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Abstract 
Visualization environments have two audiences: 

scientists and programmers. W e  suggest that many 
existing platforms overemphasize ease-of-use and do 
not adequately address issues of extensibility. We have 
built a visualization testbed, called SuperGlue, which 
is particularly suited for the rapid development of new 
visualization methods. A n  interpreter supports rapid 
development of new code and an extensive class hier- 
archy encourages code reuse. 

B y  explicitly designing for ease of programming, we 
have produced a visualization system which is power- 
ful, easy t o  use, and rapidly improving. This report 
describes the motivation of the work, the architecture 
of the system, and our plans for further development. 

1 Introduction 
Our application is the visualization of computa- 

tional fluid dynamics (CFD)  simulation results. This 
is a particularly demanding field due to the complex 
nature of the datasets. A steady-state 3D solution is 
produced by solving the Navier-Stokes equations (a 
system of non-linear partial differential equations) in 
a curvilinear coordinate system. This calculation typ- 
ically takes many hours of Cray-class supercomputer 
time. The resulting dataset consists of a collection of 
vector and scalar fields sampled at millions of points. 
To meet the challenge of visualizing such data, we have 
produced an environment explicitly tailored for the 
rapid development of new visualization techniques for 
C F D .  
1.1 Requirements 

Scientific visualization packages share a common 
set of requirements. Although most packages attempt 
to meet them, most fall short in several ways. These 
requirements are not unique to visualization, but they 
apply more strongly to it than to  many other special- 
ties. 

extensibility Cooperation between scientists and pro- 
grammers can be very fruitful, but the value of 
this relationship depends upon the ability of the 
programmers to rapidly implement new features 
in response to changing needs. 

flexibility Scientific visualization software must imple- 
ment a wide variety of requirements including: re- 
acting to  user inputs, displaying computed mod- 
els, and performing complex application-specific 
calculations over very large datasets. 

robustness Visualization in many disciplines requires 
the management of a large amount of data, exam- 
ined using many techniques. The development of 
new visualization methods is best achieved in the 
context of a running environment, and errors in 
the new code should not be allowed to bring down 
a running environment and its built-up internal 
state. 

1.2 Existing platforms 
In this section, we consider three popular systems 

for the visualization of C F D  results: Plot3D [4], 
FAST [l], and Explorer [9] from Silicon Graphics. 

Plot3D is a mature, straightforward, and highly 
portable system. I t  is organized as a single-process 
program with a command-line interface. It has en- 
joyed wide acceptance because its pragmatic approach 
solves many problems that C F D  researchers face on a 
daily basis. 

In the FAST model, separate processes commu- 
nicate through shared memory to produce a collec- 
tion of geometric models of the data. These models 
are displayed by a central rendering module. New 
application-specific tools can attach to the shared 
memory, and may place newly-computed data and 
models into this common pool. 

Explorer (and its conceptual predecessor AVS [13]) 
are examples of the “data flow paradigm” of scientific 
visualization. New modules or filters can be strung 
together in a network through which data is processed 
from input file to screen image. A graphical network 
editor provides a simple means to construct a wide 
variety of different visualizations. 
1.3 Limitations 

All of these systems are extensible to  some degree, 
but none of them strongly addresses the issue of rapid 
prototyping, full extensibility, or code reuse. Although 
FAST and Explorer allow the recompilation of just the 
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single module under development, even this require- 
ment can be disruptive to  the programmer. Plot3D 
requires full recompilation in order to  test new exten- 
sions. 

Both FAST and Explorer offer some library-based 
utility routines for the implementation of new mod- 
ules, but otherwise provide no provisions for reusing 
code. Plot3D provides no explicit support for code 
reuse, but has been extensively customized in dozens 
of derivative versions. 
1.4 SuperGlue 

I t  should be clear that the previously discussed 
requirements of a visualization system (extensibility, 
flexibility, and robustness) are best designed into a 
system from the start; it  is extremely difficult to add 
them after the fact. 

Of these three requirements we assert that system- 
wade extensibility is the most difficult to achieve. One 
common approach is to include a specialized configura- 
tion language. It has been our experience that these 
ad hoc languages grow over time and rarely develop 
into a coherent whole. 

