
Round-Trip Sketches: Supporting the Lifecycle of
Software Development Sketches from

Analog to Digital and Back
Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl

Department of Computer Science
University of Trier

Trier, Germany
Email: research@sbaltes.com, diehl@uni-trier.de

Abstract—Sketching is an important activity for understand-
ing, designing, and communicating different aspects of software
systems such as their requirements or architecture. Often,
sketches start on paper or whiteboards, are revised, and may
evolve into a digital version. Users may then print a revised
sketch, change it on paper, and digitize it again. Existing tools
focus on a paperless workflow, i.e., archiving analog documents,
or rely on special hardware—they do not focus on integrating
digital versions into the analog-focused workflow that many users
follow. In this paper, we present the conceptual design and a
prototype of LivelySketches, a tool that supports the “round-
trip” lifecycle of sketches from analog to digital and back. The
proposed workflow includes capturing both analog and digital
sketches as well as relevant context information. In addition,
users can link sketches to other related sketches or documents.
They may access the linked artifacts and captured information
using digital as well as augmented analog versions of the sketches.
We further present results from a formative user study with four
students and outline possible directions for future work.

I. INTRODUCTION

Sketches and diagrams play an important role in design-
related activities [1], [2], [3]. Artists sketch to clarify existing
ideas and to develop new ones [4]. In mechanical design,
sketches not only document final designs, but also provide
designers with a memory extension to help ideas taking
shape and to communicate concepts to colleagues [5]. Beside
sketches being an external representation of memory and a
means for communication [6], [7], they serve as documenta-
tion [8]. The ambiguity in sketches is a source of creativity [9]
and they support problem solving and understanding [10].
In engineering, controlled experiments have shown that the
possibility to sketch has a positive effect on the quality of the
solution [8]. Software developers use sketches and diagrams
to understand, to design, and to communicate different aspects
of software systems [11], [12], [13], [14]. Most software
engineering sketches do not follow formal conventions like
the Unified Modeling Language (UML), but have an informal,
ad-hoc nature [12], [15], [11], [14], [16].

Media used for sketch creation include not only white-
boards and paper, but also software tools like Photoshop and
PowerPoint [13], [12], [17], [16], [14]. Often, sketches are
revised [14] and pass through transitions from analog to digital

media [13], because digital sketches can more easily be edited,
copied, organized, and shared [18]. Even if a digital version
exists, analog sketches may be kept as a memory aid [19].
Context information is often needed to understand informal
sketches [20] and information may get lost due to the transient
nature of sketches [12], [14].

Despite the widespread usage of sketches in many domains,
to the best of our knowledge there is currently no tool that
explicitly supports the complete analog and digital lifecycle of
sketches. Popular tools like EverNote and OneNote focus on a
paperless workflow, i.e., archiving analog documents, not on
integrating digital versions into the analog-focused workflow
that many users follow [14], [19]. Other proposed tools rely
on special hardware like digital pens and compatible paper
for creating analog sketches [21], [22], [23], [24], need a
special scanning device to access digital versions [25], or
treat analog documents only as passive link anchors for digital
resources [26].

From the literature cited above and in particular our own
research on the use of sketches and diagrams in software engi-
neering practice [14], we derived four main requirements that
a tool supporting the analog and digital lifecycle of sketches
should implement: (1) it should be possible to archive analog
sketches along with context information needed for their
understanding, (2) the tool should provide a version control
for evolving sketches, (3) since sketches are usually connected
and embedded in a work context, it should be possible to link
them to other sketches or related artifacts, and (4) the tool
should support the “round-trip” of sketches from analog to
digital and back. In the following, we further elaborate on
the conceptual design, present a prototype implementation of
this concept named LivelySketches, and report findings from a
formative user study.

II. CONCEPTUAL DESIGN

Sketches often start on analog media like paper or white-
boards and later get digitized to share and revise them [14],
[12], [19]. However, sketches do not only evolve digitally, but
may be printed out or redrawn on paper or whiteboards. We
denote this process involving transitions from analog to digital

ar
X

iv
:1

70
8.

01
78

7v
1 

 [
cs

.S
E

] 
 5

 A
ug

 2
01

7



Fig. 1: The conceptual workflow of round-trip sketching from analog to digital and back.

sketching and vice versa as “round-trip sketching”. In this
section, we describe an exemplary scenario and a conceptual
workflow to derive requirements for a tool providing support
for round-trip sketching.

