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Abstract

Annotation is a key activity of data analysis. However, current

systems for data analysis focus almost exclusively on visualization.

We propose a system which integrates annotations into a visualiza-

tion system. Annotations are embedded in 3D data space, using the

Post-it 3 metaphor. This embedding allows contextual-based infor-

mation storage and retrieval, and facilitates information sharing in

collaborative environments. We provide a traditional database filter

and a Magic Lens 4 filter to create specialized views of the data.

The system has been customized for fluid flow applications, with

features which allow users to store parameters of visualization tools

and sketch 3D volumes.

1 Introduction

In a study to characterize the data analysis process, Spring-
meyer et al. I151observed scientists analyzing different types
of scientific data. The study found that recording results and
histories of analysis sessions is a key activity of the data
analysis process. In each session, the scientists recorded
notes, and inspected previous notes. Two distinct types of
annotating were observed:

• recording, or preserving contextual information
throughout an investigation

and

• describing, or capturing conclusions of the analysis ses-
sions.

Despite the importance of annotation, current systems
for data analysis emphasize visualization, focusing on the
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generation of visual displays. Litre or no annotation support
is available: for example, Springmeyer et al. noted that the
recording media used by scientists in their study included
notebooks, scratch paper, and Post-it notes.

In this paper, we describe a system that supports an-
notation as an integrated part of a fluid flow visualization
system. Unlike typical annotations on static 2I) images, our
system embeds annotations in 3D data space. This immersion
makes it easy to associate user comments with the features
they describe. To avoid clutter and data hiding, annotations
ate represented by graphical annotation markers that have
associated information. Therefore graphical attributes of the
markers, such as size and color, can be used to differentiate
annotations with different functions, authors, creation dates,

etc.

Annotations can easily be added, edited and deleted.
Also, multiple sets of annotations can simultaneously be
loaded into a visualization. This allows scientists, collab-

orating on a data set, to use annotations as a form of com-
munication, as well as a history of data analysis sessions.
Annotation markers also aid scientists in navigating through

the data space by providing landmarks at interesting posi-
tions. Figure l(a)-(c) shows the visualization environment,
annotation markers, and the annotation content panel. Figure

l(d) shows a Magic Lens filter which hides the annotation
markers and widget handles. The implementation has been

applied to three-dimensional Computational Fluid Dynamics
(CFD) applications. However, the techniques can be used in
visualization systems of many disciplines. The design can
also be extended to 3D stereo and virtual-reality environ-
merits.

The rest of this paper is organized in five sections. In
section 2 we review previous approaches to annotation. Sec-
tion 3 describes design guidelines for annotation systems.
Section 4 details our implementation of annotation within a
3D modeling and animation system. In the last two sections,
we discuss possible future work and present our conclusions.

2 Background

Scientific visualization systems provide little, if any, support
for annotation. For example, Application Visualization Sys-
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Figure 1: The visualization and annotation system

(a) hedgehog and streamlines showing 3D fluid flow, (b) annotation markers (small geometric objects) placed at points of high

velocity, (c) annotation content panel, (d) Magic Lens filter hiding annotation markers and widget handles.



tern(?,VS)[17].andFlowAnalysisSoftwareToolkit(FAST)
[1], twosoftwareenvir0flmen/s for visualizing scientific data,

facilitate attachment of labels to static 2D images. These sys-

tems also allow a user to record a sequencg of interactions
with the visualization. This support is u_efiii for generating

presentations from the data, but does not facilitate the record-

ing and describing operations observed by Springmeyer et al.
Outside the scientific visualization domain, annotations

of various sorts have been integrated in different applications.

MacDraw, a 2D paint program, introduced a notes fea-

ture, which allows static 2D annotations using the Post-it

metaphor. Media View [ 12] [13], a multi-media publication

system, extends the conventional paradigm of a document

and allows annotations in all media components including

text, line art, images, sound, video sequences, and computer

animations. The format of annotations has been expanded,

but their use is still limited to presentation of information in
a static environment.

Document annotation is used as a means of communi-

cation in the Wang Laboratories multi-media communication

system, Freestyle [8]. Freestyle's multi-media messages are

based on images, including screen snapshots and hand-drawn
sketches. Furthermore, this system allows synchronization

of input modalities, such that messages can contain informa-

tion about the process by which they were created. Freestyle

advances the concept of annotations as communicators, but

does not address the issues of clutter and management of
annotations in the environment.