Rather than modify a visualization system to meet 
our requirements, we started with a system which al- 
ready met these requirements and then added the spe- 
cific features needed for visualization. More specifi- 
cally, we centered the system around a complete, inter- 
preted language - a dialect of Lisp called Scheme [ll] 
- which we then extended to  support the demands of 
visualizing large CFD datasets. 

SuperGlue has been implemented on SGI hardware; 
it should be portable, however, to any machine which 
supports a rich graphics environment. 
1.5 Previous extension languages 

The extension language approach has been used in 
many applications. 

AutoCAD is a widely-used commercial system 
which uses a Lisp-like language for customization and 
extension. GNU Emacs also incorporates an inter- 
preter for a dialect of Lisp, combined with a large 
number of compiled primitive functions for process- 
ing text. Beckman [2] used Scheme to implement a 
system for interpreted programming with the Silicon 
Graphics GL. 

P3D (Welling et al [14]) is a restricted dialect of 
Common Lisp used to describe graphical models of 
the scientific data. SuperGlue extends this notion by 
allowing the language to describe user interaction as 
well as the format and the graphical presentation of 
the data. 

PDBq Palmer [lo]) is a scientific visualization 

guage which resembles C. Explicit support for vector 
arithmetic simplifies the programming of new visual- 
ization methods. 
1.6 Overview 

Section 2 describes the overall architecture of Su- 
perGlue. Sections 3 and 4 discuss the major extensions 
which were added to the command language. The 
application and the programming interfaces of Super- 
Glue are described in section 5 ,  and an example imple- 
mentation of a new feature is examined in section 6.  

package w x ich is built upon an special-purpose lan- 

The paper concludes with a review of the benefits and 
the difficulties of this approach, and a brief discussion 
of our future plans. 

2 A dual-language architecture 
The SuperGlue environment has been implemented 

using two languages: Scheme and C. This split adds 
some conceptual burden, but offers many advantages 
which make this approach worthwhile. 
2.1 

Interactive visualization requires a flexible and in- 
tuitive user interface, which is difficult to develop out 
of thin air. I t  must be evolved with the benefit of 
experience and experimentation. Scheme has several 
characteristics that make it the ideal choice for imple- 
menting the flow of control of complex interfaces: 

0 I t  is interpreted. Programs can be written and 
tested interactively. 

0 It is complete. Scheme is able to  express a wide 
variety of programming paradigms. 

0 I t  is standardized. This allows us to share code 
with other researchers. 

0 It is convenient. Scheme provides dynamic typ- 
ing, automatic memory deallocation, simple syn- 
tax, and a wide variety of data  types. 

SuperGlue is based on the “Xscheme” program 
written by David Betz, who allows its use for non- 
commercial purposes. Xscheme compiles Scheme ex- 
pressions into machine-independent byte-codes, which 
are then executed on a virtual machine implemented 
in C. The result is a reasonable compromise between 
portability, compilation time, and execution speed. 
2.2 C as a computation language 

Although Scheme is a fine language for high level 
control and user interface programming, most of our 
numerical and graphical primitives are coded in C. Ex- 
ecution speed is the primary reason for this, though 
many programmers also prefer C’s compact syntax for 
mathematical programming. C is also more conve- 
nient when interfacing to Unix libraries. (Nothing in 
principle prevents new primitives from begin written 
in C++, FORTRAN, or other compiled languages, 
but at present it is less convenient. 

Another reason to use C is mu tiprocessing. Our 
SGI workstations support the creation of autonomous 
lightweight threads that run on multiple CPUs. Once 
instantiated, a thread will run asynchronously until it 
needs to return a result. It must then gain temporary 
exclusive access to the interpreter in order to avoid 
corrupting shared data structures. A set of C macros 
simplifies this synchronization. 

In order to maintain the benefits of an interpreted 
language when programming in C, we have extended 
Xscheme to support “dynamic loading.” This feature 
allows new versions of a C function to be compiled 
and loaded into the running system; thereby short- 
circuiting the traditional edit, compile, link, run, con- 
figure, and test cycle. Dynamically loading a page or 
two of source code takes only five to ten seconds. 