In our scenario, a software development team discusses
possible extensions of an app. They collect emerging ideas in a
shared whiteboard sketch. Furthermore, some developers write
down their own thoughts in personal notebooks. At some point,
the whiteboard becomes too cluttered and the team leader
decides to clean the whiteboard partially. After the meeting,
one developer is asked to create a polished version of the
whiteboard sketch for the customer. This sketch is also posted
in an internal development wiki. A week later, the team uses
a printout of the polished sketch together with the developers’
notes to continue where they left off.

In this scenario, several issues arise: When the whiteboard
is cleaned, it is not possible to go back to erased content
that may still be relevant to understand the evolution of the
sketch. Further, the developers’ notes are related to the shared
sketch, but the connection is only present in their mind. To
be able to refine the whiteboard sketch, the developer may
need contextual information that has not been captured during
the meeting. If the sketch is shared with others (e.g., in a
wiki), parallel versions of the sketch may evolve that are
later merged during the next meeting. This evolution of the
sketch can either happen on analog or digital media. A tool
supporting round-trip sketching should addresses these issues
by providing means to capture context, manage revisions, and
link sketches to related sketches or other artifacts. It should
then be possible to access this information using digital as
well as augmented analog versions of a sketch.

Figure 1 visualizes the conceptual workflow for round-trip
sketching including different transitions from analog to digital
media and back: The lifecycle starts with the creation of an
analog sketch (1). The user decides that the sketch is worth
capturing and adds a generated QR code label to the sketch
(2) to be able to identify this version later. Then, he or she
uses a tablet to capture the sketch (3). At that point, it is
possible to add metadata like authors, textual annotations, or
even short videos explaining the content of the sketch (4).
After the sketch is digitized, users may add content using tools
like Gimp, Visio, or Photoshop, or utilize the sketch to redraw
a revised digital version. The tool should allow users to easily
add these new revisions to the captured sketch. Generally, if
analog and digital versions of a sketch evolve concurrently,
version control should help to keep track of their relation and
should assist in merging versions existing in the analog as well
as in the digital world. Users may also link the whole sketch
or parts of it to other related sketches or documents to embed
the artifact in the work context (5). To return from digital to
analog, the user can print the revised sketch, for instance to
bring it to a meeting (6). Using the QR code on the printed or
the initial sketch, the user can access all revisions of the sketch
as well as linked artifacts and captured metadata (7). To close
the circle, users may add content to the printed sketch (8) and
capture this new revision with a tablet to access, refine, or
share it later (9).

For a first prototype implementation supporting the work-
flow described above, we formulated six requirements:

REQ1:
(identify)

The tool should allow users to unambiguously
identify analog and digital sketches.



(a) MetaView: Show/add metadata, version control. (b) LinkView: Manage links to other sketches.

Fig. 2: Two views of the LivelySketches prototype.

REQ2:
(capture)

The tool should enable users to capture analog
sketches along with context information.

REQ3:
(version)

The tool should enable users to add both analog
and digital revisions to a captured sketch.

REQ4:
(link)

The tool should allow users to link captured
sketches to related sketches and other artifacts.

REQ5:
(print)

The tool should allow users to print captured and
digitally revised sketches.

REQ6:
(augment)

The tool should allow showing captured metadata
and linked artifacts of identified sketches.

These requirements cover the main requirements mentioned
in the introduction, which we derived from related work and
our own research on sketches and diagrams in software devel-
opment (1→REQ2+6, 2→REQ3, 3→REQ4, 4→REQ1+5).

III. PROTOTYPE IMPLEMENTATION

To be able to evaluate the conceptual workflow, we created
a prototype that implements the above requirements. It uses
a simple client-server architecture (see Figure 3). The client
is web-based and runs on both desktop and mobile browsers.
We optimized the GUI to be used on touch devices and tested

Fig. 3: Architecture of LivelySketches

it on an Apple iPad. The server is responsible for storing
and managing the versioned sketches and for creating and
decoding the QR codes used to identify sketches. It provides
a REST API [27] that the client uses to upload and retrieve
data. The web client of LivelySketches provides three main
views: One view to open captured sketches and to add new
ones (OverView), one view to add and view metadata and to
manage the revisions of a sketch (MetaView), and one view
to link a captured sketch or parts of it to other sketches
(LinkView). The latter two views are depicted in Figure 2.
In the following, we describe how the prototype implements
the above requirements.