Verlinden et al. [18] developed an annotation system

to explore communication in Virtual Reality (VR) environ-

ments. In general, annotation in immersive VR systems is

restricted, as the user must interrupt the session to interact

with objects in the real world, such as notebooks and com-
puter monitors. Verlinden's system overcomes this problem

by embedding verbal annotations in the VR space. The an-

notations are represented as visual 3D markers. When the

user activates a marker, the verbal message stored with that

marker is played. This system is unique in that it embeds an-
notations in 3D scenes, but it is limited to verbal annotations

and provides no support for annotation filtering. It also limits

annotations to a fixed position in a time-based environment.

3 Design Issues

We have extracted, both from the Springmeyer et aI. study

and from our own experience with scientific visualization, a

set of three design guidelines that seem appropriate for an an-

notation system. These guidelines, discussed below, formed

the basis for the design of our system.

Guideline 1: To support ongoing recording of contex-

tual information, an annotation system must be an integral

part of a visualization system. Effective placement and stor-

age of annotations are required.

Traditionally, annotations to scientific visualizations are

recorded on paper or in electronic files, and both the dataset

and the files are labeled to mark their association. This

separation of data and annotations means that some effo:rt is

required to find the data features described by annotations.

The 3D data space of many scientific applications provides
the context in _ai*c_'annotations should be placed. Recording

annotations in this space capitalizes on human's spatial senses

by facilitating the retrieval of information based on its spatial
location in the visualization.

However insertion of annotations in the data space cre-
ates an immediate conflict between the annotation and visu-

alization functions: both compete for screen territory. We do

not wish to impose any restrictions on the amount of informa-
tion that can be recorded. At the same time, since information

is contained in the data itself, we do not wish data to be ob-

scured by annotations. Our approach is to decompose an
annotation into:

• an annotation marker or small geometric object that

identifies the position of the annotation in the data space

and

• an annotation content in which a user stores information.

The geometry and graphical attributes of markers are

chosen so that they are easily distinguished from existing vi-

sualization tools. By clicking on a marker, a user can expand

the associated annotation to read or edit its content. Separa-
tion of the annotation's content from the annotation marker

in this way allows direct insertion of arbitrarily large annota-
tions.

Guideline 2: Annotations must be powerful enough to

capture information considered important by the user.

There are different types of information. Tanimoto [ 16]
distinguishes between data (raw figures and measurements),

information (refined data which may answer the users' ques-

tions) and knowledge (information in contex0. Bertin [3]

classifies the levels of information in a similar way. He con-

siders information as a relationship which can exist between

elements, subsets or sets. The broader the relationship, the

higher the level of information. We assume that an anno-

tation system should be able to store information at each of
these levels - scientists ueed to record both the data values

at probe points in the data set, and a higher-level analysis of

these figures.

Although some data, such as date of creation and author,

are likely to be relevant to all applications, it is possible that
knowledge can be captured only when an annotation system

is customized for a specific application. The customization

would ensure that annotations can represent information rel-
evant in the context of the application. For example, if the

data of a particular application is time-varying, the annota-

tion system should provide time-varying annotations that can

track the features being described.

In our annotation system, we provide support for dif-

ferent types of information in two ways. First, within each



annotation,scientistscanrecord both numerical and textual

details, and high-level information specific to fluid flow. This

is discussed in section 4.4. Second, the system supports

hierarchically-organized annotations. The hierarchical struc-

ture allows scientists to record facts in separate annotations,

and group related annotations in sets that describe broader
observations.

It is also important to consider the modalities that are

available for capturing information in an annotation system.

Two dimensional text, graphics and images are the standard
annotation modalities; aural annotation is also a candidate.

Chalfonte, in an experiment on the use of annotation for

collaborative document authoring, found aural annotations
a richer and more effective medium for high-level commu-

nication [5]. Freestyle shows that coordinating hand/cursor
movements with textual and aural annotations is also effeco

five.

In our current implementation, we use 2D text and 3D
volumes to store information. In the future, we would like to

use different interaction techniques for information capture.

Guideline 3." We need to consider the established rules

of user interface 05I) design, because the UI of an annotation

system will play a key role in determining its acceptance (or

lack thereof) by scientists.