Scheme as a control language 
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2.3 The inter-language interface 
A convenient interface between the two languages 

is a crucial component of any dual-language architec- 
ture. Two issues must be addressed: different storage 
models and different calling conventions. 

The difference in storage models is inherent in the 
specifications of the two languages. In C, variables 
are typed and values are untyped; in Scheme, values 
are typed and can be assigned to  any variable. (This 
is equivalent to  saying the C does compile-time type 
checking, while Scheme does run-time type checking.) 
We were able to preserve Scheme’s “exceptionally clear 
and simple semantics”[ll] by making it the responsi- 
bility of every C primitive to type-check and convert 
each of its Scheme arguments into the corresponding C 
format. When the function completes, its result must 
be converted to a Scheme data item. 

The issue of different calling conventions is a conse- 
quence of the Xscheme virtual machine architecture. 
This virtual machine manages its own stack, which is 
independent of the C hardware stack. As a result, C 
primitives must explicitly pop their arguments from 
the Xscheme stack when they are called, and must ex- 
plicitly push any arguments onto this stack when they 
call back to Scheme. 

We decided to insulate all Scheme code from these 
implementation considerations. A set of C macros and 
functions allows these incompatibilities to be resolved 
in a straightforward and portable manner. The result 
is transparent access from Scheme to C and convenient 
access from C to Scheme. The cost of these conver- 
sions in terms of coding, maintenance, and execution 
time is insignificant. 

3 The object system 
The advantages of object-oriented systems are nu- 

merous and well-documented. The Xscheme kernel 
has extended the Scheme language to  support single 
inheritance with dynamic method lookup. We added a 
convenient syntax for defining new methods and have 
built a class hierarchy of over 150 classes and almost 
1500 methods. This class hierarchy collectively defines 
the generic features of all interactive visualization ap- 
plications. 

3.1 The hierarchy 
The class object defines the behavior of all in- 

stances in the system, including that of the class 
c las s .  The class c l a s s  defines the behavior of all 
classes in the system, including itself. The remaining 
classes are grouped into the following major subtrees: 

data contains the essential “computer science” data 
structures such as collections, stacks, queues, and 
dictionaries. 

graphics implements an object-oriented interface to 
the Silicon Graphics GL. Automatic deallocation 
of GL resources is supported. Higher-level graphi- 
cal objects, such as curves and meshes, are also in- 
cluded. Finally, direct-manipulation is supported 
by a virtual trackball and a 3D cursor. 

interface provides 2D user-interface objects (such as 
sliders, buttons, and popup menus) implemented 
using GL. A scene widget forms a rectangular pic- 
ture of a 3D scene. 

math provides access to  application-specific compiled 
code, such as numerical integration and interpo- 
lation routines. Class definitions are provided for 
matrices, quaternions, and the composite struc- 
tures which represent CFD data  sets. 

system includes interfaces to Unix resources such 
as files, directories, and threads. Additional 
classes implement the Scheme runtime environ- 
ment; these include clocks, alarms, and a source- 
level Scheme debugger. 

3.2 Defining a new class 
Each class inherits some of its behavior and con- 

tents from its superclass. It adds to  this initial con- 
figuration by adding additional internal state, and by 
defining new methods which can be used to modify 
that state. 

(dei c las s  dass-name 
(super superclass-name) 
( c las s  class-variable 

. . .) 
( class-variable indzalzzer) 

(instance instance-variable 
. . . I >  

The dei c las s  statement begins with the name of 
the new class, followed by three statements which de- 
fine the superclass and the additional internal state of 
the new class. The c las s  statement defines the vari- 
ables which are shared among all instances of the new 
class. The instance statement defines the new vari- 
ables which are held as separate copies in each new 
instance. 

(defmethod class-name ( method-name argl ... > 
body ... 1) 

The defmethod statement declares the name of the 
relevant class, the name of the method itself, an argu- 
ment list, and the body of the method. 
3.3 Message sending 

The first item of any Scheme expression must be a 
function or an object. If it is an object, then second 
item must be a symbol, which is then used as the 
message to be sent to that instance. 

