
Speak to your Software Visualization—Exploring
Component-based Software Architectures in

Augmented Reality with a Conversational Interface

Peter Seipel, Adrian Stock, Sivasurya Santhanam, Artur Baranowski,
Nico Hochgeschwender, and Andreas Schreiber

German Aerospace Center (DLR)
Simulation and Software Technology

Cologne, Germany

forename.surname@dlr.de

Abstract—Exploring of software architectures with software
visualization in Augmented Reality (AR) is possible with dif-
ferent interaction methods, such gesture, gaze, and speech. For
interaction with speech (i.e., natural language), we present an
architecture and an implementation of conversational interfaces
for the Microsoft HoloLens device. We aim to remedy some
peculiarities of AR devices, but also enhancing the exploration
task at hand. To implement the conversational interface different
natural language processing (NLP) components such as natural
language generation and intent recognition are typically required.
Our proposed architecture integrates conversational components
with the AR-based software visualization. We describe its imple-
mentation based on different user utterances, where the system
provides information about the to-be-explored component-based
software architecture in the form of adjusted visualizations and
speech-based results. We apply out tool to explore OSGi-based
software architectures.

Index Terms—software visualization, augmented reality, con-
versational interfaces, chatbots, natural language processing,
graph databases, OSGi, software architecture

I. INTRODUCTION

Exploring large-scale software projects with interrelation-

ships among multiple software components is a challenging

exercise. Due to its complexity, exploration activities such

as navigating to certain components, identifying dependencies

among components, assessing metrics of individual architec-

tural elements, and so forth is a cumbersome task. Those

activities need to be improved as they are relevant in many

scenarios such as gaining a project overview for onboard-

ing new developers, discussing architectural decisions and

quality attributes with stakeholders, testing and debugging by

developers. To improve the exploration task, we developed

multiple approaches in 2D, 3D and Virtual Reality (VR) to

visualize software architectures in our previous work [13], [9].

With the use of see-through visors, AR allows to exploit the

real world for visualizing software systems effectively. This

facilitates the inspection of the software architectures in a

collaborative manner. As immersive augmented reality reduces

the issue of occlusion and eases navigation [8], it aids the

user during this process. To make interactive visualizations

accessible real-world metaphors like cities or archipelagos are

used in immersive AR for interactive visualization of abstract

software entities [5].

Regardless of the visualization approach (such as 2D or

3D), one needs to semantically map software entities to visual

metaphors. We visualize OSGi-based [7] software architec-

tures, which are used in many large software systems in

industry. The OSGi Alliance1 specifies a component system

for Java environments. These components and their resources

are packaged in Bundles. They are dynamically connected

via Services, which represent components’ communication

interface. For large-scale OSGi-based architecture the rela-

tionship between provided and required services is often not

immediately obvious. Also, dependency relationships between

bundles become increasingly opaque as a project grows. This

is a motivation for our work to explore OSGi-based software

architectures in immersive AR.

Using the Microsoft HoloLens, we use an island
metaphor [12] for visualizing OSGi-based software architec-

tures in AR [2], [1]. Here, the software structure is represented

as an archipelago within a virtual water level (Fig. 1). The

virtual water level can be placed somewhere in the room, for

example on the floor, a desk, or any table (Fig. 2).

Different levels of granularity are mapped to the metaphor

for visualization. For instance, bundles, packages and compi-

lation units are represented as islands, regions and buildings.

Using gestures, the archipelagos position, orientation and scale

can be adjusted. Also, common software metrics are visual-

ized. For instance, lines of code within a particular compilation

unit are mapped to the building’s height. In our previous works

we have considered exploration just with navigation—however

exploration could be enhanced by utilizing the additional input

modalities provided by the Microsoft HoleLens, such as voice

and gesture control. Voice and gesture control could pave the

way for advanced exploration activities such as simultaneously

selecting architectural elements via gesture and requesting

additional information about this element via speech.