We considered many UI rules [7] and designed our an-

notation system accordingly. One rule states that aUI should
allow users to work with minimal conscious attention to its

tools. We achieve this goal by using a direct manipulation
interface, that is, an interface in which the objects that can

be manipulated are represented physically. For example, the

volume of data affected by the Magic Lens filter can be con-

trolled directly by moving and resizing the physical represen-
tation of the lens. Another design rule states that an interface

should provide feedback, e.g., on the current settings of do-

main variables. In our system, annotationmarkers give visual
feedback on the location of annotations and marker geometry

gives feedback on annotation content.

Because the geometric data space of fluid flow appli-
cations has three dimensions, we considered design issues

specific to 3D graphical user interfaces [6]. One issue is the

complexity introduced by 3D viewing projections, visibility
determination, etc. A second issue is that the degrees of free-

dom in the 3D world are not easily specified with common

hardware input devices. A third issue is that a 3D inter-

face can easily obscure itself. We use guidelines outlined by

Snibbe et al. [ 14] to deal with these problems. For example,

we provide shadows, constrained to move in a plane, to sim-

plify positioning of annotation markers (see section 4.3.2).

We provide feedback on the orientation of the data by option-

ally drawing the principal axes and planes. We also ensure

that annotations do not obscure data, by making it easy for

a user to change the viewpoint and resize or hide annotation
markers.

4 Implementation

This section describes the annotation system we have _ple-

mented. We begin by setting a context for the system with a

description of fluid flow visualization and the software devel-

opment environment. Then we discuss the main components

of the annotation system: the annotation markers, support for
information capture, and interaction techniques.

4.1 Fluid Flow Visualizations

Computational fluid dynamics (CFD) uses high speed com-

puters to simulate the characteristics of flow physics. Com-

puted flow data is typically stored as a 313 grid of vector and

scalar values (e.g., velocity, temperature, and vorticity val-

ues), which are static in a steady flow, and change over time

in an unsteady flow. CFD visualization tools allow a scientist
to examine the characteristics of the data with 3D computer

displays.

Interaction with the visual representation is essential in

the exploration and analysis of the data, and has three goals:

feature identification, scanning, and probing [9]. Feature

identification techniques help find flow features over the en-

tire domain, and give the scientist a feel for the position of

interesting parts of the flow volume. An example of this type

of technique is a vector hedgehog, a three-dimensional array

of velocity vectors. Scanning techniques are used to inter-

actively search the domain, by varying one or more parame-
ters, through space or through scalar and vector field values.

Scanning techniques include cutting planes (planar surfaces

which slice the 3D grid and show scalar field value at each

grid point of the plane) and iso-surfaces (three-dimensional

surfaces of a constant scalar value). Probing techniques are

localized visualization tools, typically used to gather quan-

titative information in the final step of investigating a flow

feature. Examples of probing tools include streamlines and

particle paths, which show the path in which a particle would

flow if positioned in a steady or unsteady fluid flow.

The Computer Graphics Group at Brown University has

developed a flow visualization system, to study new modes

of interaction with flow tools. The annotation system was

developed as part of this flow visualization system. This
provided a test-bed for techniques to integrate visualization

and annotation functionality.

4.2 The Development Environment

The annotation system was developed using FLESH, an ob-

ject oriented animation and modeling scripting language [111,

and C++. In the FLESH language, scenes are described as

collections of objects. The FLESH objects defined for the an-

notation system include geometric objects such as annotation

markers, 3D volumes and lenses, and non-geometric objects,
such as holders for collections of annotations and an annota-

tion filter. Some of these FLESH classes have corresponding

C++ classes, in which data is stored and compute-intensive

operations performed. This allows us to benefit from the

1'



power, of an interpreted interactive prototyping modeling sys-

tem and the efficiency of a compiled language.

4.3 Annotation Markers

Annotations are represented in the 3D data space by small

geometric markers. Each marker has an associated content

which the user can edit at any time.

4.3.1 Marker Geometry and Graphical Attributes

The geometry of a marker gives visual feedback on
the content of the annotation. In the fluid flow visualiza-

tions system, the user can define annotation keywords (e.g.,

plume, vortex), and select a geometry to associate with each

keyword. Then, when the user assigns a keyword to an

annotation in the system, the annotation's marker takes the

associated shape. It is likely that other mappings between

graphical attributes of markers and annotation content would

also be useful. For example, the color saturation of a marker

could depend on the age or priority of the annotation.

