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Abstract

To render images from a three-dimensional array of
sample values, it is necessary to interpolate between the
samples. This paper is concerned with interpolation meth-
odsthat are equivalent to convolving the sampleswitha re-
congtruction filter; thiscovers all commonly used schemes,
including trilinear and cubic interpolation.

We first outline the formal basis of interpolation in
three-dimensional signal processing theory. We then pro-
pose humerical metrics that can be used to measure filter
characteristics that are relevant to the appearance of im-
ages generated using that filter. We apply those metrics
to several previoudly used filters and relate the results to
isosurface images of the interpolations. We show that the
choice of interpolation scheme can have a dramatic effect
on image quality, and we discuss the cost/benefit tradeoff
inherent in choosing a filter.

1 Introduction

Volumedata, such asthat fromaCT or MRI scanner, is
generaly in the form of alarge array of numbers. In order
to render an image of avolume's contents, we need to con-
struct from the data a function that assigns avalueto every
point in the volume, so that we can perform rendering op-
erations such as simulating light propagation or extracting
isosurfaces. This paper is concerned with the methods of
constructing such afunction. Werestrict our attentionto the
case of regular sampling, in which samples are taken on a
rectangular lattice. Furthermore, our analysisisin terms of
uniform regular sampling, in which we have equal spacing
along al axes, since the non-uniform case can be included
by asimple scaling.

Given adiscrete set of samples, the process of obtain-
ing adensity function that is defined throughout the volume
iscalled interpolationor reconstruction; we usetheseterms
interchangesbly. Trilinear interpolationiswiddy used, for
example in the isosurface extraction algorithms of Wyvill,
et. d. [19], and Lorensen, et. a. [13, 4], and in many ray-
tracing schemes (e.g., that of Levoy [12]). Cubic filters
have aso received attention: Levoy uses cubic B-splines
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for volumeresampling, and Wilhelmsand Van Gel der men-
tion Catmull-Rom splines for isosurface topology disam-
biguation [18]. The “splatting” methods of Westover [17]
and Laur & Hanrahan [11] assume atruncated Gaussian fil-
ter for interpolation, although the interpol ation operationis
actually merged withilluminationand projectioninto asin-
glefast but approximate compositing process. Carlbom [3]
discusses the design of discrete “optimal” filters based on
weighted Chebyshev minimization. All of these schemes
fall withinthe standard signal processing framework of re-
construction by convol utionwithafilter, whichisthemodel
we useto analyze them.

The process of interpolation is often seen as a mi-
nor aside to the main rendering problem, but we believe it
is of fundamental importance and worthy of closer atten-
tion. One needs to be aware of the limitations of interpola-
tion, and hence of the images produced, which are usually
claimed to represent the original density function prior to
sampling. Sampling and interpolation are also basic to vol-
ume resampling, and the cost of using more sophisticated
interpolation schemes may well be outweighed by the po-
tential benefits of storing and using fewer samples.

2 Reconstruction Theory

2.1 Review of Fourier analysis

We will review Fourier analysis and sampling theory
in two dimensions to make diagrams feasible; the general -
ization to three dimensionsis straightforward. Someinitial
familiarity is assumed; introductionsto this subject can be
foundin [6] and [7].

Fourier analysis allows us to write a complex-va ued
functiong: R? — C asasum of “planewaves’ of theform
exp(i(wex+ wyy)). For aperiodic function, this can actu-
ally be done with a discrete sum (a Fourier series), but for
arbitrary g we need an integral:

1 R .
9(xy) = 5 /R G(ex, ay) XY doy day
The formulato get § from g is quitesimilar:
§ = —i(woxtayy)
Glox, ) = /}R LJaxye dxdy

One intuitive interpretation of these formulae is that
§(ux, wy) measures the correlation over al (x,y) between



Figure 1: Two-dimensional sampling in the space domain (top) and the frequency domain (bottom).

g and a complex sinusoid of frequency (wy,wy), and that
0(x,y) sums up the values at (x,y) of sinusoids of al pos-
sible frequencies (wy, wy), weighted by §. We call § the
Fourier transform of g, and |§| the spectrum of g. Since
the Fourier transform isinvertible, g and § are two repre-
sentations of the same function; we refer to g as the space
domain representation, or just the signal, and § as the fre-
guency domain representation. Of particular importanceis
that the Fourier transform of a product of two functionsis
the convolution of their individual Fourier transforms, and
viceversa gh=§«h; gxh= gh.