1https://www.osgi.org/

78

2019 Working Conference on Software Visualization (VISSOFT)

978-1-7281-4939-4/19/$31.00 ©2019 IEEE
DOI 10.1109/VISSOFT.2019.00017

Fig. 1: Visualizing software architectures in Augmented Reality with the Microsoft HoloLens using the island metaphor.

II. MOTIVATION AND USE CASE

In our previous works for VR [9] and AR [2] we use

gesture control and hand controller to navigate to individual

islands, regions or buildings which can be selected for detailed

inspection and displaying service and dependency relation-

ships. However, we observed that relying solely on gesture

control makes exploration limited to navigation. For example,

searching for a particular bundle by dragging the archipelago

around can be inefficient, when instead a query could be issued

for finding the island. Likewise, making queries via text input

on a virtual keyboard is cumbersome due to limited gesture

recognition capabilities. Similarly, searching for components

using simple keyword-based approach with voice control is

also inefficient as users need to remember lots of keywords

Fig. 2: Placement of the software island on a table.

for each functionality. This problem of paraphrasing user input

was already addressed in several works and resolved by using

embedding-based techniques [14], [4].

We propose the use of natural language understanding

techniques to recognize user’s intent despite the variations in

the utterances. To this end, intent recognition is employed

to classify utterances based on their semantic content and

similarity. This unburdens users from learning and remem-

bering keywords. Also, conversational interfaces can act more

natural in so far as the interface serves as a virtual assistant,

providing extended feedback to the user. To capitalize on

those benefits, we describe an architecture for integrating

a conversational interface into an AR device such as the

Microsoft HoloLens (Sec. IV). The proposed system also

considers the contextual information of the visualization (e.g.,

which bundles are in view, etc.) to make exploration tasks such

as searching implementable.

Our main use case so far is to view, explore, and explain

software architecture collaboratively. Two persons equipped

with HoloLens devices view the software visualization in the

same room, where the visualization is placed on a desk or any

table. A specific use case is, that an experienced developer

explains the architecture to a new team member. Our goal is,

that the conversational interface based on utterances “automat-

ically” follows the conversation and adapts the visualization

accordingly.

Using AR instead of VR for the described use case might

foster the adaption of our visualization at workplaces more

easily, which has to be verified in future user studies—for

example, by comparing VR and VR for this use case.

79

Conversational
Services

Device

Context
Monitor

NLG Service

Controller

Repository

Application
State

Actions Listener

Context Update

Verbal Action

Visualization Action

Query

NLU Service

Intent to Query
ServiceNotification

Generated
Query

Intent and
Entities

Natural language
response

Fig. 3: Component diagram of conversational interface integration with the software exploration system.

III. ARCHITECTURE OF THE CONVERSATIONAL

INTERFACE IN SOFTWARE EXPLORATION

We propose an architecture integrating different input and

output modalities such as gesture, gaze, and speech. The

general idea of the architecture is to provide a template

solution for developing software exploration applications with

AR/VR devices. The proposed architecture (Fig. 3) consists

of several components that provide and require interfaces. By

following the Model-View-Controller (MVC) design pattern,

Repository, Device, and Controller function as Model, View,

and Controller. The components are:

a) Device: The device works as the user’s interface to

the system, thus taking care of the user’s input. The system is

agnostic towards the way it presents the information. It is not

restricted to use an AR device as in our use case (Sec. IV)

but could even be applied to visualizations in 2D.

b) Context Monitor: The Context Monitor observes user-

initiated actions the user executes, including but not limited

to both gesture and speech. Additionally, it keeps track of the

current focus of the visualization by observing the Application
State. Based on this, the current context is created. Every

time the context changes, the Context Monitor writes the new

context into the Repository. Using the context, the system can

execute actions based on the current scenario.

c) Controller: The Controller is the central core of the

system connecting and regulating various services, Repository
and the Device. Based on the inputs from the Device, the

Controller orchestrates the services to be called. We designed

the Controller with modularity in mind, so that each module

is independently integrated based on their functionality. The

modular architecture of the Controller allows to implement

different dialogue control strategies based on rules, machine

learning, and so forth [6].

d) Repository: The Repository persistently stores the

software architecture to be explored and contextual informa-

tion about current and past visualizations of the architecture.