REQ1 (Identification): Every sketch is identified by a
Universally Unique Identifier (UUID). This identifier is either
assigned to a sketch when it is uploaded to the server or by
sticking a prepared QR code label to it. LivelySketches allows
to create lists with QR codes that encode predefined UUIDs.
These lists can then be printed to adhesive labels. The labels
are very small (1cm2) and thus do not distract from the main
content of the sketch (see Figure 4 for an example from the
formative study). One sheet contains 13 rows with different
UUID and 10 identical labels in each row. This enables the
user to mark different revisions of the same sketch drawn on
different sheets of paper with the same label. LivelySketches
then recognizes the identical codes and adds later uploaded
sketches as revisions of the first one. The tool also allows
the user to generate labels for already captured sketches to
mark new analog revisions of them. Further, QR codes can
be digitally added to a sketch after uploading it. However, we
recommend to always use labels to mark analog sketches to
be able to reference them later.

REQ2 (Capturing): Using the main view of the app, the user
can open already captured sketches or upload new sketches.
He or she can either upload a JPEG or PNG file or use the
tablet’s camera to take a picture of an analog sketch. The tool



then allows the user to add different meta information like
title, author names, or date. After the sketch is uploaded, the
MetaView (see Figure 2a) provides the functionality to add
textual annotations, audio, or video files to the sketch. Again,
existing files can be uploaded or the tablet camera can be used
to record these annotations.

REQ3 (Versioning): As mentioned above, sketches are often
revised and redrawn. To keep track of the history of a sketch,
the prototype enables the user to add new revisions that
were created either on analog or digital media. LivelySketches
follows a state-based extensional versioning approach [28] that
establishes a simple linear successor relationship between the
revisions of a sketch. The sequential order of the revisions
is shown in the lower part of the MetaView. When adding a
new revision, the tool asks for a commit message describing
the modifications that took place between the two revisions.
Further, the tool assists the user in transferring metadata from
a previous version.

REQ4 (Linking): To link sketches, the prototype provides
a dedicated view (see Figure 2b). A link always connects
whole sketches or parts of sketches that are identified using
a link anchor. Currently, LivelySketches only allows to use
rectangular link anchors, but we plan to extend this with other
shapes or a free-form selection to allow for a more fine-grained
selection.

REQ5 (Printing): In the MetaView, sketches can be either
printed directly or the image files may be downloaded. Fur-
thermore, this view allows the user to print a list of QR code
labels that may be used to identify new analog revisions of
the sketch.

REQ6 (Augmenting): Using the corresponding button in the
header of LivelySketches, it is possible to scan the QR code of
an analog sketch. The system then decodes the UUID of the
sketch, opens the MetaView and automatically switches to the
most recent revision. The user can then browse to the history
of the scanned sketch, access or add metadata, or navigate to
linked sketches.

IV. FORMATIVE USER STUDY

A formative user study is a study conducted “during the
development of a product [...] to mould or improve the
product” [29]. To get early feedback for improving the pro-
totype we conducted such a study with four participants. All
participants were computer science graduate students. During
the study, they worked in teams of two to design a graphical
user interface for a dice game. After a short introduction into
the LivelySketches prototype, we provided them the rules of
the game they were going to design, paper and pencils for
drawing sketches, an Apple iPad running the prototype, and
a prepared sheet with QR code labels. Then, we gave them a
task description for the study, namely to design a GUI and a
storyboard for the game at hand. During the study, we captured
audio and video data. We recorded both the sketching activity
on the desk with a camcorder as well as the interaction with the
tool using a screen capturing software. We provide all sketches
created during the study as well as the screen captures as

Fig. 4: Sketch with QR code created during formative study.

supplementary material [30]. After the study, the participants
filled in a system usability scale (SUS) questionnaire which
we used as a “quick and dirty” way of accessing the tool’s
usability [31].

