
SuperGlue: A Programming Environment
for Scientific Visualization

J.P.M. Hultquist E.L. Raible

hultquist@nas.nasa.gov raible@nas. nasa.gov
Numerical Aerodynamic Simulation Systems Division

NASA Ames Research Center, Mail Stop T045-1
Moffett Field, California 94035-1000

Abstract
Visualization environments have two audiences:

scientists and programmers. W e suggest that many
existing platforms overemphasize ease-of-use and do
not adequately address issues of extensibility. We have
built a visualization testbed, called SuperGlue, which
is particularly suited for the rapid development of new
visualization methods. A n interpreter supports rapid
development of new code and an extensive class hier-
archy encourages code reuse.

B y explicitly designing for ease of programming, we
have produced a visualization system which is power-
ful, easy t o use, and rapidly improving. This report
describes the motivation of the work, the architecture
of the system, and our plans for further development.

1 Introduction
Our application is the visualization of computa-

tional fluid dynamics (CFD) simulation results. This
is a particularly demanding field due to the complex
nature of the datasets. A steady-state 3D solution is
produced by solving the Navier-Stokes equations (a
system of non-linear partial differential equations) in
a curvilinear coordinate system. This calculation typ-
ically takes many hours of Cray-class supercomputer
time. The resulting dataset consists of a collection of
vector and scalar fields sampled at millions of points.
To meet the challenge of visualizing such data, we have
produced an environment explicitly tailored for the
rapid development of new visualization techniques for
C F D .
1.1 Requirements

Scientific visualization packages share a common
set of requirements. Although most packages attempt
to meet them, most fall short in several ways. These
requirements are not unique to visualization, but they
apply more strongly to it than to many other special-
ties.

extensibility Cooperation between scientists and pro-
grammers can be very fruitful, but the value of
this relationship depends upon the ability of the
programmers to rapidly implement new features
in response to changing needs.

flexibility Scientific visualization software must imple-
ment a wide variety of requirements including: re-
acting to user inputs, displaying computed mod-
els, and performing complex application-specific
calculations over very large datasets.

robustness Visualization in many disciplines requires
the management of a large amount of data, exam-
ined using many techniques. The development of
new visualization methods is best achieved in the
context of a running environment, and errors in
the new code should not be allowed to bring down
a running environment and its built-up internal
state.

1.2 Existing platforms
In this section, we consider three popular systems

for the visualization of C F D results: Plot3D [4],
FAST [l], and Explorer [9] from Silicon Graphics.

Plot3D is a mature, straightforward, and highly
portable system. I t is organized as a single-process
program with a command-line interface. It has en-
joyed wide acceptance because its pragmatic approach
solves many problems that C F D researchers face on a
daily basis.

In the FAST model, separate processes commu-
nicate through shared memory to produce a collec-
tion of geometric models of the data. These models
are displayed by a central rendering module. New
application-specific tools can attach to the shared
memory, and may place newly-computed data and
models into this common pool.

Explorer (and its conceptual predecessor AVS [13])
are examples of the “data flow paradigm” of scientific
visualization. New modules or filters can be strung
together in a network through which data is processed
from input file to screen image. A graphical network
editor provides a simple means to construct a wide
variety of different visualizations.
1.3 Limitations

All of these systems are extensible to some degree,
but none of them strongly addresses the issue of rapid
prototyping, full extensibility, or code reuse. Although
FAST and Explorer allow the recompilation of just the

243
US. Government Work Not Protected by U.S. Copyright

mailto:hultquist@nas.nasa.gov
http://nasa.gov

single module under development, even this require-
ment can be disruptive to the programmer. Plot3D
requires full recompilation in order to test new exten-
sions.

Both FAST and Explorer offer some library-based
utility routines for the implementation of new mod-
ules, but otherwise provide no provisions for reusing
code. Plot3D provides no explicit support for code
reuse, but has been extensively customized in dozens
of derivative versions.
1.4 SuperGlue

I t should be clear that the previously discussed
requirements of a visualization system (extensibility,
flexibility, and robustness) are best designed into a
system from the start; it is extremely difficult to add
them after the fact.

Of these three requirements we assert that system-
wade extensibility is the most difficult to achieve. One
common approach is to include a specialized configura-
tion language. It has been our experience that these
ad hoc languages grow over time and rarely develop
into a coherent whole.