2.2 Basic samplingtheory

We represent a point sample as a scaled Dirac impulse
function. With this definition, sampling asignd is equiva
lent to multiplyingit by agrid of impulses, oneat each sam-
plepoint, asillustrated in the top half of Figure 1.

The Fourier transform of a two-dimensional impulse
gridwith frequency fyinxand fy inyisitself agrid of im-
pulseswith period fx inxand fyiny. If wecall theimpulse
gridk(x,y) andthesigna g(x, y), thentheFourier transform
of thesampled signal, gk, isgxk. Sincekisanimpulsegrid,
convolving g with k anountsto duplicating § at every point
of k, producing the spectrum shown at bottom right in Fig-
ure 1. We cal the copy of § centered at zero the primary
spectrum, and the other copies alias spectra.

If §iszero outsideasmall enough region that the aias
spectra do not overlap the Primary spectrum, then we can
recover § by multiplying gk by a function h which is one
inside that region and zero elsawhere. Such a multiplica-
tionisequivalent to convolving the sampled datagk with h,
theinverse transform of h. This convolutionwith h allows
usto reconstruct the origina signal g by removing, or filter-
ing out, thealias spectra, sowe call hareconstruction filter.
The goa of reconstruction, then, isto extract, or pass, the
primary spectrum, and to suppress, or stop, thealias spectra.
Sincethe primary spectrum comprises thelow frequencies,

the reconstruction filter is alow-passfilter.

It is clear from Figure 1 that the simplest region to
which we could limit § is the region of frequenciesthat are
less than half the sampling frequency along each axis. We
cal thislimiting frequency the Nyquist frequency, denoted
fn, and the region the Nyquist region, denoted Ry. We de-
fine an ideal reconstruction filter to have a Fourier trans-
form that has the value one in the Nyquist region and zero
outsideit.

2.3 Volumereconstruction

Extending the above to handle the three-dimensional
signasencountered in volumerenderingis straightforward:
the sampling grid becomes a three-dimensional lattice, and
the Nyquist region acube. See[5] for adiscussion of signa
processing in arbitrary dimensions.

Given this new Nyquist region, the ideal convolution
filter istheinversetransform of acube, which isthe product
of three sinc functions:

hi(x,y,2) = (2fn)3 sinc(2fyx) sinc(2fyy) sinc(2fy2).

Thus, in principle, a volume signal can be exactly re-
constructed from its samples by convolving with h;, pro-
vided that the signal was suitably band-limited? before it
was sampled.

In practice, we can not implement h;, since it has in-
finite extent in the space domain, and we are faced with
choosing an imperfect filter. Thiswill inevitably introduce
some artifacts into the reconstructed function.

3 Practical reconstruction issues

Theimage processing field, which makes extensive use
of reconstructionfilters for image resampling (e.g., [10, 16,

LOther definitions of an ideal filter are possible—for example, afilter
h suchthat his oneinsideacircle of radius fy.

2A signal is band-limited if its spectrum is zero outside some bounded
region in frequency space, usually a cube centered on the origin.
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Figure 2: Prealiasing (left) and postaliasing (right).

15]), provides a good starting point for analyzing volume
reconstruction filters. In particular, Mitchell and Netravali
[15] identified postaliasing, blur, anisotropy, and ringing as
defects arising from imperfect image reconstruction.

