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Abstract
To render images from a three-dimensional array of

sample values, it is necessary to interpolate between the
samples. This paper is concerned with interpolation meth-
ods that are equivalent to convolving the samples with a re-
construction filter; this covers all commonly used schemes,
including trilinear and cubic interpolation.

We first outline the formal basis of interpolation in
three-dimensional signal processing theory. We then pro-
pose numerical metrics that can be used to measure filter
characteristics that are relevant to the appearance of im-
ages generated using that filter. We apply those metrics
to several previously used filters and relate the results to
isosurface images of the interpolations. We show that the
choice of interpolation scheme can have a dramatic effect
on image quality, and we discuss the cost/benefit tradeoff
inherent in choosing a filter.

1 Introduction
Volume data, such as that from a CT or MRI scanner, is

generally in the form of a large array of numbers. In order
to render an image of a volume’s contents, we need to con-
struct from the data a function that assigns a value to every
point in the volume, so that we can perform rendering op-
erations such as simulating light propagation or extracting
isosurfaces. This paper is concerned with the methods of
constructingsuch a function. We restrict our attention to the
case of regular sampling, in which samples are taken on a
rectangular lattice. Furthermore, our analysis is in terms of
uniform regular sampling, in which we have equal spacing
along all axes, since the non-uniform case can be included
by a simple scaling.

Given a discrete set of samples, the process of obtain-
ing a density function that is defined throughout the volume
is called interpolationor reconstruction; we use these terms
interchangeably. Trilinear interpolation is widely used, for
example in the isosurface extraction algorithms of Wyvill,
et. al. [19], and Lorensen, et. al. [13, 4], and in many ray-
tracing schemes (e.g., that of Levoy [12]). Cubic filters
have also received attention: Levoy uses cubic B-splines
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for volume resampling, and Wilhelms and Van Gelder men-
tion Catmull-Rom splines for isosurface topology disam-
biguation [18]. The “splatting” methods of Westover [17]
and Laur & Hanrahan [11] assume a truncated Gaussian fil-
ter for interpolation, although the interpolation operation is
actually merged with illumination and projection into a sin-
gle fast but approximate compositing process. Carlbom [3]
discusses the design of discrete “optimal” filters based on
weighted Chebyshev minimization. All of these schemes
fall within the standard signal processing framework of re-
construction by convolutionwith a filter, which is the model
we use to analyze them.

The process of interpolation is often seen as a mi-
nor aside to the main rendering problem, but we believe it
is of fundamental importance and worthy of closer atten-
tion. One needs to be aware of the limitations of interpola-
tion, and hence of the images produced, which are usually
claimed to represent the original density function prior to
sampling. Sampling and interpolation are also basic to vol-
ume resampling, and the cost of using more sophisticated
interpolation schemes may well be outweighed by the po-
tential benefits of storing and using fewer samples.

2 Reconstruction Theory
2.1 Review of Fourier analysis

We will review Fourier analysis and sampling theory
in two dimensions to make diagrams feasible; the general-
ization to three dimensions is straightforward. Some initial
familiarity is assumed; introductions to this subject can be
found in [6] and [7].

Fourier analysis allows us to write a complex-valued
function g :R2! C as a sum of “plane waves” of the form
exp(i(ωxx+ωyy)). For a periodic function, this can actu-
ally be done with a discrete sum (a Fourier series), but for
arbitrary g we need an integral:

g(x;y) =
1

2π

Z
R2

ĝ(ωx;ωy)ei(ωxx+ωyy)dωx dωy

The formula to get ĝ from g is quite similar:

ĝ(ωx;ωy) =
Z
R2

g(x;y)e�i(ωxx+ωyy)dxdy

One intuitive interpretation of these formulae is that
ĝ(ωx;ωy) measures the correlation over all (x;y) between
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Figure 1: Two-dimensional sampling in the space domain (top) and the frequency domain (bottom).