With appropriate queries, insightful information can be in-

ferred from the Repository.

e) Conversational Services: The Conversational Services
consist of the components Natural Language Understanding

(NLU), Intent to Query, and Natural Language Generation

(NLG). The Controller passes the user’s natural language

input along with the context to the NLU unit. The NLU

service recognizes both the intents and entities and returns

back the results to the Controller. The Intent to Query service

transforms the intents and entities to a query. These queries

are sent to the Controller, which then requests the Repository
for a response. To have an engaging conversation, the dialog

system should be able to respond to and ask the user in a

human readable format. To achieve that, the responses from

the Repository are used as seeds to build natural language

sentences using NLG service.

IV. IMPLEMENTATION

In this section, we describe the implementation of our

proposed architecture for a use case where a user demands

a search query with voice input. We first describe the tech-

nologies that we used to implement the scenario. We present

a detailed description of the implementation about the data

flow among the components in the following paragraphs.

A. Configuration

We use the Microsoft HoloLens2 in our work. Being an

IO device, it includes services such as speech-to-text, text-to-

speech, gesture control, and speakers. The HoloLens is just one

of many VR/AR/MR devices; therefore our architecture is not

restricted to this specific device. It is also possible to integrate

our proposed system into other VR environments. When

integrated with the conversational interfaces, the features of the

HoloLens could be highly exploited to better help exploration

of architectures.

2https://www.microsoft.com/en-us/hololens

80

The Controller includes an implementation of Rasa core [3]

for the dialog management system. We use the graph database

NEO4J in the repository, as graph databases are suitable

choices for semantic queries, due to its nature of intercon-

nected data. To convert the source data into a graph in

NEO4J, we use the Open Source tool JQASSISTANT [10],

[11]. The NLU Service in the Conversational Services uses

RASA NLU [3] to detect intents and entities. The Intent-to-
Query service builds CYPHER queries with respect to intents

and entities.

B. Use case

The user either uses a hand-gesture or a speech input to

communicate with the system. In either case, the following

sequence takes place. In this example we will focus on a

speech input. Assuming the user has already navigated to the

bundle named “core comp” and selected this bundle using

the tap-gesture. Now the user says “find the class with the

highest number of methods inside this bundle”. The Device
will convert this audio input into string using the speech-
to-text service and provides an event. The Controller gets

notified by this Event. An Event contains all the data that

is needed for further processing (e.g., the user utterance as a

string or the information that a double-tap-gesture is detected).

Simultaneously, if there is any change in the context, the

Context Monitor recognizes the Application State and updates

the context. It then writes the new context into the Repository.

Due to the new entry the Repository notifies the Controller.

This ensures the Repository to have updated information about

the current state.

Once the Controller receives the input, the Controller
sends the user’s utterance as a string to the NLU Service,

which responds with corresponding Intent and Entities to the

controller. As RASA NLU is trained using machine learning

methods for identifying Intents and Entities, sentences with

variations in words but having semantic equivalence will be

identified as having same intent. In our example, the detected

Intent is “select class with most methods” and no entities are

detected. The Controller requests the Repository for updated

context. In our case, the updated context was already written

into the Repository when the user made the selection via tap-

gesture as shown below.

{
"focused_object" : null,
"focused_object_type" : null,
"selected_object" : "Core Comp",
"selected_object_type" : "bundle"

}

The Controller passes the Intents, entities and the context to

the NLU Service. Depending upon the intent, The NLU Service
decides whether the context to be used as entity. Contexts are

only transformed into entities when needed. Table I shows

some variations in utterances and their corresponding intents

and entities along with possible contexts. Once, the intents and

entities are resolved, they have to be converted to a query. To

transform Intent and Entities to a graph query, the system

uses the Intent to Query service. Based on a template-based

approach, a query template for the corresponding intent is

selected and entities are filled. For the example at hand, the

generated CYPHER query is:

MATCH
(b:Bundle{name:’Core Comp’})-[]->(c:Class),
(c)-[d:DECLARES]->(m:Method) RETURN c,
COUNT(m) ORDER BY COUNT(m) DESC LIMIT 1

Next the Controller uses the generated graph query, which

represents the user’s command, to obtain the response from

the Repository. The repository with the NEO4J graph database

provides a JSON response to the concerned CYPHER query as

shown. In our case, the name of the bundle is “Component-

ContextImpl” it possesses 54 methods.