The graphical attributes of annotations are also user-
customizable. The size and color of all markers in one level

of hierarchy can be changed. We predict that this feature

would be useful if many scientists work collaboratively on a

data set, and each scientist defines a unique color and size for
her markers.

4.3.2 Marker Behavior

Since the function of a marker is simply to identify

points of interest in the visualization, its behavior is quite

simple. A marker is created when the user presses the anno-

tation push-button. It appears at the point on which the user

is focussed, making it easy for the user to position it near the
feature of interest.

The scientist can translate and rotate markers with sim-

ple mouse movements. He can also project interactive shad-

ows of the marker on the planes defined by the principal axes

[10]. Each shadow is constrained to move in the plane in
which it lies. If a user moves a shadow, the marker moves

in a parallel plane. This constrained translation helps in pre-

cisely positioning a marker.

Markers can be highlighted in response to a filter re-

quest. In the current system, the color of a marker changes

to a bright yellow when highlighted. This simple approach

seems adequate. However, the user may change this high-

light behavior, by, for example, having highlighted markers

flash between alternating colors.

Since the features of unsteady fluid flows change over

time, a user would like the annotation describing a particular
feature to follow the feature's movement in the visualization.

The current annotation system provides partial support for

this by allowing the user to specify the position of an annota-

tion at any number of points in time. The annotation markers

then linearly interpolate between the specified positions in
time.

4.4 Knowledge Stored

Our annotations can store generic information, as well as

information specific to fluid flow applications. The generic

information includes keyword, textual summary and descrip-

tion, author, and date. Some of this information (author

and date) are captured implicitly when the annotation is cre-

ated. The rest must be explicitly added after the scientist has

opened the annotation by clicking on it. This data entry is

performed via a 2D Motif panel of buttons and text widgets.
We consulted with fluid flow experts to understand how the
information content of annotations could be customized for

fluid flow applications.

4.4.1 Parameters of Visualization Tools

One of the key additions to the annotation system sug-

gested by the fluid flow experts results from the interactive

nature of fluid flow analysis. As described earlier, a scientist
must insert flow visualization tools (such as streamlines and

iso-surfaces) in the data space to see the underlying data.

Much time is spent determining which tools most effectively

highlight a feature, and positioning and orienting both the

tools and viewpoint to best show off the feature being de-

scribed. Springmeyer et al. observed this activity of the data

analysis process, and described it as orientating the data, or

altering a representation to gain perspective.

To support this activity, our concept of an annotation was

expanded to include parameters of flow visualization tools.

When a user wishes to store the parameters of a set of tools, he

or she presses a button to indicate that a set of tools is being
saved, and then clicks on the tools of interest. The time-

varying location, orientation, size, and other parameters of

the tools are saved with the annotation. This can be repeated

any number of times for different groupings of tools with

different parameters. When an annotation is restored, the

user is presented with a list of all saved sets of tools, and

can recover each set of tools to see how they illustrate the
annotated feature.

4.4.2 3D Volume Descriptions

It also became obvious that annotation markers, which

are appropriate for locating point features in a visualization,

are not sufficient for CFD applications. Fluid flows contain

volume features, such as vortices (masses of flow with a

whirling or circular motion) and plumes (mobile columns
of flow). Users may want to associate an annotation with

a region of the data space, rather than a single point in the

space. We therefore need a way to sketch a volume in the data

space. The volume-sketching method must be intuitive, so

that flow scientists (who may not be interested in becoming

artistic volume sculptors!), can easily describe the volume.

Also, the resolution of the volumes sketched need only be as

precise as the grid on which the flow field is defined.

We provide a simple method to sketch volumes. The

user positions "pegs" that define the extreme vertices of the

volume to be drawn. The pegs are created and moved within
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Figure 2: A volume defined as the convex hull of a set of

pegs.

the visualization in a way similar to the creation and Wansla-
tion of annotation markers. When the user is done positioning
pegs, the system computes their convex hull using the quick-
hull algorithm [2]. The boundary of the volume, defined by
the convex hull, is rendered in either wireframe or transpar-
ent mode. Vertices can be added, deleted and moved, and
the volume redrawn, until the volume is accurate. Figure 2

shows a volume which has been defined in this way.
This implementation provides a simple means to draw

volumes. However, since it uses the convex hull of the pegs,
certain shapes, such as a 3D "L" shape, cannot be sketched.