g and a complex sinusoid of frequency (ωx;ωy), and that
g(x;y) sums up the values at (x;y) of sinusoids of all pos-
sible frequencies (ωx;ωy), weighted by ĝ. We call ĝ the
Fourier transform of g, and jĝj the spectrum of g. Since
the Fourier transform is invertible, g and ĝ are two repre-
sentations of the same function; we refer to g as the space
domain representation, or just the signal, and ĝ as the fre-
quency domain representation. Of particular importance is
that the Fourier transform of a product of two functions is
the convolution of their individual Fourier transforms, and
vice versa: cgh = ĝ? ĥ; dg?h = ĝĥ.

2.2 Basic sampling theory
We represent a point sample as a scaled Dirac impulse

function. With this definition, sampling a signal is equiva-
lent to multiplying it by a grid of impulses, one at each sam-
ple point, as illustrated in the top half of Figure 1.

The Fourier transform of a two-dimensional impulse
grid with frequency fx in x and fy in y is itself a grid of im-
pulses with period fx in x and fy in y. If we call the impulse
grid k(x;y) and the signal g(x;y), then the Fourier transform
of the sampled signal, bgk, is ĝ? k̂. Since k̂ is an impulse grid,
convolving ĝ with k̂ amounts to duplicating ĝ at every point
of k̂, producing the spectrum shown at bottom right in Fig-
ure 1. We call the copy of ĝ centered at zero the primary
spectrum, and the other copies alias spectra.

If ĝ is zero outside a small enough region that the alias
spectra do not overlap the primary spectrum, then we can
recover ĝ by multiplying bgk by a function ĥ which is one
inside that region and zero elsewhere. Such a multiplica-
tion is equivalent to convolving the sampled data gk with h,
the inverse transform of ĥ. This convolution with h allows
us to reconstruct the original signal g by removing, or filter-
ing out, the alias spectra, so we call h a reconstruction filter.
The goal of reconstruction, then, is to extract, or pass, the
primary spectrum, and to suppress, or stop, the alias spectra.
Since the primary spectrum comprises the low frequencies,

the reconstruction filter is a low-pass filter.
It is clear from Figure 1 that the simplest region to

which we could limit ĝ is the region of frequencies that are
less than half the sampling frequency along each axis. We
call this limiting frequency the Nyquist frequency, denoted
fN, and the region the Nyquist region, denoted RN . We de-
fine an ideal reconstruction filter to have a Fourier trans-
form that has the value one in the Nyquist region and zero
outside it.1

2.3 Volume reconstruction
Extending the above to handle the three-dimensional

signals encountered in volume rendering is straightforward:
the sampling grid becomes a three-dimensional lattice, and
the Nyquist region a cube. See [5] for a discussion of signal
processing in arbitrary dimensions.

Given this new Nyquist region, the ideal convolution
filter is the inverse transform of a cube, which is the product
of three sinc functions:

hI(x;y; z) = (2 fN)
3 sinc(2 fNx) sinc(2 fNy) sinc(2 fNz):

Thus, in principle, a volume signal can be exactly re-
constructed from its samples by convolving with hI, pro-
vided that the signal was suitably band-limited2 before it
was sampled.

In practice, we can not implement hI, since it has in-
finite extent in the space domain, and we are faced with
choosing an imperfect filter. This will inevitably introduce
some artifacts into the reconstructed function.

3 Practical reconstruction issues
The image processing field, which makes extensive use

of reconstruction filters for image resampling (e.g., [10, 16,

1Other definitions of an ideal filter are possible—for example, a filter
h such that ĥ is one inside a circle of radius fN.

2A signal is band-limited if its spectrum is zero outside some bounded
region in frequency space, usually a cube centered on the origin.



Primary spectrum

Alias spectrum

Ideal reconstruction filter

Aliasing

Reconstructed spectrum

0 Nf sf

ĝ
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Figure 2: Prealiasing (left) and postaliasing (right).

