

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 13, 2024

Towards a tool for visualizing pupil dilation linked with source code artifacts

Ioannou, Constantina; Bækgaard, Per; Kindler, Ekkart; Weber, Barbara

Published in:
Proceedings of the Eighth IEEE Working Conference on Software Visualization

Link to article, DOI:
10.1109/VISSOFT51673.2020.00016

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Ioannou, C., Bækgaard, P., Kindler, E., & Weber, B. (2020). Towards a tool for visualizing pupil dilation linked
with source code artifacts. In Proceedings of the Eighth IEEE Working Conference on Software Visualization
(pp. 105-109). IEEE. https://doi.org/10.1109/VISSOFT51673.2020.00016

https://doi.org/10.1109/VISSOFT51673.2020.00016
https://orbit.dtu.dk/en/publications/ce85196f-3fd4-4d25-90fd-a1368b6759c1
https://doi.org/10.1109/VISSOFT51673.2020.00016

Towards a tool for visualizing pupil dilation linked
with source code artifacts

Constantina Ioannou, Per Bækgaard, Ekkart Kindler
DTU Compute

Technical University of Denmark, Lyngby, Denmark
coio@dtu.dk, pbga@dtu.dk, ekki@dtu.dk

Barbara Weber
Institute of Computer Science

University of St. Gallen, St. Gallen, Switzerland
barbara.weber@unisg.ch

Abstract—Recent eye tracking research in the field of software
engineering has proposed novel visualizations linking developer’s
gazes with the source code artifacts to better understand how de-
velopers comprehend source code artifacts potentially consisting
of several different files. In addition, it is well established that
cognitive processes can be monitored by recording the change
in pupil dilation. Recent pupillometry studies in the software
engineering field have shown that pupil dilation can be used either
as an indicator of cognitive load or task difficulty. We envision
to create a tool for visualizing pupil dilation linked to source
code artifacts that can help to better understand the cognitive
processes of a developer during code comprehension tasks in
terms of cognitive load. In this paper, we describe a feasibility
study we conducted to enable a more fine-grained analysis of
pupil dilation and we demonstrate some preliminary results.

Index Terms—pupil dilation, code comprehension, cognitive
load

I. INTRODUCTION

The process of software development is a complex activity,
highly iterative, interleaved and loosely ordered and it requires
both technical knowledge and extensive abstraction capabili-
ties [1]. Moreover, it requires developers to understand the
requirements presented, to comprehend a large and complex
system including other related software artifacts, and to form
an internal representation of the problem in their working
memory before performing maintenance activities (e.g., mod-
ifying a code snippet’s functionality) [2], [3].

Existing work has used eye trackers to investigate de-
velopers’ behaviour while they read source code [4], [5]
and comprehend diagrams [6]. An overview of related eye
tracking studies in the software engineering field is provided in
[7]. Moreover, tools like iTrace/iTraceVis [8] which provide
informative visualizations of gaze-based features linked with
the source code artifacts have been developed, in order to
enable a better understanding on how developers behave to
comprehend software artifacts (e.g. source code snippets) or
what there reading patterns are.

Eye trackers can also capture the pupil diameter. Pupil dila-
tions and fixations are complementary features; pupil dilations
have long been recognised in literature [9]–[11] as related
to cognitive load and are under control of the autonomous
nervous system whereas fixations are more often associated
with attentional processes [12] that can at least partly be
controlled by the user.

In particular, it was observed that the more demanding a
cognitive task is, the greater the pupil dilation is [13]–[15].
In addition, researchers have explored the application of pupil
dilation in several human computer interaction scenarios [16]
and also in some code comprehension studies [17].

However, there is no current visualization solution which
allows cognitive processes (e.g., cognitive load) to be linked
with the actual content of software artifacts, in particular
source code snippets. Consequently, we envision to provide
a visualization tool for graphically presenting pupil dilations
as an indicator of cognitive processes linked with where a
developer fixated on software artifacts. This, in turn, will
provide a more fine grained analysis of cognitive processes
and thereby help to better understand and identify which
cognitive processes of the developer may lead to coding bugs
or bugs escaping their attention. Fig. 1 shows an example of
our envisioned visualization. In the figure, the fixations of a
developer are indicated as circles and the duration of each
fixation as the size of the circle. Additionally, the fixations
are colored based on the pupil dilations which is an indicator
of cognitive load.