3.1 Postaliasing

Postaliasing arises when energy from the alias spectra
“lesks through” into the reconstruction, due to the recon-
struction filter being significantly non-zero at frequencies
above fy. The term postaliasing is used to distinguish the
problem from prealiasing, which occurs when the signdl is
insufficiently band-limited before sampling, so that energy
fromthealias spectra“ spillsover” intotheregion of the pri-
mary spectrum. In both cases, frequency componentsof the
original signal appear in the reconstructed signa at differ-
ent frequencies (called aliases). The important distinction
between the two types of aliasingisillustrated in Figure 2.

Sample frequency rippleis aform of postaliasing that
ariseswhen the filter’ sspectrum issignificantly non-zero at
lattice pointsinthe frequency domain. The zero-frequency,
or “DC,” component of the aias spectra, which is very
strong even for signaswith littledensity variation, then ap-
pearsin theinterpol ated volumeas an oscill ation at the sam-
plefrequency. Near-sample-frequency ripple, which occurs
when filters are non-zero in the immediate vicinity of fre-
guency domain lattice points, can aso be significant.

3.2 Smoothing (“blur™)

Thisterm refers to the removal of rapid variationsin a
signal by spatia averaging. Some degree of smoothing is
normal during reconstruction, since practicd filters usually
start to cut off well before fy. Inimage processing, exces-
sive smoothing resultsin a blurred image. In volume ren-
dering, it resultsin loss of fine density structure. Theoreti-
cally, smoothingis afilter defect, but in practice noisy vol-
ume data may benefit from some smoothing, since most of
itsfine structureis spurious. Also, smoothing is often nec-
essary to combat the Gibbs phenomenon (see bel ow).

3.3 Ringing (overshoot)

Low-passfiltering of step discontinuitiesresultsin os-
cillations, or ringing, just before and after the discontinuity;
thisis the Gibbs phenomenon (see for example [14]). Se-
vereringingisnot necessary for band-limitedness: Figure3

shows two band-limited approximationsto a square wave,
one generated with an ideal low-pass filter and the other
with afilter that cuts off more gradually but with the same
ultimate cut-off frequency. Perceptualy, the latter seems
preferable

When a signa is being sampled, we have seen that it
must be band-limited if we are to reconstruct it correctly.
Natural signals are not generally band-limited, and so must
be low-pass filtered before they are sampled (or, equiva
lently, the sampling operation must include some form of
local averaging). The usua assumptionisthat anidea low-
pass filter, cutting off at the Nyquist frequency, isoptimal.
However, we havejust seen that such afilter causesringing
around any discontinuities, regardless of any subsequent
sampling and reconstruction. If we then reconstruct the
sampled signal with an ideal reconstruction filter, we will
end up with exactly the filtered signad we sampled, which
has ringing at the discontinuities. To avoid such problems,
either the sampling filter or the reconstruction filter should
have a gradua cut-off if the signd to be sampled contains
discontinuities.

sharp cutoff

gradual cutoff

Figure 3: Band-limited square waves.

3.4 Anisotropy

If the reconstruction filter is not spherically symmet-
ric, the amount of smoothing, postaliasing, and ringingwill
vary according to the orientation of features in the volume
with respect to thefilter. Anisotropy manifestsitself as an
asymmetry in smoothing or postaliasing artifacts; in the ab-
sence of those, anisotropy can not occur. We therefore re-
gard anisotropy as a secondary effect, and do not measure
it separately.

3But the former is the optimal band-limited approximation under the
L2 norm, which demonstratesthe dangersof assuming that the L2 normis
aways appropriate.