Rather than modify a visualization system to meet
our requirements, we started with a system which al-
ready met these requirements and then added the spe-
cific features needed for visualization. More specifi-
cally, we centered the system around a complete, inter-
preted language - a dialect of Lisp called Scheme [ll]
- which we then extended to support the demands of
visualizing large CFD datasets.

SuperGlue has been implemented on SGI hardware;
it should be portable, however, to any machine which
supports a rich graphics environment.
1.5 Previous extension languages

The extension language approach has been used in
many applications.

AutoCAD is a widely-used commercial system
which uses a Lisp-like language for customization and
extension. GNU Emacs also incorporates an inter-
preter for a dialect of Lisp, combined with a large
number of compiled primitive functions for process-
ing text. Beckman [2] used Scheme to implement a
system for interpreted programming with the Silicon
Graphics GL.

P3D (Welling et al [14]) is a restricted dialect of
Common Lisp used to describe graphical models of
the scientific data. SuperGlue extends this notion by
allowing the language to describe user interaction as
well as the format and the graphical presentation of
the data.

PDBq Palmer [lo]) is a scientific visualization

guage which resembles C. Explicit support for vector
arithmetic simplifies the programming of new visual-
ization methods.
1.6 Overview

Section 2 describes the overall architecture of Su-
perGlue. Sections 3 and 4 discuss the major extensions
which were added to the command language. The
application and the programming interfaces of Super-
Glue are described in section 5 , and an example imple-
mentation of a new feature is examined in section 6.

package w x ich is built upon an special-purpose lan-

The paper concludes with a review of the benefits and
the difficulties of this approach, and a brief discussion
of our future plans.

2 A dual-language architecture
The SuperGlue environment has been implemented

using two languages: Scheme and C. This split adds
some conceptual burden, but offers many advantages
which make this approach worthwhile.
2.1

Interactive visualization requires a flexible and in-
tuitive user interface, which is difficult to develop out
of thin air. I t must be evolved with the benefit of
experience and experimentation. Scheme has several
characteristics that make it the ideal choice for imple-
menting the flow of control of complex interfaces:

0 I t is interpreted. Programs can be written and
tested interactively.

0 It is complete. Scheme is able to express a wide
variety of programming paradigms.

0 I t is standardized. This allows us to share code
with other researchers.

0 It is convenient. Scheme provides dynamic typ-
ing, automatic memory deallocation, simple syn-
tax, and a wide variety of data types.

SuperGlue is based on the “Xscheme” program
written by David Betz, who allows its use for non-
commercial purposes. Xscheme compiles Scheme ex-
pressions into machine-independent byte-codes, which
are then executed on a virtual machine implemented
in C. The result is a reasonable compromise between
portability, compilation time, and execution speed.
2.2 C as a computation language

Although Scheme is a fine language for high level
control and user interface programming, most of our
numerical and graphical primitives are coded in C. Ex-
ecution speed is the primary reason for this, though
many programmers also prefer C’s compact syntax for
mathematical programming. C is also more conve-
nient when interfacing to Unix libraries. (Nothing in
principle prevents new primitives from begin written
in C++, FORTRAN, or other compiled languages,
but at present it is less convenient.

Another reason to use C is mu tiprocessing. Our
SGI workstations support the creation of autonomous
lightweight threads that run on multiple CPUs. Once
instantiated, a thread will run asynchronously until it
needs to return a result. It must then gain temporary
exclusive access to the interpreter in order to avoid
corrupting shared data structures. A set of C macros
simplifies this synchronization.

In order to maintain the benefits of an interpreted
language when programming in C, we have extended
Xscheme to support “dynamic loading.” This feature
allows new versions of a C function to be compiled
and loaded into the running system; thereby short-
circuiting the traditional edit, compile, link, run, con-
figure, and test cycle. Dynamically loading a page or
two of source code takes only five to ten seconds.

Scheme as a control language

1

244

2.3 The inter-language interface
A convenient interface between the two languages

is a crucial component of any dual-language architec-
ture. Two issues must be addressed: different storage
models and different calling conventions.

The difference in storage models is inherent in the
specifications of the two languages. In C, variables
are typed and values are untyped; in Scheme, values
are typed and can be assigned to any variable. (This
is equivalent to saying the C does compile-time type
checking, while Scheme does run-time type checking.)
We were able to preserve Scheme’s “exceptionally clear
and simple semantics”[ll] by making it the responsi-
bility of every C primitive to type-check and convert
each of its Scheme arguments into the corresponding C
format. When the function completes, its result must
be converted to a Scheme data item.