Fig. 1. Example of a developer reading source code. The location of fixations
is indicated as circles. The size of the circle indicates the duration of a fixation.
Additionally, the color of the circle shows the values of pupil dilation, an
indicator of cognitive load

The remainder of this paper is structured as follows. In
Section II, we discuss existing related work for analysing and
visualizing eye tracking data (gazes and pupil). In Section
III, we describe our method for extracting and visualizing
pupil dilation. In Section IV, we present a feasibility study we
conducted to validate our method to visualize the eye tracking
data (gazes and pupil) along with some preliminary results.
Finally, in Section V, we conclude with a summary and future
work.

II. RELATED WORK

There are several existing tools for analyzing and visualizing
eye tracking data available online1 and also summarized by a
recent survey [18]. These tools can be categorized as:

1) Visualization for eye-movements
2) Visualization for pupil diameter
Many existing tools in the first category visualize the

eye movements using heatmaps and gazeplots. For example,
GazeVisToolBox2 is a MATLAB package that provides visu-
alization such as heatmaps and gazeplots. Moreover, SEQIT
[19] is a visualization software designed for sequence analysis
of eye tracking data. In addition, EyeCode3 provides analysis
of developers’ gaze and visualizes the movement between lines
of source code over time, shows the total number of fixations
on a line, and also provides flow charts to show the developers’
gaze movement.

In the second category, many of the tools were implemented
as MATLAB and R packages and provide 2D graphs to
visualize the processed pupil diameter in relation to time, e.g.,
PupilPreprocessing4.

To combine eye movements and other physiological mea-
surements (e.g., pupil diameter, electrodermal activity) for
the needs of code comprehension research, CodersMuse was
developed [20]. CodersMuse provides an environment for ex-
ploring synchronized, conjoint multi-modal data, specifically
designed for program comprehension. The eye movements and
other physiological measurements are integrated in the same
environment, but still are visualized in different views, i.e.,
one of the views shows the eye movements overlaid on the
software artifact (e.g., source code snippet) and other views
show the physiological measurements as 2D graphs.

Additionally, physiological heatmaps is a visualization tool
which links users’ physiological measurements (e.g., pupil
diameter, heart rate) with the eye movements on interfaces
and HCI artifacts to help identifying regions where on the
artifact users experienced an emotion [21].

While the aforementioned tools are sufficient to study how
people read a fixed sized stimulus (e.g., a sentence or a few
lines of source code), they are not suitable to study how
developers comprehend an entire software system, because
they are not able to visualize more than what fits on a screen
at a time. Moreover, most of these tools besides physiological
heatmaps, require the researcher to manually identify and
define the areas of interest (AOI).

To address this, tools like iTrace/iTraceVis [22], [23] have
been developed to provide an automatic detection of AOIs
based on the gaze points and to visualize developers’ gaze
points on large source code files after a session where a
developer is scrolling and switching between files. Using data

1https://github.com/davebraze/FDBeye/wiki/
Researcher-Contributed-Eye-Tracking-Tools

2https://www.mathworks.com/matlabcentral/fileexchange/
56236-djangraw-gazevistoolbox

3http://emipws.org/sample-page/2013-analyzing-experts-gaze/
visualizations/\#eyecode

4https://github.com/anne-urai/pupil preprocessing tutorial

from iTrace, iTraceVis provides a heatmap and static gaze map
plot which are common visualization types for eye tracking
data and also includes a line graph which visualizes how
a developer reads lines of software artifacts. In addition, it
includes a dynamic gaze map which enables the real-time
playback of the eye tracking gazes of a developer. Similarly,
another approach visualized eye tracking data from iTrace
using process mining to investigate the reading patterns of
developers [24].

As an extension to existing methods, we envision to pro-
vide a visualization tool that combines eye movements and
other physiological measurements (e.g., pupil diameter) and
graphically presents cognitive processes linked with the actual
content of the source code artifacts (e.g., source code elements)
where developers fixated on. This, in turn, will enable a more
fine grained analysis and help better understand developers’
cognitive processes during the software development process.