35 Cost

The remaining critical issue in filter design is that of
cost. Any practical filter takesawei ghted sum of only alim-
ited number of samples to compute the reconstruction a a
particular point; that is, it iszero outside somefiniteregion,
called the region of support. If afilter’sregion of support
is contained within a cube of side length 2r, we cal r the
radiusof thefilter. In thispaper, we consider arange of fil -
ters of different radii. It isimportant to realize that larger
filtersare generaly much more expensive: atrilinear inter-
polation involvesaweighted sum of eight samples, whilea
tricubic filter involves 64. In general, the number of sam-
plesinvolved increases as the cube of thefilter radius.

The effect of filter radius on the run time of avolume
rendering program depends on the a gorithm. Runtimesfor
simpleray tracing algorithmstend to increase with the cost
of each density calculation, i. e., as the cube of thefilter ra-
dius. Runtimesfor splattingalgorithms, which precompute
the two-dimensional “footprint” of afilter, tend to increase
asthesquare of thefilter radius. Lastly, whenresampling an
image or volume on a new latticethat is paralld to the old
lattice, separable filters (see Section 4.1) allow linear time
complexity with respect to filter radius, using a multi-pass
algorithmthat filters once along each axis direction.

4 FilterstobeAnalyzed

Thefilterswe wish to analyze fal into two categories,
separable and spherically symmetric. However, a subclass
of separabl e filters, the pass-band optimal filters, is defined
inadifferentway fromall other filters, and is discussed sep-
arately below.

In the defining equations that follow, we use the nota-
tion[P] tobe 1if Pistrueand O otherwise. All but thefirst
two of thefilters below need to be normalized by aconstant
o that their integral over R3isequal to one.

4.1 Separablefilters
Separablefilters can be written

h(xy,2) = hs(x) hs(y) hs(2).

Included in this category are:

e Thetrilinearfilter. Trilinear interpolationisequivalent to
convolution by the separable filter

hs(x) = [[x| <1} (1 - [x]).

o A two-parameter family of cubicfilters, with parameters
B and C, studied in two dimensionsin [15]:

hs(B,C)(x) =
(12— 9B—6C) |x|3+

if x| <1
L | (-18+12B+6C) X2+ (6-28) XI<1,
= _B_ 3 2
5 (—=B—6C)|x|°+ (6B+ 30C) |x|“+ if 1< x|/ <2,
(—12B— 48C)|x| + (8B + 24C)
0 otherwise.

This family includes the well-known B-spline (B = 1,
C = 0) and Catmull-Rom spline (B = 0, C = 0.5). We
confine our attentionto filtersin therange (B,C) = (0,0)
to (1,1).

e The (truncated) Gaussian filter, which is often used in
splatting a gorithms for volume rendering:

—x2/20?

hs(Xm, 0) (%) = [[X| < xm]€

e The cosine bell filter, which has been widely used as a
window (see below) in one-dimensional signal process-
ing [1], but can aso be used as a reconstruction filter in
itsown right:

hs(Xm) (%) = [[X| < Xm] (14 COS(T%/Xm))-

o Windowed sinc filters. These filters approximate the
ideal sinc filter by a filter with finite support. Simply
truncating the sinc at some distance leads to problems
with ringing and postaliasing. Instead, the sinc is multi-
plied by a window function that drops smoothly to zero.
This family approximates a sinc filter arbitrarily closay
as the radius of the window is increased. We consider
only one window, namely a cosine bell that reaches zero
after two cycles of the sinc function. The defining equa-
tion of the windowed sincis

hs(%m) (X) = [[X| < Xm] (14 COS(T%X/Xm)) SINC(4X/Xm).

4.2 Spherically symmetricfilters
The vaue of a spherically symmetric filter depends
only on the distance from the origin. Such filters can be

written
h(Xaya Z) = hr( Vv X2+y2+22)'

The two such filters we investigate are:

o arotated version of thecosinebell. Thisissimply afilter
whose h; isthe same as the separable version’shg above.

o aspherically symmetric equivalent of the separable win-
dowed sinc, whichwecall awindowed 3-sinc. The 3-sinc
(which is not the same as the separable sinc defined ear-
lier) istheinverse Fourier transform of afunctionthat is
oneinsidea unit sphere and zero outside. For thisfilter,

he (rm) (r) = [o < 1](1+ cos(T) ) (sina — a cosa) /a®

wherea =r/rm.