15]), provides a good starting point for analyzing volume
reconstruction filters. In particular, Mitchell and Netravali
[15] identified postaliasing, blur, anisotropy, and ringing as
defects arising from imperfect image reconstruction.

3.1 Postaliasing
Postaliasing arises when energy from the alias spectra

“leaks through” into the reconstruction, due to the recon-
struction filter being significantly non-zero at frequencies
above fN . The term postaliasing is used to distinguish the
problem from prealiasing, which occurs when the signal is
insufficiently band-limited before sampling, so that energy
from the alias spectra “spills over” into the region of the pri-
mary spectrum. In both cases, frequency components of the
original signal appear in the reconstructed signal at differ-
ent frequencies (called aliases). The important distinction
between the two types of aliasing is illustrated in Figure 2.

Sample frequency ripple is a form of postaliasing that
arises when the filter’s spectrum is significantly non-zero at
lattice points in the frequency domain. The zero-frequency,
or “DC,” component of the alias spectra, which is very
strong even for signals with little density variation, then ap-
pears in the interpolated volume as an oscillationat the sam-
ple frequency. Near-sample-frequency ripple, which occurs
when filters are non-zero in the immediate vicinity of fre-
quency domain lattice points, can also be significant.

3.2 Smoothing (“blur”)
This term refers to the removal of rapid variations in a

signal by spatial averaging. Some degree of smoothing is
normal during reconstruction, since practical filters usually
start to cut off well before fN. In image processing, exces-
sive smoothing results in a blurred image. In volume ren-
dering, it results in loss of fine density structure. Theoreti-
cally, smoothing is a filter defect, but in practice noisy vol-
ume data may benefit from some smoothing, since most of
its fine structure is spurious. Also, smoothing is often nec-
essary to combat the Gibbs phenomenon (see below).

3.3 Ringing (overshoot)
Low-pass filtering of step discontinuities results in os-

cillations, or ringing, just before and after the discontinuity;
this is the Gibbs phenomenon (see for example [14]). Se-
vere ringing is not necessary for band-limitedness: Figure 3

shows two band-limited approximations to a square wave,
one generated with an ideal low-pass filter and the other
with a filter that cuts off more gradually but with the same
ultimate cut-off frequency. Perceptually, the latter seems
preferable.3

When a signal is being sampled, we have seen that it
must be band-limited if we are to reconstruct it correctly.
Natural signals are not generally band-limited, and so must
be low-pass filtered before they are sampled (or, equiva-
lently, the sampling operation must include some form of
local averaging). The usual assumption is that an ideal low-
pass filter, cutting off at the Nyquist frequency, is optimal.
However, we have just seen that such a filter causes ringing
around any discontinuities, regardless of any subsequent
sampling and reconstruction. If we then reconstruct the
sampled signal with an ideal reconstruction filter, we will
end up with exactly the filtered signal we sampled, which
has ringing at the discontinuities. To avoid such problems,
either the sampling filter or the reconstruction filter should
have a gradual cut-off if the signal to be sampled contains
discontinuities.

sharp cutoff gradual cutoff

Figure 3: Band-limited square waves.

3.4 Anisotropy
If the reconstruction filter is not spherically symmet-

ric, the amount of smoothing, postaliasing, and ringing will
vary according to the orientation of features in the volume
with respect to the filter. Anisotropy manifests itself as an
asymmetry in smoothing or postaliasing artifacts; in the ab-
sence of those, anisotropy can not occur. We therefore re-
gard anisotropy as a secondary effect, and do not measure
it separately.

3But the former is the optimal band-limited approximation under the
L2 norm, which demonstrates the dangers of assuming that the L2 norm is
always appropriate.