III. PROPOSED VISULIZATION METHOD

To investigate the feasibility of visualizing pupil dilations
linked to the actual content of where developers fixated on
the source code artifacts, we designed and implemented the
method shown in Fig. 2. This method consists of identifying
fixations, extracting pupil dilations from pupil diameter data
and graphically demonstrating the pupil dilation linked to
where developers fixated on the software artifact (e.g. source
code snippet).

The method takes as input the collected data from iTrace, a
set of configured variables, a rendering of the software artifact
used and then produces the visualization. An example of the
produced visualization is shown in Fig. 3, and Fig. 4. In this
section, we present details about each step of the method and
the corresponding challenges are discussed.

A. Collect Data

The first activity is the collection of eye tracking data using
iTrace [25], a plug-in for Eclipse. iTrace captures eye tracking
data and links them to software artifacts while developer
navigate and read source code. These data enable the link
of a gaze point (x,y) to the respective source code element
including the line and column number that developer looked
at, they entail a timestamp (eye trackers’ timestamp) and also
the pupil diameter.

Pupil diameter is influenced by several factors, for example,
by the change of light conditions, by the developers eyes’
physiology and by the sleepiness of the developer [26]. To
reduce likelihood of recording changes of the pupil diameter
which are due to changes in the brightness of the room
or screen, we suggest using a designated room where light
conditions can be controlled as well as using experimental
material that does not change the brightness of the screen.

Moreover, before recording data we suggest that the de-
velopers should be selected based on their vision capabilities
and if they wear glasses they should be checked whether they
are suitable to use (e.g., unscratched, without bi-focal lenses)
[27]. In addition, a proper calibration needs to be performed

Fig. 2. The method of visualizing pupil dilations linked to the actual content of source code artifacts that developers fixated at.

and check needs to be made that eye tracking data can be
recorded from the person.

B. Configuration

Once the data are collected, some variables need to be
configured before the next steps of the method can be applied.
Based on the equipment used during the experiment these
variables can be determined: the operational frequency of the
eye tracker, the name of the task under investigation, the
velocity threshold for detecting fixations and saccades, the
screen distance, the screen resolution, the minimum saccadic
duration, and also the region for interpolating pupil diameter
measurements before and after the blink.

C. Clean and partition data

Once the data are collected from all participants and the
configuration is set, it is necessary to clean and partition the
data before applying any analysis. First, we check the sampling
rate of the collected data and ensure that the data loss is not
greater than 2-3% of the sample. Next, we detect artifacts such
as blinks and gazes which are out of the area of interest. Then,
we partition the data sets based on source code files.

In the context of this paper, the area of interest (AOI) is
defined as the gazes on the source code snippets. Because
iTrace also captures gazes on other Eclipse views which are
outside of the editor window we filtered those using linear
interpolation.

D. Detect gaze-based features

After the data is cleaned and partitioned, we continue with
detecting gaze-based features (i.e., the fixations and saccades).
The process of detecting these features can be done in different
ways. An overview of different algorithms identifying these
gaze-based features can be found in [27]. In our case, we
applied a velocity-based threshold algorithm similar to the
ones described in [28] and obtained a time series of labelled
gaze data.

E. Filter pupil diameter

Once the gaze-based features are extracted, we proceed with
filtering the pupil diameter data. These data often contain
outliers and missing data points that usually are generated
due to blinks, look away moments, or glitches from the eye
tracking device itself, and thus filtering is required before
analysis. Filtering is not a trivial task and, in our method,
we followed the guidelines provided in [29] and used linear
interpolation.

F. Estimate pupil dilation

Once we filtered the pupil diameter measurements, we
continued to estimate the pupil dilations. First, the average
pupil diameter for each fixation was calculated and then
we subtracted the grand mean of all fixations average pupil
diameters, resulting in the pupil dilation for each fixation.

G. Visualizing

The visualization was achieved in two steps. First, we
marked each fixation on top of the line/column of the linked
source code element using a circle identifier (see Fig. 3 and
Fig. 4). Next, each fixation was color-mapped based on the
pupil dilation value estimated in the previous step. The pupil
dilation values typically range between 0 – 0.3 mm. The colors
are selected to form a gradient which ranges between 0 – 0.3
mm and changes every 0.05 mm to denote more visibly the
change of pupil diameter.