4.3 Pass-band optimal discretefilters

These filters, described by Hsu and Marzetta [8] and
recommended for usein volumerendering by Carlbom[3],
are separable. Hence, the following discussion relates to
one-dimensional interpolation; thethree-dimensional filters
are the products of three one-dimensional filters.

All previous filters are defined by continuous func-
tions; for any given interpolation position, a filter is cen-
tered on the point of interest, and itsvalues at sample points



provide the weights to apply to the data points. That set
of weights can be regarded as a discrete filter that resam-
plesthe input data at new sample points displaced by some
fixed offset from the origina sampling points. Carlbom de-
fines an optimal interpolation filter as aset of such discrete
filters, each individually optimized to minimize smooth-
ing. For each interpolation offset, a weighted Chebyshev
minimization program [9] is used to obtain a discrete fil-
ter whose Fourier transform has (approximately) a mini-
mum weighted departure from ideal up to some frequency
fm < fN-

By computing asequence of thesefixed-length optimal
discrete filters for offsets in the range 0-1, and interpolat-
ing between adjacent members, we can construct an under-
lying continuousfilter. Figure4 showstwo such underlying
filters* The design method handles only odd-length dis-
crete filters, and thusthe underlying filters are asymmetric,
unlikeall other filters we study.

A problem with this approach to filter design is that
postaliasing is ignored, giving filters that are (in a sense)
optimal in the pass band at the expense of relatively poor
performance in the stop band.

1 1

5-point 9-point
filter filter

3\ | ™ 5 3\ | Vo 4

Figure 4: Two pass-band-optimal filters

5 Metricsfor filter quality

5.1 Définitions

One of our goals in this research was to obtain some
guantitativemeasures of filter quality. Asaready indicated,
choosing afilter requirestrading off benefits and defects ac-
cording to the the nature of the signal, how it was sampled,
how much noiseis present, how costly a filter we can tol-
erate, and what rendering algorithmis being used. For this
reason, a single number describing the quality of afilter—
for example, the L2 norm of the difference between a par-
ticular filter and theideal filter—isnot an appropriate goal .
Accordingly, wedefine separate metricsfor the most impor-
tant filter qualities: smoothing, postaliasing, and overshoot
(ringing).

Formally, we define our smoothing metric, S, of afilter
h, to be

1
IRn| /Ry

where Ry isthe Nyquist region, |Ry| isthe frequency-space
volumeof Ry, and dV isan infinitesimal volumee&ement in

Sthy=1 Ih2dv,

4The discretefilters were computed using the program[9], modified as
describedin [8] and [3], and with f;,, values of 0.3 and 0.4 for the 5-point
and 9-point filters respectively, asin [3].

Ru. We define our postaliasing metric, P, to be
1 R
P(h :—/ AlZav,

where Ry isthe complement of Ry.

The smoothing and postaiasing metrics measure the
difference between a particular filter and our ided filter in-
side and outside the Nyquist region respectively; the differ-
ence is measured in terms of energy. (The filter energy in
aregion isthe integral of the square of the filter over that
region.)

Our overshoot metric, O, measures how much over-
shoot occurs if afilter h is used to band-limit the unit step
function, ps. Moreformally, O (h) = max(psxh) — 1, where
psislif x> 0and O otherwise,

5.2 Computation

The smoothing and postaliasing metrics are based on
the three-dimensional Fourier transforms of thefilters. All
except the pass-band optimal filters are even functions, for
which thetransform simplifiesto the cosinetransform[14]:

(e, @y, w) =
/}R , h(X,y, z) cos(wxx) cos(wyy) cos(w,z) dxdydz

For the separable filters, the transform further simplifiesto
the product of three one-dimensional transforms.