4.5 Retrieving the Annotations

Effective information retrieval and communication requires

that a user can easily identify annotations relating to a spe-
cific topic, by a specific author, etc. The annotation system
facilitates such data filtering in two ways.

First, a traditional database filter is provided. The user
can specify data selection criteria (such as the annotation
creation date, author, or keyword), via a 2D Motif panel.
The markers of annotations that satisfy the search criteria are
highlighted.

A second filter uses the Magic Lens metaphor introduced
by Bier et al. [4]. A Magic Lens filter is a rectangular frame,

placed in front of the visualization, that appears as if it moves
on a transparent sheet of glass between the display and the
cursor. The lens performs some function (which may use
information from application-specific data-structures) on the
application objects behind it.

Four functions are defined for the lens in the annota-

tion system. The first sets the color of all objects, except
annotation markers, to gray. This helps users find markers
in a cluttered scene. The second lens function displays only
the annotations that satisfy the criteria specified in the Motif
database filter. The third lens function hides all annotation

markers behind the lens. Finally, the default function hides

all annotation markers and all interaction handles on the vi-

sualization tools behind the lens. Many other interesti_g lens
functions could be defined. One such function could remove

all fluid flow tools except those in the user sketched volume
behind the lens.

We believe that the magic lens filter alleviates the prob-
lem of visualization and annotation functions sharing the
same screen space. Using the lens, a scientist can tightly in-
tegrate the two functions when appropriate. When she wishes
to focus exclusively on either visualization or annotation, the
clutter introduced by the other component can be hidden.

5 Future Work

The work described in this paper could be expanded in a
number of ways, in both the fluid flow application and in new
environments.

There are a number of opportunities for the fluid flow
application. The facility for recording parameters of visual-
ization tools could be extended to record view parameters.
Then, flow tools could automatically be viewed from the
same viewpoint and with the same magnification as when
their parameters were saved. Annotations could also become
more active in the data investigation process. For example,
annotation markers could be used as seed points for auto-
matic flow feature-characterization code. The output of the
feature-characterization code (i.e., specifications of the fea-
ture found) could then be added to the annotation content.
Feature-characterization code could also be used to improve
supportfor time-varying annotations. If the location of an an-
notation marker were constrained to the feature's position (as
found by feature-characterization code), the marker would
follow the movement of the feature over time.

We would also like to implement annotations in other
applications and environments. For example, virtual real-
ity environments pose many new research problems. User
studies would have to be performed to determine which an-
notation modalities would be appropriate in this space. If
textual annotations were appropriate, we would have to de-
termine where to place the text: floating in space near the
marker, or on 2D panels which exist in the virtual space, or
perhaps in some other place. New interaction mechanisms
for annotation markers and falters should also be developed.

Finally, we would like to expand the scope of annota-
tions. Springmeyer et al. noted that scientists tend to record
their interactions with visualization systems. Perhaps the an-
notation system could help in recording and examining these
edit trails. Also, scientists spend time comparing different
data sets, The current annotation system could be redesigned
to fit in the context of more than one data set.

We hope that further experience with the current sys-
tem and its extension to other applications and environments
will allow us to evaluate our design guidelines, and develop
principles for customization of a general purpose annotation
system.

r



• 6 Conclusion

The importance of annotation in data analysis and the lack
of annotation support in data analysis tools led us to develop
a system that integrates annotation and visualization. In our
system, annotations are embedded in the 3D space of CFD
data. Co-location of annotations and data allows users to

navigate through the information by spatial association. Each
annotation is composed of a small geometric marker and a
content that can include textual, graphical and other domain-
specific information. This allows unobtrusive annotations
with an unlimited amount of information. Filters are provided
to help sort annotations and create customized views of the
information.

Initial feedback from scientists leads us to believe that

the close integration of annotation and visualization facili-
tates the ongoing recording activity observed by Springmeyer
et al. At the same time, the ability to group annotations in
disjoint sets and filter annotations supports the organization
of analysis conclusions, i.e., the describing activity. Further-
more, annotations can be used as a means of communication

between collaborating scientists, and as a way to present in-
formation in an educational tool.
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