Our visualization method does not preserve any temporal
relationship between fixations, i.e., the scan path is not visible.
To make it easier to see multiple overlaid fixations and to
emulate smaller eye movements that occur during fixations
(e.g., tremors, drifts, microsaccades), the exact location is
jittered and moved underneath the relevant source code line
to slightly offset the location of where the fixations appear
on the source code. Moreover, our method does not preserve
the physical properties of the eyes, where eye movements are
faster than pupil dilations. Further analysis and alignment is
required to reach that goal.

IV. FEASIBILITY STUDY

This section briefly describes the study we conducted to
validate the process to visualize eye tracking data linked to the
software artifact and demonstrates some preliminary results.

A. Study Design and Execution

The main aim of this study is to investigate the feasibility
of visualizing pupil dilations, an indicator of cognitive load,
linked with the content of the software artifact that a developer
fixated on.

We conducted a lab experiment with 8 subjects that had
an academic background in Computer Science or related
engineering field. Each subject performed 5 source code com-
prehension tasks as we recorded eye tracking measurements.

1) Subjects: Eight volunteering subjects were included in
the study. The subjects were selected based on their vision
condition (i.e., they had normal or corrected to normal vision)
and also their knowledge in object-oriented programming
languages.

Fig. 3. Graphical representation of the fixations and pupil dilation of one
developer (Participant 4) performing an easy task.

Fig. 4. Graphical representation of the fixations and pupil dilation of one
developer (Participant 4) performing a difficult task.

2) Task Description: Subjects were asked to perform code
comprehension tasks. These comprehension tasks were taken
from [17] and translated into Java. In this study, we selected
one type of comprehension task, i.e., code snippets for cre-
ating four shape objects (Circles, Squares, Rectangles, and
Triangles) and drawing them in some order on the screen. We
included five code snippets with varying levels of difficulty
(i.e., three easy and two difficult). In particular the easy tasks
consisted of a few variable names (mnemonic or generic
naming) to impact subjects’ working memory by interfering
with their ability to remember the mapping between variable
name and its shape. One of difficult task consisted of a loop
that adds variables of shapes in an array by using a complex
mathematical function to impact subjects working memory
(for remembering the order of shapes) and their mathematical
skills. The other difficult task consisted of double-nested
question-mark-colon operator requiring a subject’s mathemat-
ical and working memory abilities.

During the experiment subjects were instructed to read
through the code and identify the last three shapes drawn on
the screen (choosing among five possible answers). Syntax
highlighting was enabled and there are no comments explain-
ing the functionality of the code. Moreover, subjects never had
to write or execute the code and were only allowed to read,
scroll and navigate between the tasks. Each of the tasks was
designed to take between 2-5 minutes for completion, however,
there was no time limit for completing them.

3) Instrumentation: All the tasks were provided to the
subjects in the Eclipse IDE and each task was defined as a
different project. This was done in order to prevent subjects
from taking their eyes away from the monitor. Moreover, for
collecting the eye movement data, we used a Tobii 300X eye
tracker with sampling rate of 300Hz. Tobii 300X is stationary
and attached to the bottom of the screen. The monitor used
in the study was 23-inch and had a resolution of 96 dpi
(1920x1080). Moreover, the monitor and the eye tracker were
placed in a distance of 60cm from the subject. The text font
was increased to 14-point size and also we added 2 extra lines
between each source code line to reduce the estimation error
which occurs with the translation of the detected fixations to
line and column.

4) Study Procedure: The study was conducted in a des-
ignated room for eye tracking to minimize interruptions and
to control the light conditions. When the subject arrived at
the designated room, we first asked the subject to fill-in a
screen questionnaire to ensure that the subject was eligible for
the experiment. The two main criteria for eligibility were that
the subject was knowledgable in object-oriented programming
languages and that the subject had normal or corrected to
normal vision. In the case the subject wore glasses, we checked
the glasses if they were in a suitable condition (e.g., un-
scratched, without bi-focal lenses). If the subject was eligible
then the consent form was signed. Afterwards, we provided
each subject with an introduction of the study procedure and
how to interact with iTrace and how to navigate between the
different tasks. Each subject was asked to work on five tasks:
one warm-up task and four tasks which were measured (i.e.,
two easy and two difficult ones). After the completion of all
the tasks, we asked the subject to fill-in a post-questionnaire
to rank their perceived difficulty for each task. Subjects were
allowed to go back and re-familiarize themselves with the
tasks.

