on Software Architecture

Gustavo Santos, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, Marco
Tulio Valente

To cite this version:
Gustavo Santos, Nicolas Anquetil, Anne Etien, Stéphane Ducasse, Marco Tulio Valente. OrionPlan-
ning: Improving Modularization and Checking Consistency on Software Architecture. 3rd IEEE
Working Conference on Software Visualization (VISSOFT), Sep 2015, Bremen, Germany. pp.5. �hal-
01185635�

https://inria.hal.science/hal-01185635
https://hal.archives-ouvertes.fr


OrionPlanning: Improving Modularization and
Checking Consistency on Software Architecture

Accepted to 3rd IEEE Working Conference on Software Visualization (VISSOFT 2015)

Gustavo Santos, Nicolas Anquetil, Anne Etien and Stéphane Ducasse
RMoD Team

INRIA, Lille, France
{firstname.lastname}@inria.fr

Marco Tulio Valente
Department of Computer Science
UFMG, Belo Horizonte, Brazil

mtov@dcc.ufmg.br

Abstract—Many techniques have been proposed in the lit-
erature to support architecture definition, conformance, and
analysis. However, there is a lack of adoption of such techniques
by the industry. Previous work have analyzed this poor support.
Specifically, former approaches lack proper analysis techniques
(e.g., detection of architectural inconsistencies), and they do
not provide extension and addition of new features. In this
paper, we present ORIONPLANNING, a prototype tool to assist
refactorings at large scale. The tool provides support for model-
based refactoring operations. These operations are performed
in an interactive visualization. The contributions of the tool
consist in: (i) providing iterative modifications in the architecture,
and (ii) providing an environment for architecture inspection
and definition of dependency rules. We evaluate ORIONPLANNING
against practitioners’ requirements on architecture definition
listed in a previous survey. We also evaluate the tool in a concrete
example of software remodularization.

Demonstration video URL: http://youtu.be/TWWPgjRIljk
Index Terms—Software Architecture; Software Maintenance;

Architecture Description Language; Architecture Conformance;
Remodularization; Rearchitecting.

I. INTRODUCTION

The definition of the software architecture1 in early stages
of development is of utmost importance as a communication
mechanism between stakeholders. It does not only involve
the decisions and guidelines that must be followed during
the software evolution, but also provides discussion about the
requirements (and conflicting parts of them) that the software
might have. Inconsistent architectural decisions might deeply
compromise the success of a software project [3].

Although many techniques on architecture definition have
been proposed in the literature, there is still little adoption of
such techniques in industry. Previous work analyzed this gap
between research and practitioners’ needs [4, 7, 15]. Recently,
Malavolta et al., [9] conducted a study on practitioners’
needs in architectural languages (i.e., any form of expression,
informal or formal, for architecture description) and which
features might be useful for industry projects. They identified
seven main features which were useful in past projects:

• Tool Support: the availability of a mature architecture
description tool for a given architectural language.

1In this paper, we consider the definition of Garlan and Perry: the structure
of components of a program, their relationships, and principles and guidelines
governing their design and evolution over time [6].

• Iterative Architecting: the ability to refine the architecture
from a general description. The language should not
require the stakeholders to fully describe the architecture.

• Analysis: the ability to extract and analyze information
from the architecture for testing, simulation, and con-
sistency checking, for example. One of the most clear
results from the study is the need for proper analysis
techniques to detect inconsistencies in the architecture
before it would be applied.

• Multiple Architectural Views: the ability to provide dif-
ferent representations based on different architecture at-
tributes. Some examples of views include structural,
behavioural, data-flow, and semantic views.

• Versioning: the ability to store, keep track of changes,
and share a given description.

• Graphical Syntax: the ability to provide non-textual rep-
resentations focusing on a different properties of the
architecture.

• Well-defined semantics: the ability to provide the defini-
tion of extra-functional properties.