For spherically symmetric filters, the three-
dimensional integral can be simplified [2] to

he(wy) = 4—T[/ rhe(r)sin(oxr) dr.
Wr Jo

The smoothing metric is obtained directly fromitsdef-
inition by numerical integration. The postaliasing metricis
computed from the smoothing metric and thetotal filter en-
ergy. We can computethetota energy in the space domain,
where thefilter hasfinite support, since Parseval’s theorem
[14] showsthat theresult isthe same in both space and fre-
guency domains.

Metrics for the pass-band optimal filters were com-
puted from the underlying continuous filters illustrated in
Figure 4.

6 Filter Testing

6.1 Thetest volume

Although numerous datasets are publicly available, we
are unaware of any that are correctly sampled from some
exactly knownsignal. Thismakesit difficult to evaluate re-
construction techniques, since the ultimate measure of the
quality of a reconstruction is how closdly it approximates
theoriginal signal. Accordingly, we use atest signal

p(X,y,2) = (1_Sin(m/2);(fil:) (V¥ +Y9) ’

where
pr(r) = cos(2rtfy cos(%)).



We sampled this signal on a 40 by 40 by 40 latticein
therange —1 < x,y,z< 1, with fyy = 6 and a = 0.25. The
function has a slow sinusoidal variation in the z direction
and a perpendicular frequency-modulated radial variation.
With the given parameters, it can be shown that the one-
dimensional radia signa has 99.8% of its energy below a
frequency of 10, and our analysissuggeststhat the spectrum
of the volume as a whole is similarly band-limited. This
makes it acceptable to point sample the function over the
range —1 < x,y,z< 1 at 20 samples per unit distance. Note,
however, that a significant amount of the function’senergy
lies near the Nyquist frequency, making this signa a very
demanding filter test—all our filters show some perceptible
postaliasing and smoothing.

Figure5 shows aray-traced image of thetest volume's
isosurface p(x,y,z) = 0.5.

Figure 5: The unsampled test signal.

6.2 Testimagerendering

To demonstrate the behavior of the various filters, we
display isosurfaces of reconstructed test volumes. Itisim-
portant that we show the exact shape of the isosurface, in-
cluding smdll irregularitiesthat can be seen only with de-
tailed shading. This means we need a gradient that corre-
sponds exactly to the reconstructed density function. The
usual schemesfor renderingisosurfaces (e. g., Lorensen and
Cline[13]) approximate the gradients using central differ-
ences at sample pointsand then interpol ate those gradients;
the resulting estimate does not track small-scale changesin
theisosurface orientation.

Since our reconstructed density function is the convo-
[ution of the samples with the reconstruction filter, the den-
Sity gradient isthe convolution of the sampleswith the gra-
dient of thefilter. For any differentiablefilter h, we can thus
obtainan exact formulafor the gradient of the reconstructed
function, which can be eval uated at any pointinthevolume,

For rendering, we use aray tracer that displaysisosur-
faces of arbitrary functions by using a root-finding algo-
rithmtolocatethefirst crossing of theisosurfacelevel along
each ray.

Postaliasing
r=3.79
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(0,0.5) 0.0
= Catmull-Rom ©0.0)
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pass-band
optimal
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Figure 6: Smoothing and postaliasing metrics.
7 Results

7.1 Smoothing and Postaliasing

Figure 6 shows the smoothing and postaliasing metrics
for thetrilinear filter, the family of cubic filters, a range of
windowed sincs, and three pass-band optimal filters. The
metrics for our ideal filter would be (0,0), although, as dis-
cussed in Section 3.3, some smoothing is usually required,
if only to combat overshoot.