(define baz (stack ’new)) 
(baz ’push (+ 2 3 ) )  
(baz ’push (* 3 4))  
(baz ’pop) + 12 
(baz ’empty?) -+ false 

Messages which cannot be handled by the imme- 
diate class of the receiving instance are passed up 
the superclass chain. If a message fails to  match any 
method in the chain, the erroneous send is trapped in 
the source code debugger. 
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4 Storage management 
A typical CFD dataset consists of a grid of a mil- 

lion points with a 3D position and three sampled flow 
quantities recorded for each point. As scientists ex- 
amine a solution, they typically calculate many more 
fields over that same grid. Several features were ex- 
plicitly added to SuperGlue to support the manage- 
ment of these large datasets. 
4.1 Chunks 

Chunks are Scheme data items which contain a 
header and a contiguous block of untyped memory. 
The information in the header allows the garbage col- 
lector to  reclaim storage when appropriate. Compiled 
primitives are used to process the compact data within 
the chunk. 

Some scientific datasets are extremely large; so 
large that if we were to read them with normal meth- 
ods we would rapidly exhaust the available swap space 
of the average workstation. This fatal situation can 
be avoided by memory mapping the contents of these 
large files directly into the program’s address space. 
Memory mapped chunks are similar to  normal chunks, 
except that they rely on the operating system to read 
the data from disk only when it is referenced. Be- 
sides preserving swap space, memory mapped chunks 
eliminate the initial file-reading delay of most other 
systems. This is significantly more efficient if only a 
subset of the data  is used. 
4.2 Storage of field data 

I t  is often convenient to encapsulate a chunk within 
an instance of a class. This arrangement gives us the 
best of both worlds: a Scheme object with a set of 
supported methods, and an efficient means of stor- 
ing the data. Taken together, these provide ease of 
bookkeeping with the speed required for complicated 
application-specific data  manipulation. 

CFD simulation results are represented by an  in- 
stance of the class bundle cf. Butler [5]), which con- 

curvilinear grid. Each field contains its sampled vol- 
ume as a chunk. This chunk is passed to application- 
specific primitives which operate on fields. 

A bundle may be a subvolume of another bundle. 
When a bundle is asked for a field it does not have, 
the child may compute that field from the fields it 
does contain or may extract the data  from the corre- 
sponding field in its parent. The expressive power of 
the interpreted language could be used to  implement 
additional bookkeeping to support remote or lazy eval- 
uation of field data. 
4.3 Destructors 

Certain objects used in SuperGlue have an exis- 
tence external to the system. For example, the SGI 
Graphics Library maintains lights, textures, and ma- 
terials within its own address space. A mechanism 
for explicit destructors has been implemented so that 
when the associated instance for such an item is re- 
claimed by SuperGlue, the corresponding external re- 
source can be explicitly deallocated. 

The interpreter was extended to maintain a list of 
items for which explicit “destructor functions” have 
been defined. When the garbage collector completes 

tains a collection of named B elds defined on a common 

its mark pass of memory, unmarked objects on this 
special list are transferred t o  a separate list of “re- 
claimed” objects. Items on this “reclaimed” list share 
the property that they are no longer in use, and thus 
can be deallocated when the system becomes idle. 
This approach consumes only three words of overhead 
for those few objects which require explicit destruc- 
tion. I t  requires only a single scan of the special list 
between the mark and the sweep phases of the garbage 
collection. 

5 Interacting with SuperGlue 
SuperGlue offers two interfaces. One is a mouse- 

directed interface of widgets and and 3D scenes used in 
the target application. The other is a textual interface 
which is of use primarily to  programmers. 
5.1 The application interface 

The point-and-click side of SuperGlue presents a 
number of scenes and panels. A scene depicts a set of 
objects, or visuals, in a 3D environment. A scene can 
be resized to  any size or shape, and can even cover 
the entire workstation screen. The constructed mod- 
els can be displayed in any number of scenes; each 
with its own viewing direction and magnification. A 
panel contains a number of 2D widgets, is usually 
fairly small, and cannot be resized. Figure A shows 
a typical screen display, including two views of some 
3D data  (Rogers [12]), an instance inspector, and a 
hierarchy browser. 