The issue of different calling conventions is a conse-
quence of the Xscheme virtual machine architecture.
This virtual machine manages its own stack, which is
independent of the C hardware stack. As a result, C
primitives must explicitly pop their arguments from
the Xscheme stack when they are called, and must ex-
plicitly push any arguments onto this stack when they
call back to Scheme.

We decided to insulate all Scheme code from these
implementation considerations. A set of C macros and
functions allows these incompatibilities to be resolved
in a straightforward and portable manner. The result
is transparent access from Scheme to C and convenient
access from C to Scheme. The cost of these conver-
sions in terms of coding, maintenance, and execution
time is insignificant.

3 The object system
The advantages of object-oriented systems are nu-

merous and well-documented. The Xscheme kernel
has extended the Scheme language to support single
inheritance with dynamic method lookup. We added a
convenient syntax for defining new methods and have
built a class hierarchy of over 150 classes and almost
1500 methods. This class hierarchy collectively defines
the generic features of all interactive visualization ap-
plications.

3.1 The hierarchy
The class object defines the behavior of all in-

stances in the system, including that of the class
c las s . The class c l a s s defines the behavior of all
classes in the system, including itself. The remaining
classes are grouped into the following major subtrees:

data contains the essential “computer science” data
structures such as collections, stacks, queues, and
dictionaries.

graphics implements an object-oriented interface to
the Silicon Graphics GL. Automatic deallocation
of GL resources is supported. Higher-level graphi-
cal objects, such as curves and meshes, are also in-
cluded. Finally, direct-manipulation is supported
by a virtual trackball and a 3D cursor.

interface provides 2D user-interface objects (such as
sliders, buttons, and popup menus) implemented
using GL. A scene widget forms a rectangular pic-
ture of a 3D scene.

math provides access to application-specific compiled
code, such as numerical integration and interpo-
lation routines. Class definitions are provided for
matrices, quaternions, and the composite struc-
tures which represent CFD data sets.

system includes interfaces to Unix resources such
as files, directories, and threads. Additional
classes implement the Scheme runtime environ-
ment; these include clocks, alarms, and a source-
level Scheme debugger.

3.2 Defining a new class
Each class inherits some of its behavior and con-

tents from its superclass. It adds to this initial con-
figuration by adding additional internal state, and by
defining new methods which can be used to modify
that state.

(dei c las s dass-name
(super superclass-name)
(c las s class-variable

. . .)
(class-variable indzalzzer)

(instance instance-variable
. . . I >

The dei c las s statement begins with the name of
the new class, followed by three statements which de-
fine the superclass and the additional internal state of
the new class. The c las s statement defines the vari-
ables which are shared among all instances of the new
class. The instance statement defines the new vari-
ables which are held as separate copies in each new
instance.

(defmethod class-name (method-name argl ... >
body ... 1)

The defmethod statement declares the name of the
relevant class, the name of the method itself, an argu-
ment list, and the body of the method.
3.3 Message sending

The first item of any Scheme expression must be a
function or an object. If it is an object, then second
item must be a symbol, which is then used as the
message to be sent to that instance.

(define baz (stack ’new))
(baz ’push (+ 2 3))
(baz ’push (* 3 4))
(baz ’pop) + 12
(baz ’empty?) -+ false

Messages which cannot be handled by the imme-
diate class of the receiving instance are passed up
the superclass chain. If a message fails to match any
method in the chain, the erroneous send is trapped in
the source code debugger.

245

4 Storage management
A typical CFD dataset consists of a grid of a mil-

lion points with a 3D position and three sampled flow
quantities recorded for each point. As scientists ex-
amine a solution, they typically calculate many more
fields over that same grid. Several features were ex-
plicitly added to SuperGlue to support the manage-
ment of these large datasets.
4.1 Chunks

Chunks are Scheme data items which contain a
header and a contiguous block of untyped memory.
The information in the header allows the garbage col-
lector to reclaim storage when appropriate. Compiled
primitives are used to process the compact data within
the chunk.