Cubic Filters. Thisfamily isshownin thefigureas a
10 by 10 mesh. The mapping from B-C space to smoothing-
postaiasing space is not one-to-one: the (1,1) corner of
themesh is“folded” over. The B-spline smoothes the most
heavily, but has low postaliasing, while the Catmull-Rom
spline produces much less smoothing but has poor postal-
iasing properties. The imagesin Figures 9(a) and 9(b) sup-
port these measurements. the B-spline smoothes out the
large variationsin the signa—thewaves get shallower with
increasing frequency—and the Catmull-Rom preserves the
depth of the waves at the cost of aliasing, which shows up
as scalloped crests.

According to our metrics, the filters along the fold
should be best. However, Figure9(c) showsthetest volume
reconstructed using one such filter (B= 0.5,C = 0.85). We
can seethat, whilethe overall geometry isreproduced quite
faithfully, the surface has a dimpled texture, due to near-
sample-frequency ripple. The ripples, although of low am-
plitude, are of high frequency, and so produce large local
variations in gradient, and therefore in shading. It is per-
haps a limitation of our postaliasing metric that it weights
leakage at all frequencies equally.

Our experience corroboratesthe space-domain conver-
gence analysis of Mitchell and Netravali [15], which sug-
gests that filters along the line 2C+ B = 1 (which includes
Catmull-Rom and B-splines as extreme cases) are among
the best: we find that these filters have negligible near-
sample-frequency ripple. But we see no reason in general
to prefer any particular filter dong that line a priori, since
wemust aways settlefor atradeoff between smoothingand
postaliasing.



Trilinear filter. The trilinear filter is plotted in Fig-
ure 6. It can be seen that its metrics are the same as for
a cubic of approximately B = 0.26, C = 0.1. Images for
these two filters are shown in Figure 9(d) and 9(e). They
look similar, except that thetrilinear filter introduces gradi-
ent discontinuities, which our metrics do not measure.

Windowed sinc filter. The metrics for our particular
cosine-windowed sinc are shown in Figure 6 for arange of
radii. It can be seen from the figure that these filters are
in a sense superior to the entire family of cubics, since for
any cubic filter there are windowed sincs with both better
postaliasing and better smoothing. However, because of
their size, they are much more expensive to use than the cu-
bics.

Also, because sample-frequency rippleis so offensive,
only the labelled points are of interest, since they are the
only ones for which the filter's spectrum has zeroes at the
nearest |attice points (see Section 3.1).

Theresultsfor aradiusof 4.78 are shownin Figure 9(f).
The wave structureisfree of both scalloping and excessive
smoothing. (Asin al theimages, we must ignore the pro-
nounced effects of filtering the discontinuous outer edge of
thevolume.) However, thefilter’sanisotropy causes signif-
icant variationsin the height of the circular crests: thefilter
smoothes more in directions near the coordinate axes than
along diagonals.

The results for a radius of 4.28 are similar, but with
dlightly more postaliasing. Both these filters are roughly
two orders of magnitude more expensive (in an O(r3) a-
gorithm) than trilinear interpol ation.

Pass-band optimal filters The metricsfor threediffer-
ent pass-band optimal filters are shown in Figure 6. As ex-
pected, their excellent pass band performance (low smooth-
ing) isachieved at the expense of relatively poor postalias-
ing.

The 5-point optimal filter iswider than the cubicfilters
(twice the cogt, in an O(r®) agorithm) and the 9-point fil-
ter is comparable in cost with the windowed sinc of radius
4.78. Also, the pass-band optimal filters are more difficult
to calculate and manipulate generaly (e.g., to obtain gradi-
ents) than other filters, so we do not recommend them for
genera-purpose reconstruction. Their primary useis prob-
ably forimage and volumeresampling at afixed offset when
minimal smoothing isthe goal.

Other filters. Table 1 showsthe smoothingand postal -
iasing metrics for some representative separable Gaussian
and separabl e cosinebdll filters. Fromthemetrics, and from
severa test images, we conclude that the cubics generally
perform better for similar cost and are more flexible. One
exceptionisthecosine bell of radius 1.5, which, asthe met-
rics in Table 1 suggest, produces images similar to a B-
spline, but at alower cost. The filter does introduce dight
local gradient variations, but in many rendering contexts
these would not be apparent.