Participants’ comments and a SUS score of 81.3 indicate
that they were very satisfied with the performance and stability
of the tool. Since we conducted the study to improve the tool,
we will focus on possible improvements and feature requests
in the following: Because it is tedious to enter the author
names each time a sketch is captured, participants requested
a user management that would allow them to automatically
add their own username or usernames of other registered
authors. Currently, all sketches are managed globally, which
was not a problem during this short study, but for real-world
usage, participants proposed to add a feature allowing to assign
sketches to certain projects.

Regarding the link anchors, participants requested other
shapes and free-form anchors to be more flexible in link-
ing parts of sketches. Further, they wanted to be able to
automatically center the view around a selected anchor and
then zoom into the linked part of the sketch. This would be
particularly useful when capturing large sketches, for example
from whiteboards. Regarding the linked sketches, participants
proposed a global view visualizing all sketches and all links
between them. In this view, it would then be possible to zoom
in and out and to navigate through this structure by following
the links. We will consider the comments and feature requests
described above in the future development of the tool.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the conceptual design of round-
trip sketching as well as a prototype implementation named
LivelySketches that supports the lifecycle of sketches from
analog to digital media and back. It enables users to manually
capture both analog and digital sketches as well as relevant
context information. The captured sketches can then be or-
ganized in a common version history. Further, LivelySketches
allows linking sketches to related sketches. We conducted a



formative user study and got valuable insights to improve
the tool. In the future, we plan to extend LivelySketches to
allow users to also link sketches to other relevant resources
like documents, emails, or source code [32]. A linked sketch
could then be used to navigate through linked artifacts.

Although we tried to support a very common scenario
motivated by related studies, the evolution of a sketch from
paper to a digitally revised version (and back) is not the only
possible workflow. Walny et al. [19] present an overview of
other possible lifecycles of software development sketches. We
want to evaluate the tool in a larger context to see how well
it integrates into “real-life” settings. The proposed approach
works best with paper sketches, but it is also possible to
capture sketches on whiteboards using a tablet camera. In
this scenario, the original sketch is lost when the whiteboard
is erased, but the lifecycle can continue with the digitally
captured version or with a printout.

LivelySketches can be used to capture storyboards for
graphical user interfaces, connect sketches and visualizations
of different components of a software architecture, connect
visualizations of dynamic and static aspects of software (e.g.
UML class and sequence diagrams), or connect visualizations
of different steps in the development process of a software
project. However, the application area of LivelySketches is not
limited to software development—the approach can be adapted
to any discipline where sketching plays an important role.

ACKNOWLEDGMENTS

The authors would like to thank the participants of the
formative study for their valuable feedback.

REFERENCES

[1] S. Sonnentag, “Expertise in professional software design: A process
study.” Journal of Applied Psychology, vol. 83, no. 5, pp. 703–715,
1998.

[2] B. Tversky, M. Suwa, M. Agrawala, J. Heiser, C. Stolte, P. Hanrahan,
D. Phan, J. Klingner, M.-P. Daniel, P. Lee et al., “Sketches for design
and design of sketches,” in Human Behaviour in Design. Springer,
2003, pp. 79–86.

[3] A. Black, “Visible planning on paper and on screen: The impact of
working medium on decision-making by novice graphic designers,”
Behaviour & Information Technology, vol. 9, no. 4, pp. 283–296, 1990.

[4] J. Fish and S. Scrivener, “Amplifying the mind’s eye: sketching and
visual cognition,” Leonardo, vol. 23, no. 1, pp. 117–126, 1990.

[5] D. G. Ullman, S. Wood, and D. Craig, “The importance of drawing in
the mechanical design process,” Computers & Graphics, vol. 14, no. 2,
pp. 263–274, 1990.

[6] B. Tversky, “What do sketches say about thinking?” in AAAI Spring
Symposium, Sketch Understanding Workshop, Stanford University.
AAAI, 2002, pp. 148–151.

[7] ——, “Spatial schemas in depictions,” in Spatial Schemas and Abstract
Thought. MIT Press, 2001, pp. 79–111.

[8] M. Schütze, P. Sachse, and A. Römer, “Support value of sketching in
the design process,” Research in Engineering Design, vol. 2, no. 14, pp.
89–97, 2003.

[9] G. Goldschmidt, “The backtalk of self-generated sketches,” Design
Issues, vol. 19, no. 1, pp. 72–88, 2003.

[10] M. Suwa and B. Tversky, “External representations contribute to the
dynamic construction of ideas,” in Diagrammatic representation and
inference. Springer, 2002, pp. 341–343.