Some scientific datasets are extremely large; so
large that if we were to read them with normal meth-
ods we would rapidly exhaust the available swap space
of the average workstation. This fatal situation can
be avoided by memory mapping the contents of these
large files directly into the program’s address space.
Memory mapped chunks are similar to normal chunks,
except that they rely on the operating system to read
the data from disk only when it is referenced. Be-
sides preserving swap space, memory mapped chunks
eliminate the initial file-reading delay of most other
systems. This is significantly more efficient if only a
subset of the data is used.
4.2 Storage of field data

I t is often convenient to encapsulate a chunk within
an instance of a class. This arrangement gives us the
best of both worlds: a Scheme object with a set of
supported methods, and an efficient means of stor-
ing the data. Taken together, these provide ease of
bookkeeping with the speed required for complicated
application-specific data manipulation.

CFD simulation results are represented by an in-
stance of the class bundle cf. Butler [5]), which con-

curvilinear grid. Each field contains its sampled vol-
ume as a chunk. This chunk is passed to application-
specific primitives which operate on fields.

A bundle may be a subvolume of another bundle.
When a bundle is asked for a field it does not have,
the child may compute that field from the fields it
does contain or may extract the data from the corre-
sponding field in its parent. The expressive power of
the interpreted language could be used to implement
additional bookkeeping to support remote or lazy eval-
uation of field data.
4.3 Destructors

Certain objects used in SuperGlue have an exis-
tence external to the system. For example, the SGI
Graphics Library maintains lights, textures, and ma-
terials within its own address space. A mechanism
for explicit destructors has been implemented so that
when the associated instance for such an item is re-
claimed by SuperGlue, the corresponding external re-
source can be explicitly deallocated.

The interpreter was extended to maintain a list of
items for which explicit “destructor functions” have
been defined. When the garbage collector completes

tains a collection of named B elds defined on a common

its mark pass of memory, unmarked objects on this
special list are transferred t o a separate list of “re-
claimed” objects. Items on this “reclaimed” list share
the property that they are no longer in use, and thus
can be deallocated when the system becomes idle.
This approach consumes only three words of overhead
for those few objects which require explicit destruc-
tion. I t requires only a single scan of the special list
between the mark and the sweep phases of the garbage
collection.

5 Interacting with SuperGlue
SuperGlue offers two interfaces. One is a mouse-

directed interface of widgets and and 3D scenes used in
the target application. The other is a textual interface
which is of use primarily to programmers.
5.1 The application interface

The point-and-click side of SuperGlue presents a
number of scenes and panels. A scene depicts a set of
objects, or visuals, in a 3D environment. A scene can
be resized to any size or shape, and can even cover
the entire workstation screen. The constructed mod-
els can be displayed in any number of scenes; each
with its own viewing direction and magnification. A
panel contains a number of 2D widgets, is usually
fairly small, and cannot be resized. Figure A shows
a typical screen display, including two views of some
3D data (Rogers [12]), an instance inspector, and a
hierarchy browser.

The application interface of SuperGlue provides
direct-manipulation of cursors in the 3D volume of a
flow field. Chording of the mouse buttons is used to
control a modal mapping between the 2D motions of
the mouse and the 3D motions of the cursor. Users
often manipulate these 3D probes at high magnifica-
tion while viewing the resultant models from another
angle in a second window. This approach allows the
precise and direct placement of control points, a vast
improvement over what is possible by indirectly con-
trolling these positions using multiple 2D widgets.

The system attempts to maintain a high frame rate
by downgrading the quality of the image while it is
moving in response to user input. When the user
pauses between commands, the system does not pause,
but uses the otherwise idle machine cycles to improve
the accuracy of the presented results.
5.2 The textual interface

SuperGlue programming is qualitatively different
than programming in compiled languages. The pri-
mary reason for this is the rapid feedback provided by
an interpreted language. Rather than typing at the
SuperGlue interpreter directly, we rely on the built-
in capability of GNU Emacs to control external pro-
cesses. Thus all text input to and output from Super-
Glue goes through Emacs. The Emacs window can
be split into sections, which can independently dis-
play files of source code, the interpreter transcript,
and interactions with the Scheme and the compiled
code debuggers.