The application interface of SuperGlue provides 
direct-manipulation of cursors in the 3D volume of a 
flow field. Chording of the mouse buttons is used to 
control a modal mapping between the 2D motions of 
the mouse and the 3D motions of the cursor. Users 
often manipulate these 3D probes at high magnifica- 
tion while viewing the resultant models from another 
angle in a second window. This approach allows the 
precise and direct placement of control points, a vast 
improvement over what is possible by indirectly con- 
trolling these positions using multiple 2D widgets. 

The system attempts to maintain a high frame rate 
by downgrading the quality of the image while it is 
moving in response to  user input. When the user 
pauses between commands, the system does not pause, 
but uses the otherwise idle machine cycles to improve 
the accuracy of the presented results. 
5.2 The textual interface 

SuperGlue programming is qualitatively different 
than programming in compiled languages. The pri- 
mary reason for this is the rapid feedback provided by 
an interpreted language. Rather than typing at the 
SuperGlue interpreter directly, we rely on the built- 
in capability of GNU Emacs to control external pro- 
cesses. Thus all text input to  and output from Super- 
Glue goes through Emacs. The Emacs window can 
be split into sections, which can independently dis- 
play files of source code, the interpreter transcript, 
and interactions with the Scheme and the compiled 
code debuggers. 

A typical SuperGlue session lasts somewhere be- 
tween several hours and several days. During this 
time many Scheme and C functions are defined and 
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redefined. Emacs supports this activity by allowing 
either individual functions or entire files of either C or 
Scheme code to be downloaded to the interpreter. 
5.3 Debugging 

SuperGlue provides the usual tools of a Lisp-based 
environment, including code tracing, pretty-printers, 
break loops, and a simple programmatic interface for 
handling errors. Unhandled errors and user-generated 
interrupts cause the system to trap into the interac- 
tive debugger. Unlike most C or FORTRAN environ- 
ments, it  is unnecessary to run "under the debugger," 
since it is built into the system. 

The Scheme debugger allows the user to print the 
current source code expression, to display the call 
stack, to examine and modify local variables, to evalu- 
ate arbitrary expressions in the context of a particular 
frame, to set breakpoints, to automatically display the 
relevant source code in Emacs, and finally to fix and 
proceed from most errors. The debugger includes on- 
line help and offers different modes for beginning and 
advanced SuperGlue programmers. 

The GNU debugger db is used to debug all C code, 
including any dynamicaly-loaded C. No additional ef- 
fort is required to debug dynamically-loaded code; the 
required additional bookkeeping is handled automat- 
ically if the programmer loads the C code with the 
standard SuperGlue Emacs keystroke. 

6 A programming example 
Programming in SuperGlue often consists of writ- 

ing new methods to improve the user interface or 
creating a new class to access some new application- 
specific routine. We describe an example of the latter 
in this section, then demonstrate the advantages of 
incorporating new features as first-class entities of an 
evolving system. 
6.1 Stream line calculation 

A common technique in flow visualization uses tan- 
gent curves through a vector field. When the field is 
the velocity of the steady fluid, then each curve de- 
fines the path traveled by a massless particle drifting 
through the flow; such paths are called streamlines. In 
this section, we describe an implementation of stream- 
lines for CFD datasets. 

A streamline is the solution of the initial value 
problem posed by a vector field U and an initial 
point XO. We need to compute a sequence of points 
(x0,x1, . . .xn) such that 

t i + 1  

Xi+l  = xi + li u(x(s))ds 
for a closely-spaced sequence of values (ti V i E [0, T I ] ) .  