[11] U. Dekel and J. D. Herbsleb, “Notation and representation in collabora-
tive object-oriented design: An observational study,” in ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2007). ACM, 2007, pp. 261–280.

[12] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: how and why software developers use drawings,” in 25th
ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI 2010). ACM, 2007, pp. 557–566.

[13] J. Walny, M. S. T. Carpendale, N. Henry Riche, G. Venolia, and
P. Fawcett, “Visual thinking in action: Visualizations as used on white-
boards,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2508–2517, 2011.

[14] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014). ACM, 2014, pp. 530–541.

[15] M. Petre, “UML in practice,” in 35th International Conference on
Software Engineering (ICSE 2013). IEEE Computer Society, 2013,
pp. 722–731.

[16] T. Gorschek, E. D. Tempero, and L. Angelis, “On the use of software
design models in software development practice: An empirical investi-
gation,” Journal of Systems and Software, vol. 95, pp. 176–193, 2014.

[17] B. A. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. J. Ko, “How de-
signers design and program interactive behaviors,” in IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2008).
IEEE, 2008, pp. 177–184.

[18] W. Willett, P. Goffin, and P. Isenberg, “Understanding digital note-taking
practice for visualization,” IEEE Computer Graphics and Applications,
vol. 35, no. 4, pp. 38–51, 2015.

[19] J. Walny, J. Haber, M. Dörk, J. Sillito, and M. S. T. Carpendale, “Follow
that sketch: Lifecycles of diagrams and sketches in software develop-
ment,” in 6th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT 2011). IEEE, 2011, pp. 1–8.

[20] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in 28th International Conference on
Software Engineering (ICSE 2006). ACM, 2006, pp. 492–501.

[21] F. Guimbretière, “Paper augmented digital documents,” in Proceedings
of the 16th Annual ACM Symposium on User Interface Software and
Technology (UIST 2003). ACM, 2003, pp. 51–60.

[22] C. Liao, F. Guimbretière, and C. E. Loeckenhoff, “Pen-top feedback
for paper-based interfaces,” in Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology (UIST 2006),
vol. 6, 2006, pp. 15–18.

[23] C. Liao, F. Guimbretière, K. Hinckley, and J. Hollan, “Papiercraft: A
gesture-based command system for interactive paper,” ACM Transac-
tions on Computer-Human Interaction (TOCHI), vol. 14, no. 4, 2008.

[24] N. Weibel, A. Ispas, B. Signer, and M. C. Norrie, “Paperproof: a paper-
digital proof-editing system,” in Extended Abstracts on Human Factors
in Computing Systems (CHI 2008). ACM, 2008, pp. 2349–2354.

[25] M. C. Norrie and B. Signer, “Switching over to paper: a new web
channel,” in Proceedings of the Fourth International Conference on Web
Information Systems Engineering (WISE 2003). IEEE, 2003, pp. 209–
218.

[26] L. Bian and R. Shilkrot, “Palimpost: Information convergence using
sticky notes,” in Proceedings of the 2nd International Workshop on Web
of Things (WoT 2011). ACM, 2011, pp. 13–18.

[27] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[28] R. Conradi and B. Westfechtel, “Version models for software configu-
ration management,” ACM Computing Surveys (CSUR), vol. 30, no. 2,
pp. 232–282, 1998.

[29] D. Travis, “Usability test reporting,” Accessed 23 June 2017,
April 2006. [Online]. Available: http://www.measuringu.com/blog/
formative-summative.php

[30] S. Baltes, F. Hollerich, and S. Diehl, “LivelySketches—Supplementary
Material,” June 2017. [Online]. Available: https://doi.org/10.5281/
zenodo.818197

[31] J. Brooke et al., “Sus—a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[32] S. Baltes, P. Schmitz, and S. Diehl, “Linking sketches and diagrams to
source code artifacts,” in 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, 2014, pp.
743–746.

http://www.measuringu.com/blog/formative-summative.php
http://www.measuringu.com/blog/formative-summative.php
https://doi.org/10.5281/zenodo.818197
https://doi.org/10.5281/zenodo.818197

	I Introduction
	II Conceptual Design
	III Prototype Implementation
	IV Formative User Study
	V Conclusion and Future Work
	References