A typical SuperGlue session lasts somewhere be-
tween several hours and several days. During this
time many Scheme and C functions are defined and

246

redefined. Emacs supports this activity by allowing
either individual functions or entire files of either C or
Scheme code to be downloaded to the interpreter.
5.3 Debugging

SuperGlue provides the usual tools of a Lisp-based
environment, including code tracing, pretty-printers,
break loops, and a simple programmatic interface for
handling errors. Unhandled errors and user-generated
interrupts cause the system to trap into the interac-
tive debugger. Unlike most C or FORTRAN environ-
ments, it is unnecessary to run "under the debugger,"
since it is built into the system.

The Scheme debugger allows the user to print the
current source code expression, to display the call
stack, to examine and modify local variables, to evalu-
ate arbitrary expressions in the context of a particular
frame, to set breakpoints, to automatically display the
relevant source code in Emacs, and finally to fix and
proceed from most errors. The debugger includes on-
line help and offers different modes for beginning and
advanced SuperGlue programmers.

The GNU debugger db is used to debug all C code,
including any dynamicaly-loaded C. No additional ef-
fort is required to debug dynamically-loaded code; the
required additional bookkeeping is handled automat-
ically if the programmer loads the C code with the
standard SuperGlue Emacs keystroke.

6 A programming example
Programming in SuperGlue often consists of writ-

ing new methods to improve the user interface or
creating a new class to access some new application-
specific routine. We describe an example of the latter
in this section, then demonstrate the advantages of
incorporating new features as first-class entities of an
evolving system.
6.1 Stream line calculation

A common technique in flow visualization uses tan-
gent curves through a vector field. When the field is
the velocity of the steady fluid, then each curve de-
fines the path traveled by a massless particle drifting
through the flow; such paths are called streamlines. In
this section, we describe an implementation of stream-
lines for CFD datasets.

A streamline is the solution of the initial value
problem posed by a vector field U and an initial
point XO. We need to compute a sequence of points
(x0,x1, . . .xn) such that

t i + 1

Xi+l = xi + li u(x(s))ds
for a closely-spaced sequence of values (ti V i E [0, T I]) .

This integration requires numerical methods iter-
ated over a piecewise interpolation of the vector field
samples. SuperGlue provides several primitives for
this calculation, using a variety of adaptive, multi-
step, and predictor-corrector methods. Since this
computation can be time-consuming, all of these rou-
tines are implemented in C and can be run as threads
spawned from the user interface. These functions
place the computed point coordinates into a chunk

which is available to the rendering thread for the dis-
play of interim results.
6.2 The streamline object

A new class definition is needed to manage calls
to the calculation primitives. This new streamline
class can inherit much of its behavior from the already-
existing path class. Every instance of path stores a
bundle of one-dimensional fields. I t supplies methods
for computing the bounding boxes of its fields and for
rendering that curve using GL or PostScript.

The declaration of the new class declares it to be a
subclass of path, to which it adds three new instance
variables: domain, vec-name, and my-thread.

(def c las s streamline
(super path)
(instance domain

vec-name
my-thread)

When any instance is created, it immediately re-
ceives the isnew initialization message. The corre-
sponding method for our new class includes a call to
the initializer of the superclass, and then stores the
argument values into the internal state of this new in-
stance. These three arguments are the bundle of the
enclosing (usually 3D) domain, the name of the vec-
tor field (e .g . velocity, temperature-gradient) in which
the streamline is to be computed, and the initial seed
point from which the streamline to begin.

(defmethod streamline (ISNEW dom f l d seed)
(send-super 'isnew)
(s e t ! domain dom)
(s e t ! vec-name f Id)
(s e l f 'compute seed)
s e l f

The sequence of points along the curve is com-
puted by calling the compiled primitive function
streamline: calc. The compute method provides a
convenient wrapper for this routine. The primitive re-
ceives the 1D position field result buffer, the position
and vector fields of the enclosing 3D bundle, and the
initial seed point xo for the integrated curve.

(defmethod streamline (COMPUTE seed)
;; Reinitialize this streamline,
;; and allocate the destination buffer.

(when my-thread (my-thread ' k i l l))
(path 'reset)
(path 'a l loc 'pos i t ion 1000)
;; Do computation as a separate iask.

(s e t ! my-thread
(thread 'new

stream1ine:calc
(path ' export 'position)
(domain 'export 'position)
(domain 'export vec-name)
seed) 1)

247

The method does not call the primitive directly, but
instead passes it and the arguments to the thread
class, which spawns a task and returns an instance
which serves as a handle for this computational task.
6.3 Using streamlines

Since the streamline class has been incorporated
into the class hierarchy of SuperGlue, it is now avail-
able for use in any future application. This offers
many benefits over the frequent alternative in which
a new feature is accessible only as an option on a
menu. Three examples presented here use instances
of streamline, but specify the initial seed points of
the curves in a different way.