3.5 Cost
The remaining critical issue in filter design is that of

cost. Any practical filter takes a weighted sum of only a lim-
ited number of samples to compute the reconstruction at a
particular point; that is, it is zero outside some finite region,
called the region of support. If a filter’s region of support
is contained within a cube of side length 2r, we call r the
radius of the filter. In this paper, we consider a range of fil-
ters of different radii. It is important to realize that larger
filters are generally much more expensive: a trilinear inter-
polation involves a weighted sum of eight samples, while a
tricubic filter involves 64. In general, the number of sam-
ples involved increases as the cube of the filter radius.

The effect of filter radius on the run time of a volume
rendering program depends on the algorithm. Run times for
simple ray tracing algorithms tend to increase with the cost
of each density calculation, i. e., as the cube of the filter ra-
dius. Run times for splattingalgorithms, which precompute
the two-dimensional “footprint” of a filter, tend to increase
as the square of the filter radius. Lastly, when resampling an
image or volume on a new lattice that is parallel to the old
lattice, separable filters (see Section 4.1) allow linear time
complexity with respect to filter radius, using a multi-pass
algorithm that filters once along each axis direction.

4 Filters to be Analyzed
The filters we wish to analyze fall into two categories,

separable and spherically symmetric. However, a subclass
of separable filters, the pass-band optimal filters, is defined
in a different way from all other filters, and is discussed sep-
arately below.

In the defining equations that follow, we use the nota-
tion [P] to be 1 if P is true and 0 otherwise. All but the first
two of the filters below need to be normalized by a constant
so that their integral over R3 is equal to one.

4.1 Separable filters
Separable filters can be written

h(x;y; z) = hs(x) hs(y) hs(z):

Included in this category are:

� The trilinear filter. Trilinear interpolation is equivalent to
convolution by the separable filter

hs(x) = [jxj< 1] (1�jxj):

� A two-parameter family of cubic filters, with parameters
B and C, studied in two dimensions in [15]:

hs(B;C)(x) =

1
6

8>>>>><
>>>>>:

(12�9B�6C)jxj3+
(�18+12B+6C)jxj2+(6�2B)

if jxj<1,

(�B�6C)jxj3 +(6B+30C)jxj2+
(�12B�48C)jxj+(8B+24C)

if 1�jxj<2,

0 otherwise.

This family includes the well-known B-spline (B = 1,
C = 0) and Catmull-Rom spline (B = 0, C = 0:5). We
confine our attention to filters in the range (B;C) = (0;0)
to (1;1).

� The (truncated) Gaussian filter, which is often used in
splatting algorithms for volume rendering:

hs(xm;σ)(x) = [jxj< xm]e
�x2=2σ2

:

� The cosine bell filter, which has been widely used as a
window (see below) in one-dimensional signal process-
ing [1], but can also be used as a reconstruction filter in
its own right:

hs(xm)(x) = [jxj< xm] (1+ cos(πx=xm)):

� Windowed sinc filters. These filters approximate the
ideal sinc filter by a filter with finite support. Simply
truncating the sinc at some distance leads to problems
with ringing and postaliasing. Instead, the sinc is multi-
plied by a window function that drops smoothly to zero.
This family approximates a sinc filter arbitrarily closely
as the radius of the window is increased. We consider
only one window, namely a cosine bell that reaches zero
after two cycles of the sinc function. The defining equa-
tion of the windowed sinc is

hs(xm)(x) = [jxj< xm](1+ cos(πx=xm)) sinc(4x=xm):

4.2 Spherically symmetric filters
The value of a spherically symmetric filter depends

only on the distance from the origin. Such filters can be
written

h(x;y; z) = hr(
p

x2 + y2 + z2):

The two such filters we investigate are:

� a rotated version of the cosine bell. This is simply a filter
whose hr is the same as the separable version’s hs above.

� a spherically symmetric equivalent of the separable win-
dowed sinc, which we call a windowed3-sinc. The 3-sinc
(which is not the same as the separable sinc defined ear-
lier) is the inverse Fourier transform of a function that is
one inside a unit sphere and zero outside. For this filter,

hr(rm)(r) = [α < 1](1+ cos(πα))(sinα�αcosα)=α3

where α = r=rm.