This integration requires numerical methods iter- 
ated over a piecewise interpolation of the vector field 
samples. SuperGlue provides several primitives for 
this calculation, using a variety of adaptive, multi- 
step, and predictor-corrector methods. Since this 
computation can be time-consuming, all of these rou- 
tines are implemented in C and can be run as threads 
spawned from the user interface. These functions 
place the computed point coordinates into a chunk 

which is available to the rendering thread for the dis- 
play of interim results. 
6.2 The streamline object 

A new class definition is needed to manage calls 
to the calculation primitives. This new streamline 
class can inherit much of its behavior from the already- 
existing path class. Every instance of path stores a 
bundle of one-dimensional fields. I t  supplies methods 
for computing the bounding boxes of its fields and for 
rendering that curve using GL or PostScript. 

The declaration of the new class declares it to be a 
subclass of path, to which it adds three new instance 
variables: domain, vec-name, and my-thread. 

(def c las s  streamline 
(super path) 
(instance domain 

vec-name 
my-thread) 

When any instance is created, it immediately re- 
ceives the isnew initialization message. The corre- 
sponding method for our new class includes a call to 
the initializer of the superclass, and then stores the 
argument values into the internal state of this new in- 
stance. These three arguments are the bundle of the 
enclosing (usually 3D) domain, the name of the vec- 
tor field (e .g .  velocity, temperature-gradient) in which 
the streamline is to be computed, and the initial seed 
point from which the streamline to begin. 

(defmethod streamline (ISNEW dom f l d  seed) 
(send-super 'isnew) 
( s e t !  domain dom) 
( s e t  ! vec-name f Id) 
( s e l f  'compute seed) 
s e l f  

The sequence of points along the curve is com- 
puted by calling the compiled primitive function 
streamline: calc.  The compute method provides a 
convenient wrapper for this routine. The primitive re- 
ceives the 1D position field result buffer, the position 
and vector fields of the enclosing 3D bundle, and the 
initial seed point xo for the integrated curve. 

(defmethod streamline (COMPUTE seed) 
;; Reinitialize this streamline, 
;; and allocate the destination buffer. 

(when my-thread (my-thread ' k i l l ) )  
(path 'reset )  
(path 'a l loc  'pos i t ion  1000) 
;; Do computation as a separate iask. 

( s e t !  my-thread 
(thread 'new 

stream1ine:calc 
(path ' export 'position) 
(domain 'export 'position) 
(domain 'export vec-name) 
seed) 1) 
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The method does not call the primitive directly, but 
instead passes it and the arguments to the thread 
class, which spawns a task and returns an instance 
which serves as a handle for this computational task. 
6.3 Using streamlines 

Since the streamline class has been incorporated 
into the class hierarchy of SuperGlue, it is now avail- 
able for use in any future application. This offers 
many benefits over the frequent alternative in which 
a new feature is accessible only as an option on a 
menu. Three examples presented here use instances 
of streamline, but specify the initial seed points of 
the curves in a different way. 

The data  used in these examples was computed by 
Ekaterinaris and Schiff [6]. It represents a “vortex 
breakdown” over a delta wing, moving at Mach 0.3 
at 40 degrees angle of attack and a Reynolds number 
of lo6. The grid contains slightly over 200,000 data 
points. 

manual placement Using the standard 3D cursor in- 
stance (shown in figure B), we can place a num- 
ber of seed points in the breakdown region of the 
vortex. Exploration of this region of the data is 
greatly aided by direct manipulation and interac- 
tive response. 

scripted placement Interactive placement is conve- 
nient for the exploration of some flow features, 
but placement at exactly specified points in the 
flow is often desired. A trivial Scheme expression 
was used in figure C to place a sequence of seed 
points along the leading edge of the wing. 

computed placement Finally, a composition of func- 
tions can be used to automate the placement of 
streamlines. A 2D slice was extracted from the 
flow data. All grid points on this slice with a fluid 
density below some threshold were then used as 
seed points for a third set of streamlines, shown 
in a side view in figure D. 

The three sets of streamlines can be combined in a 
single image to produce a depiction of the vortex. This 
is shown in a side view in figure E, and from upstream 
and above the wing in figure F. The distinct placement 
methods complement each other and together provide 
a more useful tool for examining this data. 