The data used in these examples was computed by
Ekaterinaris and Schiff [6]. It represents a “vortex
breakdown” over a delta wing, moving at Mach 0.3
at 40 degrees angle of attack and a Reynolds number
of lo6. The grid contains slightly over 200,000 data
points.

manual placement Using the standard 3D cursor in-
stance (shown in figure B), we can place a num-
ber of seed points in the breakdown region of the
vortex. Exploration of this region of the data is
greatly aided by direct manipulation and interac-
tive response.

scripted placement Interactive placement is conve-
nient for the exploration of some flow features,
but placement at exactly specified points in the
flow is often desired. A trivial Scheme expression
was used in figure C to place a sequence of seed
points along the leading edge of the wing.

computed placement Finally, a composition of func-
tions can be used to automate the placement of
streamlines. A 2D slice was extracted from the
flow data. All grid points on this slice with a fluid
density below some threshold were then used as
seed points for a third set of streamlines, shown
in a side view in figure D.

The three sets of streamlines can be combined in a
single image to produce a depiction of the vortex. This
is shown in a side view in figure E, and from upstream
and above the wing in figure F. The distinct placement
methods complement each other and together provide
a more useful tool for examining this data.

7 Conclusions
Our experience with developing and using Super-

Glue has convinced us that our approach is sound.
Development of new tools is rapid, fun, and endowed
with high probability of a successful result. Problems
with the system have appeared, but these are more
irksome than serious.
7.1 Applications

SuperGlue has been used to create an animation of
a proposed space station design (Globus [7]).

It has been used as an exploratory environment for
the development of new (presently unpublished) visu-
alization techniques.

It was used by one of the authors as the develop-
ment platform for an improved method for the con-
struction of stream surfaces [B].

It currently lacks some of the features required for
unassisted use by scientists, but we are adding this
“user-friendliness” as quickly as we can. We believe
that having invested a great deal of time in laying the
foundation, we shall be able to construct the rest of
the house much more quickly.

7.2 Problems
We did not fully appreciate the sheer magnitude of

code required in an interactive visualization environ-
ment. SuperGlue is now about 35000 lines of code,
split about equally between Scheme and C. After ap-
plying three man-years of effort to extending a previ-
ously existing interpreter, we have only made a dent
in our list of desired features.

The difference in the speeds of interpreted Scheme
and compiled C can be as much as one hundred-fold.
For many portions of the system, this difference in
speed is not important; in others, it is unacceptable.
An optimizing native code compiler for Scheme and a
faster garbage collector would allow Scheme code to
be used for a greater proportion of the system. Com-
mercial LISP implementations provide this speed, but
we needed a system which could be fully modified for
our particular goals.

We did not fully anticipate the great resistance we
have encountered regarding the use of Scheme. Di-
alects of LISP are still regarded with suspicion or
disdain, perhaps in supercomputer centers more than
anywhere else.

7.3 Future plans
The SuperGlue project is open-ended by design;

progress is made by growing the class hierarchy. Cer-
tain features hold particular interest for us and we
expect to spend the coming year implementing these
items:

publication tools Interactive color raster displays are a.
valuable exploratory tool, but publishable images
are a necessity. The realities of modern publishing
still require line art for the majority of archival
publications.

virtual reality Levit and Bryson [3] have shown that
the visualization of complex flow fields can be
greatly aided by the technology of virtual real-
ity. In a virtual reality environment the display
must be repainted in real-time, so all of the draw-
ing code must be migrated into C where it will
be immune from intermittent pauses caused by
garbage collection.

unsteady data The state of the art in computational
fluid dynamics has reached the stage of simulating
3D unsteady flows. The massive data storage re-
quirements almost certainly demand a distributed
implementation using workstations connected to
supercomputers over high-speed networks.

248

7.4 Summary
No tool is right for every job; no language is right

for every algorithm. The bilingual structure of Su-
perGlue provides a flexible platform from which to
attack the varied requirements of interactive visual-
ization, from the tuning of a user interface to the pro-
cessing of a large dataset.