{
{"srcFileName":"ComponentContextImpl.

java",
"fileName": "/de/rce/core/component/

ComponentContextImpl.class",
"fqn": "de.rce.core.component.

ComponentContextImpl",
"visibility": "public",
"name": "ComponentContextImpl"

},54
}

Apart from the name of the bundle and its methods, it

also provides lots of information and they are structured data.

The user expects a tailored natural language response to the

utterance. The controller selects the required data (e.g, type,

name and number of methods) and sends it to the NLG
Service, which creates a natural language sentence based on

the received information. “The class with the highest number

of methods is ComponentContextImpl with 54 methods” is the

sentence generated for the given data. Both, the JSON response

from the graph database and the natural language sentence,

are sent to the device by the Controller. The JSON is parsed

on the device and the extracted information is displayed on

a virtual info panel. Depending on the given data, the panel

shows the list of entries or the requested summary. In addition

to this info panel, the visualization re-formats and focuses

on the biggest class as requested. Concurrently, the device

transforms the sentence generated by the NLG Service to an

audio stream by using the text-to-speech API. This is played

while the visualization update happens.

The same procedure works for other utterances as well.

Table I contains some examples. The table shows the In-

tents and Entities that the NLU service extracts from the

utterance and the current context. The depicted examples

form an instance of a sequence of different utterances. When

the user demands “Please show me bundle core.auth,” the

NLU service identifies the Intent “select component” and the

Entities “bundle” and “core.auth.” The focus of the device

then changes so it shows the desired bundle. At this point,

81

TABLE I: Examples of Utterances and their Intents and Entities Parsed.

Utterance Intent Entity Extracted information
from current context

1
“Please show me bundle core.auth, select
core.auth, . . . ”

select component bundle, core.auth None

2
“Tell me more about this bundle, what is this
bundle about?, . . . ”

summarize information bundle core.auth

3
“Select the largest class of this bundle, show the
largest class, . . . ”

select component class, biggest core.auth

4 “How do I select an island?, . . . ” explain usage None AuthService Impl.java

5 “How many packages are inside this bundle?, . . . ” count component bundle AuthService Impl.java

6 “How many classes are inside this bundle?, . . . ” count component class, bundle AuthService Impl.java

7 “Which is the biggest package of this bundle?, . . . ” select component biggest, package, bundle AuthService Impl.java

8 “navigate to the smallest bundle?, . . . ” select component smallest, bundle de/rce/core/ component/

the current context provides no information, as this was the

1st utterance. When the user asks for more information about

the bundle, the system knows that the current context is the

bundle “core.auth” as it was the topic of the previous utterance.

Thus, it can provide the information about the bundle even

though its name wasn’t mentioned in the utterance. The 3rd

utterance combines both the current context and the entities to

process the user’s input. The 4th example is a simple question

about how to use the ISLANDVIZ software. The context here

is “AuthServiceImpl.java,” which was the result of the

previous processing of the user’s utterance.

C. Status and Availability

Our implementation ISLANDVIZ FOR HOLOLENS is avail-

able as Open Source under an Apache 2.0 license [1].

The NLU implementation was started as a separate internal

project and is now being integrated in the ISLANDVIZ FOR

HOLOLENS software.