4.3 Pass-band optimal discrete filters
These filters, described by Hsu and Marzetta [8] and

recommended for use in volume rendering by Carlbom [3],
are separable. Hence, the following discussion relates to
one-dimensional interpolation; the three-dimensional filters
are the products of three one-dimensional filters.

All previous filters are defined by continuous func-
tions; for any given interpolation position, a filter is cen-
tered on the point of interest, and its values at sample points



provide the weights to apply to the data points. That set
of weights can be regarded as a discrete filter that resam-
ples the input data at new sample points displaced by some
fixed offset from the original sampling points. Carlbom de-
fines an optimal interpolation filter as a set of such discrete
filters, each individually optimized to minimize smooth-
ing. For each interpolation offset, a weighted Chebyshev
minimization program [9] is used to obtain a discrete fil-
ter whose Fourier transform has (approximately) a mini-
mum weighted departure from ideal up to some frequency
fm < fN .

By computing a sequence of these fixed-length optimal
discrete filters for offsets in the range 0–1, and interpolat-
ing between adjacent members, we can construct an under-
lying continuous filter. Figure 4 shows two such underlying
filters.4 The design method handles only odd-length dis-
crete filters, and thus the underlying filters are asymmetric,
unlike all other filters we study.

A problem with this approach to filter design is that
postaliasing is ignored, giving filters that are (in a sense)
optimal in the pass band at the expense of relatively poor
performance in the stop band.

-3 2

5-point 
filter

1

-5 -3 2 4

9-point 
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1

Figure 4: Two pass-band-optimal filters

5 Metrics for filter quality
5.1 Definitions

One of our goals in this research was to obtain some
quantitativemeasures of filter quality. As already indicated,
choosing a filter requires trading off benefits and defects ac-
cording to the the nature of the signal, how it was sampled,
how much noise is present, how costly a filter we can tol-
erate, and what rendering algorithm is being used. For this
reason, a single number describing the quality of a filter—
for example, the L2 norm of the difference between a par-
ticular filter and the ideal filter—is not an appropriate goal.
Accordingly, we define separate metrics for the most impor-
tant filter qualities: smoothing, postaliasing, and overshoot
(ringing).

Formally, we define our smoothing metric, S, of a filter
h, to be

S(h) = 1�
1
jRNj

Z
RN

jĥj2 dV;

where RN is the Nyquist region, jRNj is the frequency-space
volume of RN , and dV is an infinitesimal volume element in

4The discrete filters were computed using the program [9], modified as
described in [8] and [3], and with fm values of 0.3 and 0.4 for the 5-point
and 9-point filters respectively, as in [3].

RN . We define our postaliasing metric, P , to be

P (h) =
1
jRNj

Z
RN

jĥj2 dV;

where RN is the complement of RN .
The smoothing and postaliasing metrics measure the

difference between a particular filter and our ideal filter in-
side and outside the Nyquist region respectively; the differ-
ence is measured in terms of energy. (The filter energy in
a region is the integral of the square of the filter over that
region.)

Our overshoot metric, O, measures how much over-
shoot occurs if a filter h is used to band-limit the unit step
function, ρs. More formally, O(h)= max(ρs?h)�1, where
ρs is 1 if x > 0 and 0 otherwise.

5.2 Computation
The smoothing and postaliasing metrics are based on

the three-dimensional Fourier transforms of the filters. All
except the pass-band optimal filters are even functions, for
which the transform simplifies to the cosine transform [14]:

ĥ(ωx;ωy;ωz) =Z
R3

h(x;y; z)cos(ωxx)cos(ωyy)cos(ωzz) dxdydz:

For the separable filters, the transform further simplifies to
the product of three one-dimensional transforms.