B. Preliminary Results

Next we applied our method, and Fig. 3 and Fig. 4 show
a representative example of the generated visualization for an
easy and a difficult task of the same subject.

From Fig.3 we can infer a low number of fixations, and
this is expected since this was a fairly simple task. On the
other hand, Fig. 4 illustrates the difficult task which is more
demanding, which in line with our expectations, shows a high
number of fixations.

In addition, in Fig. 3 the pupil dilation values range between
0 to 0.113mm whereas in Fig. 4 the pupil dilation values

range between 0 to 0.259 mm. The task depicted in Fig. 4
was designed to be more challenging and impact the subjects’
memory and mathematical skills, which may explain the
higher maximum value of pupil dilations.

Similar results were observed in the other subjects. These
preliminary results seem promising and imply that the visual-
ization of pupil dilation as an indicator of cognitive load linked
on subject’s fixations on the software artifact is technically
possible and it may help to provide insight into the underlying
cognitive processes of a developer.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method we designed and
implemented using MATLAB that allows us to investigate
the feasibility of visualizing pupil dilations, an indicator of
cognitive load, linked with where a developer fixated on a
software artifact. Moreover, we presented the results of a
preliminary study where subjects read code snippets in Eclipse
IDE. The tasks were designed with varying levels of difficulty
to impact subjects’ working memory and mathematical skills.

We observed that the tasks designed to be difficult can be
visually differentiated from the easy tasks. The difficult tasks
presented a higher number of fixations and broader range of
pupil dilations whereas the easy tasks presented fewer fixations
and smaller range of pupil dilations. Our results demonstrate
that it may be possible to visualize cognitive processes linked
to the content of the software artifact.

In our future work, we plan to create a more automated
visualization software and also to extend and improve on
the method and visualization to overcome the current short-
comings. One improvement will be to consider the physical
property of the eyes, where eye movements are faster than
pupil dilations and consider this latency when aligning the
pupil dilations and the eye movements. Another improvement,
will be to incorporate the temporal aspect to enable visualizing
the order that fixations occurred and the fixation durations.

REFERENCES

[1] R. Guindon and B. Curtis, Control of cognitive processes during software
design: what tools are needed?, J. O’Hare, Ed. Association for
Computing Machinery, 1988, vol. Part F130202.

[2] S. C. Müller and T. Fritz, “Stakeholders’ information needs for artifacts
and their dependencies in a real world context,” Ieee International
Conference on Software Maintenance, Icsm, pp. 6 676 900, 290–299,
2013.

[3] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Comprehending stud-
ies on program comprehension,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 308–
311.

[4] B. Sharif and J. Maletic, “An eye tracking study on camelcase and
under score identifier styles,” 08 2010, pp. 196 – 205.

[5] L. Yenigalla, V. Sinha, B. Sharif, and M. Crosby, “How novices
read source code in introductory courses on programming: An eye-
tracking experiment,” Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9744, pp. 120–131, 2016.

[6] B. Sharif and J. I. Maletic, “An eye tracking study on the effects of
layout in understanding the role of design patterns,” Ieee International
Conference on Software Maintenance, Icsm, p. 5609582, 2010.

[7] Z. Sharafi, Y.-G. Guéhéneuc, and Z. Soh, “A systematic literature review
on the usage of eye-tracking in software engineering,” Elsevier Journal
of Software and Information Technology (IST), 07 2015.

[8] B. Sharif, B. Clark, and J. I. Maletic, “Studying developer gaze to
empower software engineering research and practice,” Proceedings of
the Acm Sigsoft Symposium on the Foundations of Software Engineering,
vol. 13-18-, pp. 940–943, 2016.

[9] J. Beatty and D. Kahneman, “Pupillary changes in two memory tasks,”
Psychonomic Science, vol. 5, no. 10, pp. 371–372, 1966.

[10] D. Kahneman and J. Beatty, The pupillary system, J. T. Cacioppo, Ed.
Cambridge University Press, 2000.

[11] J. Klingner, B. Tversky, and P. Hanrahan, “Effects of visual and verbal
presentation on cognitive load in vigilance, memory, and arithmetic
tasks,” Psychophysiology, vol. 48, no. 3, pp. 323–332, 2011.