7 Conclusions 
Our experience with developing and using Super- 

Glue has convinced us that our approach is sound. 
Development of new tools is rapid, fun, and endowed 
with high probability of a successful result. Problems 
with the system have appeared, but these are more 
irksome than serious. 
7.1 Applications 

SuperGlue has been used to create an animation of 
a proposed space station design (Globus [7]). 

It has been used as an exploratory environment for 
the development of new (presently unpublished) visu- 
alization techniques. 

It was used by one of the authors as the develop- 
ment platform for an improved method for the con- 
struction of stream surfaces [B]. 

It currently lacks some of the features required for 
unassisted use by scientists, but we are adding this 
“user-friendliness” as quickly as we can. We believe 
that having invested a great deal of time in laying the 
foundation, we shall be able to construct the rest of 
the house much more quickly. 

7.2 Problems 
We did not fully appreciate the sheer magnitude of 

code required in an interactive visualization environ- 
ment. SuperGlue is now about 35000 lines of code, 
split about equally between Scheme and C. After ap- 
plying three man-years of effort to extending a previ- 
ously existing interpreter, we have only made a dent 
in our list of desired features. 

The difference in the speeds of interpreted Scheme 
and compiled C can be as much as one hundred-fold. 
For many portions of the system, this difference in 
speed is not important; in others, it is unacceptable. 
An optimizing native code compiler for Scheme and a 
faster garbage collector would allow Scheme code to 
be used for a greater proportion of the system. Com- 
mercial LISP implementations provide this speed, but 
we needed a system which could be fully modified for 
our particular goals. 

We did not fully anticipate the great resistance we 
have encountered regarding the use of Scheme. Di- 
alects of LISP are still regarded with suspicion or 
disdain, perhaps in supercomputer centers more than 
anywhere else. 

7.3 Future plans 
The SuperGlue project is open-ended by design; 

progress is made by growing the class hierarchy. Cer- 
tain features hold particular interest for us and we 
expect to spend the coming year implementing these 
items: 

publication tools Interactive color raster displays are a. 
valuable exploratory tool, but publishable images 
are a necessity. The realities of modern publishing 
still require line art for the majority of archival 
publications. 

virtual reality Levit and Bryson [3] have shown that 
the visualization of complex flow fields can be 
greatly aided by the technology of virtual real- 
ity. In a virtual reality environment the display 
must be repainted in real-time, so all of the draw- 
ing code must be migrated into C where it will 
be immune from intermittent pauses caused by 
garbage collection. 

unsteady data The state of the art in computational 
fluid dynamics has reached the stage of simulating 
3D unsteady flows. The massive data storage re- 
quirements almost certainly demand a distributed 
implementation using workstations connected to 
supercomputers over high-speed networks. 
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7.4 Summary 
No tool is right for every job; no language is right 

for every algorithm. The bilingual structure of Su- 
perGlue provides a flexible platform from which to 
attack the varied requirements of interactive visual- 
ization, from the tuning of a user interface to the pro- 
cessing of a large dataset. 

Chunks and memory-mapped files are compact and 
efficient mechanisms that allow data to be managed 
and examined from the Scheme command layer, yet 
rapidly processed by compiled numerical and graphi- 
cal routines. Bundles simplify manipulation of CFD 
datasets. Destructors are an efficient mechanism that 
allow external resources to  be returned when they are 
no longer needed. 

Programming with an interpreter allows convenient 
exploration of alternative implementations. The class 
hierarchy provides a clean mechanism for the reuse of 
code. Together, these features help reduce the time 
required for the implementation of new features. The 
programming members of a visualization team are able 
to respond in a timely manner to the needs of their 
scientist-clients. 
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Figure A Application interface of SuperGlue, 
showing two scenes - an inspector, and a 
hierarchy browser. 

Figure B: Close up view of the mouse-directed 
placement of seed points in the breakdown region. 

Figure C: Scripted placement of seed points along 
the leading edge of a delta wing. 

Figure D: Side view of the computed placement of 
seed points in the low-density vortex core. 

Figure E: Side view of the completed visualization of 
the vortex breakdown over a delta wing. 

Figure F: Three-quarter vlew of the vortex 
breakdown over a delta wing. 

(See wlorplates, p .  CP-27.) 
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