V. CONCLUSION AND FUTURE WORK

We proposed to adopt conversational interfaces for enhanc-

ing users to explore OSGi-based software architectures to

be visualized in immersive AR. By integrating intent-based

NLU components into the overall architecture, we enable

users to search seamlessly in the natural language. Thus,

empowering the user to make use of both gesture and speech

actions simultaneously for the exploration. This paves the

way to implement virtual assistants which are capable to hold

engaging conversations about the exploration task at hand.

In our future work we will conduct user studies to inves-

tigate whether or not users are enticed by the conversational

technology to search through the architecture in a more effi-

cient manner. To do so, we will store and analyze contextual

information such as the history of all visited architectural

elements. In addition, we plan to use this information to guide

the exploration process to those architectural elements which

were not yet visited and observed. General future work include

adaption of the ISLANDVIZ visualization to other component

models than OSGi.

REFERENCES

[1] A. Baranowski and P. Seipel. DLR-SC/holo-island-viz: VRST2018 demo
version v0.1, Nov. 2018.

[2] A. Baranowski, P. Seipel, and A. Schreiber. Visualizing and exploring
osgi-based software architectures in augmented reality. In Proceedings
of the 24th ACM Symposium on Virtual Reality Software and Technology,
VRST ’18, pages 62:1–62:2, New York, NY, USA, 2018. ACM.

[3] T. Bocklisch, J. Faulker, N. Pawlowski, and A. Nichol. Rasa: Open
source language understanding and dialogue management. arXiv
preprint arXiv:1712.05181, 2017.

[4] A. Di Prospero, N. Norouzi, M. Fokaefs, and M. Litoiu. Chatbots
as assistants: An architectural framework. In Proceedings of the 27th
Annual International Conference on Computer Science and Software
Engineering, CASCON ’17, pages 76–86, Riverton, NJ, USA, 2017.
IBM Corp.

[5] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer-Verlag, Berlin, Heidelberg, 2007.

[6] B. Dumas, D. Lalanne, and S. L. Oviatt. Multimodal interfaces: A survey
of principles, models and frameworks. In Human Machine Interaction,
2009.

[7] J. McAffer, P. VanderLei, and S. Archer. OSGi and Equinox: Creating
Highly Modular Java Systems. Eclipse Series. Addison-Wesley, Upper
Saddle River, NJ, 2010.

[8] L. Merino, A. Bergel, and O. Nierstrasz. Overcoming issues of 3d
software visualization through immersive augmented reality. In 2018
IEEE Working Conference on Software Visualization (VISSOFT), pages
54–64. IEEE, 2018.

[9] M. Misiak, D. Seider, S. Zur, A. Fuhrmann, and A. Schreiber. Immersive
exploration of osgi-based software systems in virtual reality. In 2018
IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
volume 00, pages 1–2, March 2018.

[10] R. Müller, D. Mahler, M. Hunger, J. Nerche, and M. Harrer. Towards an
open source stack to create a unified data source for software analysis
and visualization. In 2018 IEEE Working Conference on Software
Visualization (VISSOFT), pages 107–111, Sep. 2018.

[11] L. Nafeie and A. Schreiber. Visualization of software components and
dependency graphs in virtual reality. In Proceedings of the 24th ACM
Symposium on Virtual Reality Software and Technology, VRST ’18,
pages 133:1–133:2, New York, NY, USA, 2018. ACM.

[12] A. Schreiber and M. Misiak. Visualizing software architectures in virtual
reality with an island metaphor. In J. Y. Chen and G. Fragomeni,
editors, Virtual, Augmented and Mixed Reality: Interaction, Navigation,
Visualization, Embodiment, and Simulation, pages 168–182, Cham,
2018. Springer International Publishing.

[13] D. Seider, A. Schreiber, T. Marquardt, and M. Brüggemann. Visualizing
modules and dependencies of osgi-based applications. In 2016 IEEE
Working Conference on Software Visualization (VISSOFT), pages 96–
100, Oct 2016.

[14] R. Socher, E. H Huang, J. Pennington, A. Y Ng, and C. Manning.
Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection. Advances in Neural Information Processing Systems, 24, 01
2011.

82