[12] M. K. Eckstein, B. Guerra-Carrillo, A. T. Miller Singley, and S. A.
Bunge, “Beyond eye gaze: What else can eyetracking reveal about
cognition and cognitive development?” Developmental Cognitive Neu-
roscience, vol. 25, pp. 69–91, 2016.

[13] D. Alnæs, M. H. Sneve, T. Espeseth, T. Endestad, S. H. P. van de Pavert,
and B. Laeng, “Pupil size signals mental effort deployed during multiple
object tracking and predicts brain activity in the dorsal attention network
and the locus coeruleus,” Journal of Vision, vol. 14, no. 4, p. 1, 2014.

[14] D. Kahneman and J. Beatty, “Pupil diameter and load on memory,”
Science, vol. 154, no. 3756, p. 1583, 1966.

[15] B. Wahn, D. P. Ferris, W. D. Hairston, and P. König, “Pupil sizes scale
with attentional load and task experience in a multiple object tracking
task,” Plos One, vol. 11, no. 12, p. e0168087, 2016.

[16] M. Köles, “A review of pupillometry for human-computer interaction
studies,” Periodica Polytechnica Electrical Engineering and Computer
Science, vol. 61, no. 4, pp. 320–326, 2017.

[17] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using
psycho-physiological measures to assess task difficulty in software
development,” Proceedings - International Conference on Software
Engineering, no. 1, pp. 402–413, 2014.

[18] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and
T. Ertl, “Visualization of eye tracking data: A taxonomy and survey:
Visualization of eye tracking data,” Computer Graphics Forum, 02 2017.

[19] M. M. Wu and T. Munzner, “SEQIT: Visualizing Sequences of Interest
in Eye Tracking Data,” Proc. IEEE Conference on Information Visual-
ization (InfoVis), 2015.

[20] N. Peitek, S. Apel, A. Brechmann, C. Parnin, and J. Siegmund,
“Codersmuse: Multi-modal data exploration of program-comprehension
experiments,” Ieee Int. Conf. Program Comprehension, vol. 2019-May,
pp. 8 813 268, 126–129, 2019.

[21] F. Courtemanche, P. M. Leger, A. Dufresne, M. Fredette, E. Labonte-
LeMoyne, and S. Senecal, “Physiological heatmaps: a tool for visual-
izing users’ emotional reactions,” Multimedia Tools and Applications,
vol. 77, no. 9, pp. 1–28, 2017.

[22] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “Itrace: Enabling eye tracking on software artifacts within
the ide to support software engineering tasks,” 2015 10th Joint Meeting
of the European Software Engineering Conference and the Acm Sigsoft
Symposium on the Foundations of Software Engineering, Esec/fse 2015
- Proceedings, pp. 954–957, 2015.

[23] B. Clark and B. Sharif, “Itracevis: Visualizing eye movement data within
eclipse,” Proceedings - 2017 Ieee Working Conference on Software
Visualization, Vissoft 2017, vol. 2017-, pp. 22–32, 2017.

[24] C. Ioannou, I. Nurdiani, A. Burattin, and B. Weber, “Mining reading
patterns from eye-tracking data: method and demonstration,” Software
and Systems Modeling, vol. 19, no. 2, pp. 345–369, 2020.

[25] T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Müller, M. Falcone, and
B. Sharif, “Itrace: Enabling eye tracking on software artifacts within
the ide to support software engineering tasks,” 2015 10th Joint Meeting
of the European Software Engineering Conference and the Acm Sigsoft
Symposium on the Foundations of Software Engineering, Esec/fse 2015
- Proceedings, pp. 954–957, 2015.

[26] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience: Exploring
the brain: Fourth edition. Wolters Kluwer Health Adis (ESP), 2015.

[27] R. Dewhurst, J. Weijer, M. Nyström, K. Holmqvist, R. Andersson, and
H. Jarodzka, Eye tracking : a comprehensive guide to methods and
measures. Oxford University Press, 2011.

[28] D. D. Salvucci and J. H. Goldberg, “Identifying fixations and saccades
in eye-tracking protocols,” Proceedings of the Eye Tracking Research
and Applications Symposium 2000, pp. 71–78, 2000.

[29] M. E. Kret and E. E. Sjak-Shie, “Preprocessing pupil size data: Guide-
lines and code,” Behavior Research Methods, vol. 51, no. 3, pp. 1336–
1342, 2019.