We investigated a range of spherically symmetric fil-
ters. However, since the zeroes of their spectra fall on

Filter Radius | Smooth. | Postalias.
Cosine bell 1.0 0.67 0.096
Cosine bell 15 0.88 0.002
Cosine bell 20 0.95 0.00008

Gawuss. 0 = 0.50 25 0.81 0.014
Gauss. 0 = 0.60 20 0.90 0.002
Gauss. 0 = 0.75 25 0.95 0.0001

Table 1: Miscellaneous separable filter metrics.

spherical surfaces, rather than axis-aligned planes, it proved
impossible to adequately reject sample-frequency ripple
with filters of any reasonable cost. For very high-quality
reconstruction, the isotropy of spherically symmetric win-
dowed sinc filters could be a significant advantage.

overshoot %

B
0 0

Figure 7: Overshoot metrics for cubic filters.

7.2 Overshoot

Our overshoot metrics for the cubic filters are graphed
in Figure 7. Asdiscussed in Section 3.3, overshoot is pri-
marily of concern with volumes containing inadequately
smoothed discontinuities; filterswith high overshoot should
be avoided in such cases. Figure 8 illustratesthe effects of
reconstructing a point-sampled cube with a B-spline, which
has no overshoot, and with the cubic filter most prone to
overshoot,B=0,C=1.

8 Conclusions

Interpolation underpins all volume rendering algo-
rithmsworking from sampled signals. We have considered
thefamily of interpol ation schemes that can be expressed as
convolution of asample lattice with afilter.

The artifacts resulting from imperfect reconstruction
fal into three main categories: smoothing, postaiasing,

Figure 8: A point-sampled cube reconstructed with a
B-spline (left) and with the cubic (0,1).



and overshoot. Since reconstruction is necessarily imper-
fect, choosing afilter must involve tradeoffs between these
three artifacts.

We have defined metrics to quantify the characteristics
of afilter in terms of these artifacts. In generd, the metrics
correlate well with the observed behavior of thefilters, a-
though the postaliasing metric does not adequately address
the troublesome problem of ripplein the reconstructed sig-
nal at or near the sample frequency.

Trilinear interpolation is certainly the cheapest option,
andwill likely remain the method of choicefor time-critical
applications. Where higher quality reconstruction is re-
quired, especially in the presence of rapidly varying sig-
nals, the family of cubics is recommended. Cubics offer
considerable flexibility in the tradeoff between smoothing
and postaliasing. For applications in which near-sample-
frequency ripplecould be aproblem, we recommend cubics
forwhich 2C+ B = 1, otherwisg, filtersalongthe“fold” line
in Figure 6 are preferred.

For the most demanding reconstruction problems, win-
dowed sincs can provide arbitrarily good reconstruction.
Their large radii make them extremely expensive in O(r3)
algorithms, such as ray-tracing, but they could certainly be
used inan O(r) resampling al gorithm. Theradius should be
chosen so that the Fourier transformis zero at the sampling
frequency, in order to eliminate sample-frequency ripple.

Spherically symmetric filters tend to produce sample-
frequency ripple, and do not seem to offer any significant
advantages over separable filters for most applications.

8.1 Futurework

Although the metrics presented in this paper providea
useful guideline, we believe they can be improved. In par-
ticular, the postaliasing metric could be made more sensi-
tive to the frequencies that produce the most objectionable
artifacts.

Given the better reconstruction techniques outlined in
this paper, it should be possible to represent volume data
with a sparser sampling lattice. Also, using a precise def-
inition of the reconstructed signal gives us aframework in
whichto evaluate errorsintroduced by such subsampling or
other forms of data compression.
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Isosurface images of the test signal reconstructed using various filters.
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