In this paper, we present ORIONPLANNING, a prototype tool
to support architecture definition. The user can create an
architecture definition from scratch (Section II-A) or itera-
tively modify a current modularization extracted automatically
from source code (Section II-B). ORIONPLANNING provides a
simple and interactive visualization to assist remodularization2

(Section II-C) and an analysis environment to check whether
the current architecture is consistent according to user defined
restrictions (Section II-D). We evaluate this tool in a specific
case of software evolution (Section III), and we compare the
tool to previous work on practitioners’ needs for architecture
definition tools (Section IV). Section V presents related work
and Section VI concludes this paper.

II. ORIONPLANNING IN ACTION

Figure 1 depicts the main user interface of ORIONPLANNING.
It is build on top of the MOOSE platform [2]. The panel in Fig-
ure 1.A shows the systems under analysis and their versions,
followed by a panel for color captions (Figure 1.B), and the list

2We consider remodularization a sequence of transformations (not neces-
sarily behavioral preserving) restricted to the architecture.

http://youtu.be/TWWPgjRIljk


of model changes in the selected version (Figure 1.C). On the
right side of the window, ORIONPLANNING generates a simple
visualization of model entities and dependencies (Figure 1.D)
and a list of dependency constraints which will be evaluated
when the model changes (Figure 1.E).

A

B

C

D

E

Fig. 1. ORIONPLANNING overview. The panel (D) shows three packages

A. Loading code

To modify an existing project with ORIONPLANNING, the
MOOSE platform already provides support to import code writ-
ten in C++, Java, Smalltalk, Ada, Cobol, and other languages.
The result is an instance of the FAMIX meta-model [5].
FAMIX is a family of meta-models that represent source code
entities and relationships of multiple languages in a uniform
way. We chose FAMIX because MOOSE already provides
inspection and analysis tools which can be extensible for our
work (see Section II-D). Details on how to import models in
MOOSE are provided in The Moose Book [10]. After importing
the code, a new model appears in the model selection panel
(Figure 1.A).

B. Versioning

We use ORION [8] to perform changes on the FAMIX
model extracted in the previous step. ORION is a reengineering
tool that simulates changes in multiple versions of the same
source code model. ORION efficiently handles the creation of
children models. A child model has one reference to its parent
version and a list of changes that were made in it. We use
ORION because it manages modifications in multiple versions,
including merging and resolving conflicts, without creating
copies of the source code models.

Figure 2 shows the panel for model management. In prac-
tice, from a given model, the user can (i) inspect the changes in
the current version, i.e., check the list of changes and modified
entities (see also Section II-D); (ii) eventually create a new
child version and make changes in it (see Section II-C); and/or
(iii) discard the current version for different reasons. When
the user is modifying a child model, the original one is not
modified and no copies of this model are created. The list

of changes is also displayed in OrionPlanning’s main window
(see Figure 1.C).

Fig. 2. ORIONPLANNING’s model selection menu

C. Remodularization and Visualization

In order to provide architecture visualization, we use a
visualization engine called TELESCOPE. Figure 3 illustrates
a visualization of a Java project. Packages are rectangles
with classes represented as squares inside the package. Both
packages and classes are expandable by mouse click. After
expansion, a class shows its methods as small squares. In
general, entities that were changed in the current model have
their borders colored in blue, and the borders of entities created
in the current model are colored in green.

Fig. 3. ORIONPLANNING’s interactive visualization (right click on a class)

The visualization displays three types of dependencies: (i)
the package dependency summarizes all dependencies (i.e.,,
accesses, references, invocations, etc.) at a package level; (ii)
the class dependency basically shows inheritance dependencies
between classes inside one package; and (iii) the method
dependency shows invocations between methods of different
classes. We decided to show a fraction of all the dependencies
to not overload the visualization with edges. Refactoring



operators (e.g.,, add, paste attribute, and remove entities) are
accessible by right click menu, as shown in Figure 3.

D. Model Analysis

According to previous survey with practitioners, the feature
they missed the most in past projects was the support for
architectural analyses [9]. Some of suggested analyses include
dependency analysis between entities in an architecture, and
consistency of architectural constraints [11]. In this section, we
describe our work on extending ORIONPLANNING to provide
dependency checking constraints defined by the user.