Chunks and memory-mapped files are compact and
efficient mechanisms that allow data to be managed
and examined from the Scheme command layer, yet
rapidly processed by compiled numerical and graphi-
cal routines. Bundles simplify manipulation of CFD
datasets. Destructors are an efficient mechanism that
allow external resources to be returned when they are
no longer needed.

Programming with an interpreter allows convenient
exploration of alternative implementations. The class
hierarchy provides a clean mechanism for the reuse of
code. Together, these features help reduce the time
required for the implementation of new features. The
programming members of a visualization team are able
to respond in a timely manner to the needs of their
scientist-clients.
Acknowledgements

We wish to thank Tom Lasinski, who has stead-
fastly supported our efforts. We thank A1 Globus,
Kris Miceli, and Michael Gerald-Yamasaki, who have
tested early versions of the code. JH wishes to thank
Mary Hultquist for her encouragement and tolerance.
We also thank David Betz for his fine implementation
of Xscheme, and John Ekaterinaris and Stuart Rogers
for allowing the use of their flow data.

References
[l] Gordon V. Bancroft et al. FAST: A multi-

processed environment for visualization of com-
putational fluid dynamics. In Proceedings of Vi-
sualization '90, pages 14-27, San Francisco, CA,
October 1990.

[2] Brian Beckman. A scheme for little languages in
interactive raphics. Soflware-Practice and Expe-
rience, 21($:187-207, February 1991.

[3] Steve Bryson and Creon Levit. The virtual wind-
tunnel: An environment for the exploration of
three-dimensional unsteady fluid flows. In Pro-
ceedings of IEEE Visualization '91, San Diego,
CA., 1991. To appear in Computer Graphics and
Applications, July 1992.

[4] P.G. Buning and J.L. Steger. Graphics and
flow visualization in CFD. In A I A A Aerospace
Sciences Conference, Reno, NV, January 1985.
AIAA Paper 851507.

[5] D.M. Butler and M.H. Pendley. A visualization
model based on the mathematics of fiber bundles.
Computers in Physics, 3:45-51, Sep/Oct 1989.

[6] J.A. Ekaterinaris and L.B. Schiff. Vortical flows
over delta wings and numerical prediction of vor-
tex breakdown. In A I A A Aerospace Sciences
Conference, Reno, NV, January 1990. AIAA Pa-
per 90-0102.

The design and visualization of a
space biosphere. In lUth Biennial Space Studies
Institute / Princeton University Conference on
Space Manufacturing, Princeton, NJ, May 1991.

[SI J.P.M. Hultquist. Constructing stream surfaces
in steady 3d vector fields. In Proceedings of Vz-
sualiration '98, Boston, MA, October 1992.

[9] Silicon Graphics Inc. IRIS Explorer user's guide,
January 1992. Document Number 007-1371-010.

A language for molecular
visualization. IEEE Computer Graphics and Ap-
plications, 12(3):23-32, May 1992.

[ll] Jonathan A. Rees and William Clinger. Revised3
report on the algorithmic language scheme. A C M
Sigplan Notices, 21(12), December 1986.

A numer-
ical study of three-dimensional incompressible
flow around multiple posts. In A I A A Aerospace
Sciences Conference, Reno, NV, January 1986.
AIAA Paper 86-0353.

[13] Craig U son et al. The application visualization
system [AVS): A computational environment for
scientific visualization. IEEE Computer Graphics
and Applications, 9(4):30-42, July 1989.

[14] Joel Welling, Chris Nuuja, and Phil Andrews.
P3D: A lispbased format for representing general
3d models. In Proceedings of Supercomputing '90,
pages 766-774, Jan 1990.

[7] A1 Globus.

[lo] Thomas C. Palmer.

[12] S. Rogers, D. Kwak, and U. Kaul.

249

Figure A Application interface of SuperGlue,
showing two scenes - an inspector, and a
hierarchy browser.

Figure B: Close up view of the mouse-directed
placement of seed points in the breakdown region.

Figure C: Scripted placement of seed points along
the leading edge of a delta wing.

Figure D: Side view of the computed placement of
seed points in the low-density vortex core.

Figure E: Side view of the completed visualization of
the vortex breakdown over a delta wing.

Figure F: Three-quarter vlew of the vortex
breakdown over a delta wing.

(See wlorplates, p . CP-27.)
250