MOOSE provides a set of metrics for software, such as
size, cohesion, coupling, and complexity metrics. From the
visualization provided by ORIONPLANNING, any entity can be
inspected and evaluated at any time (right click, Inspect).
ORIONPLANNING allows the user to define rules based on
these metrics. A possible example consists in restricting the
number of classes in a package to less than 20. Due to space
constraints, we do not show this feature in this paper.

ORIONPLANNING also supports the definition of dependency
constraints. The definition uses the same syntax of DCL [12],
a DSL for conformance checking originally proposed to Java
systems. In ORIONPLANNING, the user first defined logical
modules as a set of classes. These classes can be selected
by matching a property (e.g., a regular expression), or by
manually selecting them into the module. Figure 4 depicts
the module definition browser, in which the user selected (by
regular expression) all classes which name ends with “Action”.
Other properties can be easily extended to the model.

Fig. 4. ORIONPLANNING’s model definition browser

Finally, a dependency rule depends on two logical modules,
which are defined in the previous step. Given two modules A

and B, the user can define the following constraints:
• only A can depend on B;
• A can only depend on B;
• A cannot depend on B; or
• A must depend on B.
The types of constraints are predefined in the DCL language.

Dependencies include access to variables, references to class,
invocation to methods, and inheritance to classes. Figure 5
shows the rule definition panel, in which the user selects the
source module, the type of constraint, the type of dependency

to be analyzed, and the target module. In this example, the user
defined that all Action classes cannot inherit from classes in
the original monolithic package (named classes).

Fig. 5. ORIONPLANNING’s dependency constraint browser

In order to check the conformance between a model and
the defined constraints, ORIONPLANNING queries all the de-
pendencies in the current model. The dependency checker
analyzes each dependency with each constraint. Violations to
the constraint are highlighted in the visualization with a red
color (see Section III in our concrete example). Finally, the
dependency checker listens to changes in the current model
and checks all the dependencies when a change is performed.

III. EVALUATION

To illustrate the use of ORIONPLANNING, we use a simple
e-commerce system, called MYWEBMARKET. This system was
created independently by another research group to illustrate a
case of architectural erosion and the analysis of architectural
violations [12]. This system was developed in a sequence of
versions. The first one follows a very naive implementation
and successive versions improved the modularization to correct
specific dependency constraints.

In our evaluation, we imported the first version of MYWEB-
MARKET, consisting of only one package and performed in
ORIONPLANNING the changes that had been made on the actual
system (i.e., directly in the code, without any form of model-
based support). We observed a sequence of refactorings steps
repeatedly applied on MYWEBMARKET that would therefore
be interesting to perform using ORIONPLANNING. Listing I
presents an informal description of these refactorings. The goal
was to isolate the dependencies to a framework (e.g., HIBER-
NATE) into a new package. Furthermore, it was decided to use
the Factory design pattern.

During the replication study, ORIONPLANNING had the
limitation of not supporting the Extract Method refactoring
(line 6). This limitation is due to the fact that ORION does
not yet handle model information at the level of statements
(i.e., using an Abstract Syntax Tree). Such support is work in



LISTING I
SYSTEMATIC REFACTORINGS IN MYWEBMARKET’S REMODULARIZATION

(A PACKAGE PHib WAS CREATED TO HOLD DEPENDENCIES TO
HIBERNATE, A FACTORY CLASS FHib WAS CREATED IN PHib)

For each class C /∈ package PHib that depends on Hibernate

1. create an interface IC’ in PHib
2. create a class C’ in PHib implementing IC’
3. Create a method “public C’ getC’()” in the factory FHib
4. ∃ method M in C
5. and ∃ S statements ∈ M creating the dependence on Hibernate
6. extract statements S to a new method M’ in C’
7. replace statements S by a call FHib.getC’().M’()

progress [14]. We intend to include finer granularity refactor-
ings in both ORION and ORIONPLANNING. Despite this limita-
tion, all of the other refactorings were performed successfully.

Additional to the replication study, we defined a dependency
constraint on the resulting model. We performed the constraint
definition discussed in Section II-D, i.e., prohibit Action

classes to inherit non-Action classes. In order to simplify
the visualization, we previously moved all the Action classes
to a new package, named action.

Figure 6 shows the dependency analysis in ORIONPLANNING

in two views. The first view (Figure 6.a) shows the package
visualization in which the edge between the packages action
and classes is red. This property means that this dependency
is a constraint violation. The second view (Figure 6.b) shows
the list of constraint violations in the version under analysis. In
this case, all of the Action classes extend a common class,
named ExampleSupport, which does not follow the name
convention. In order to fix this violation, the user shall move
ExampleSupport to the action package, and optionally
change the class name to the *Action name convention.

IV. DISCUSSION

In this section, we evaluate ORIONPLANNING according to
previous work on industrial needs on architectural languages
(see Section I) as follows:

• Tool Support: our tool is currently a prototype and
it provides support to (i) generate a new architecture
from scratch; and (ii) modify an existing architecture by
refactorings;

• Iterative Architecting: our tool accepts that the archi-
tecture definition might be incomplete. It provides an
environment for incremental changes;

• Analysis: our tool provides support for inspection of any
model entity at any time. It also provides support to define
modules, dependency constraints between them and also
constraints based on metrics. Constraints can be evaluated
on any model after a change;

• Multiple Architectural Views: currently, ORIONPLANNING

relies on the visualization of structural dependencies in an
explorative view through packages, classes, and methods.
There is work on progress to visualize module definitions

(a) Constraint violation in package visualization

(b) Violations List

Fig. 6. ORIONPLANNING’s dependency rules visualization

(see Section II-D) and conceptual relationships between
model entities based on their vocabulary;

• Versioning: the tool allows the user to create child ver-
sions and modify them separately, without creating copies
of the working model;

• Graphical Syntax: both architecture definition and refac-
toring operations are performed in a graphical and inter-
active visualization;

• Well defined semantics: Such semantics are difficult to
achieve because they depend on specific project needs.
In ORIONPLANNING, we focus on the structural (modular)
quality of the code. We recommend that extra-functional
aspects of the architecture shall be put into discussion
with the stakeholders.

V. RELATED WORK

A considerable amount of tools for architectural description,
software visualization, and architectural conformance have
been proposed in the literature in the past decades. The survey



to which this work is inspired cites architectural languages
such as UML and AADL [9]. However, most of the proposed
tools lack proper analysis and they do not provide extension
in order to add features specific to practitioners’ needs.

In this section, we selected work on architectural languages
that applies to two main conditions: (i) these work must
provide a tool to support architecture description, and (ii) they
also must provide analysis on the proposed architecture.

That et al. [13] use a model-based approach to document
architectural decisions as architectural patterns. An architec-
tural pattern defines architectural entities, properties of these
entities, and rules that these properties must conform. The
approach provides analysis by checking the conformance
between an existing architecture definition and a set of user-
defined architectural patterns. In ORIONPLANNING, the depen-
dency constraints are similar to the definition of an architec-
tural pattern. However, the architecture definition in our tool
is not limited to conform to an architectural decision, i.e.,
our approach is extensible enough to provide other types of
analysis and model transformation.

Baroni et al. [1] also use a model-based approach and
extend it to provide semantic information. With assistance of
a wiki environment, additional information is automatically
synchronized and integrated with the working model. The
analysis consists in checking which architectural entities are
specified in the wiki. One critical point of this approach is
that the information might be scattered in different documents,
which can be difficult to maintain. In ORIONPLANNING, both
the working model and the tool itself can be easily extended.
In fact, the dependency constraint checking (see Section II-D)
extends (i) the model to define logical modules, and (ii) it also
extends the visualization to define and automatically check
constraint violations.

VI. CONCLUSION

In this paper, we presented ORIONPLANNING, a prototype
tool for iterative architecture description. ORIONPLANNING

relies on FAMIX meta-model to describe the architecture as a
set of packages and logical modules. Changes to the resulting
model are performed by user-interface refactoring operators.
We compared the tool with a survey on practitioners’ needs in
architecture languages. We showed the extensibility of the tool
by implementing a conformance checking extension based on
dependency and metric constraints.

We also evaluated the tool with a concrete example which
is specific to software evolution. Our study showed the po-
tential of ORIONPLANNING to perform model and analysis-
based transformations. In this example, we were able to (i)
replicate most of the evolution scenario, (ii) define and check
dependency constraints, and (iii) observe refactoring patterns
that can be replicated to other cases (the HIBERNATE case).

Future work include modifications to the usability of the
tool. For example, we would like to make some actions
more intuitive by using drag-and-drop instead of menus.
Further work also include generating partial source code

from an ORION model. The goal is to generate code snippets,
following the assumption that the architecture might not be
fully described. However, the snippets would have enough
information for developers to further complete them. An
important improvement would be to include Abstract Syntax
Tree modeling to ORIONPLANNING, in order for it to handle
more fine-grained operators (e.g., Extract Method).

REFERENCES

[1] Alessandro Baroni, Henry Muccini, Ivano Malavolta, and Eoin
Woods. Architecture description leveraging model driven engi-
neering and semantic wikis. In 11th Conference on Software
Architecture, pages 251–254, 2014.

[2] Muhammad U. Bhatti, Nicolas Anquetil, and Stéphane Ducasse.
An environment for dedicated software analysis tools. ERCIM
News, 88:12–13, 2012.

[3] Jan Bosch. Architecture challenges for software ecosystems.
In 4th European Conference on Software Architecture, pages
93–95, 2010.

[4] Paul C. Clements. A survey of architecture description lan-
guages. In 8th International Workshop on Software Specification
and Design, pages 16–, 1996.

[5] Stéphane Ducasse, Nicolas Anquetil, Muhammad Usman
Bhatti, Andre Cavalcante Hora, Jannik Laval, and Tudor Girba.
MSE and FAMIX 3.0: an Interexchange Format and Source
Code Model Family. Research report, 2011. URL https:
//hal.inria.fr/hal-00646884.

[6] David Garlan, Robert Allen, and John Ockerbloom. Architec-
tural mismatch: Why reuse is so hard. IEEE Software, 12(6):
17–26, 1995.

[7] Rich Hilliard and Tim Rice. Expressiveness in architecture de-
scription languages. In 3rd International Workshop on Software
Architecture, pages 65–68, 1998.

[8] Jannik Laval, Simon Denier, Stéphane Ducasse, and Jean-Rémy
Falleri. Supporting simultaneous versions for software evolution
assessment. Journal of Science of Computer Programming, 76
(12):1177–1193, 2011.

[9] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang.
What industry needs from architectural languages: A survey.
IEEE Transactions on Software Engineering, 39(6):869–891,
2013.

[10] Moose. Importing and Exporting MSE Files. http:
//www.themoosebook.org/book/externals/import-export/mse,
2010. Accessed: 2015-05-30.

[11] Dewayne E. Perry and Alexander L. Wolf. Foundations for the
study of software architecture. Software Engineering Notes, 17
(4):40–52, 1992.

[12] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and
Roberto S. Bigonha. Recommending refactorings to reverse
software architecture erosion. In 16th European Conference
on Software Maintenance and Reengineering, pages 335–340,
2012.

[13] Minh Tu Ton That, S. Sadou, and F. Oquendo. Using architec-
tural patterns to define architectural decisions. In Conference
on Software Architecture and European Conference on Software
Architecture, pages 196–200, 2012.

[14] Yuriy Tymchuk. Extending FAMIX metamodel to generate
ASTs for Java and Smalltalk applications. Master’s thesis,
National University of Lviv, Ukraine, 2013.

[15] Pengcheng Zhang, Henry Muccini, and Bixin Li. A classifica-
tion and comparison of model checking software architecture
techniques. Journal of Systems and Software, 83(5):723–744,
2010.

https://hal.inria.fr/hal-00646884
https://hal.inria.fr/hal-00646884
http://www.themoosebook.org/book/externals/import-export/mse
http://www.themoosebook.org/book/externals/import-export/mse

	Introduction
	OrionPlanning in action
	Loading code
	Versioning
	Remodularization and Visualization
	Model Analysis

	Evaluation
	Discussion
	Related Work
	Conclusion