For spherically symmetric filters, the three-
dimensional integral can be simplified [2] to

ĥr(ωr) =
4π
ωr

Z ∞

0
rhr(r) sin(ωrr) dr:

The smoothing metric is obtained directly from its def-
inition by numerical integration. The postaliasing metric is
computed from the smoothing metric and the total filter en-
ergy. We can compute the total energy in the space domain,
where the filter has finite support, since Parseval’s theorem
[14] shows that the result is the same in both space and fre-
quency domains.

Metrics for the pass-band optimal filters were com-
puted from the underlying continuous filters illustrated in
Figure 4.

6 Filter Testing
6.1 The test volume

Although numerous datasets are publicly available, we
are unaware of any that are correctly sampled from some
exactly known signal. This makes it difficult to evaluate re-
construction techniques, since the ultimate measure of the
quality of a reconstruction is how closely it approximates
the original signal. Accordingly, we use a test signal

ρ(x;y; z) =
(1� sin(πz=2)+α(1+ρr(

p
x2 + y2))

2(1+α)
;

where
ρr(r) = cos(2π fM cos(

πr
2
)):



We sampled this signal on a 40 by 40 by 40 lattice in
the range �1 < x;y; z < 1, with fM = 6 and α = 0:25. The
function has a slow sinusoidal variation in the z direction
and a perpendicular frequency-modulated radial variation.
With the given parameters, it can be shown that the one-
dimensional radial signal has 99.8% of its energy below a
frequency of 10, and our analysis suggests that the spectrum
of the volume as a whole is similarly band-limited. This
makes it acceptable to point sample the function over the
range�1 < x;y; z< 1 at 20 samples per unit distance. Note,
however, that a significant amount of the function’s energy
lies near the Nyquist frequency, making this signal a very
demanding filter test—all our filters show some perceptible
postaliasing and smoothing.

Figure 5 shows a ray-traced image of the test volume’s
isosurface ρ(x;y; z) = 0:5.

Figure 5: The unsampled test signal.

6.2 Test image rendering

To demonstrate the behavior of the various filters, we
display isosurfaces of reconstructed test volumes. It is im-
portant that we show the exact shape of the isosurface, in-
cluding small irregularities that can be seen only with de-
tailed shading. This means we need a gradient that corre-
sponds exactly to the reconstructed density function. The
usual schemes for rendering isosurfaces (e. g., Lorensen and
Cline [13]) approximate the gradients using central differ-
ences at sample points and then interpolate those gradients;
the resulting estimate does not track small-scale changes in
the isosurface orientation.

Since our reconstructed density function is the convo-
lution of the samples with the reconstruction filter, the den-
sity gradient is the convolution of the samples with the gra-
dient of the filter. For any differentiable filter h, we can thus
obtain an exact formula for the gradient of the reconstructed
function, which can be evaluated at any point in the volume.

For rendering, we use a ray tracer that displays isosur-
faces of arbitrary functions by using a root-finding algo-
rithm to locate the first crossing of the isosurface level along
each ray.
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Figure 6: Smoothing and postaliasing metrics.

7 Results
7.1 Smoothing and Postaliasing

Figure 6 shows the smoothing and postaliasing metrics
for the trilinear filter, the family of cubic filters, a range of
windowed sincs, and three pass-band optimal filters. The
metrics for our ideal filter would be (0,0), although, as dis-
cussed in Section 3.3, some smoothing is usually required,
if only to combat overshoot.

Cubic Filters. This family is shown in the figure as a
10 by 10 mesh. The mapping from B-C space to smoothing-
postaliasing space is not one-to-one: the (1;1) corner of
the mesh is “folded” over. The B-spline smoothes the most
heavily, but has low postaliasing, while the Catmull-Rom
spline produces much less smoothing but has poor postal-
iasing properties. The images in Figures 9(a) and 9(b) sup-
port these measurements: the B-spline smoothes out the
large variations in the signal—the waves get shallower with
increasing frequency—and the Catmull-Rom preserves the
depth of the waves at the cost of aliasing, which shows up
as scalloped crests.

According to our metrics, the filters along the fold
should be best. However, Figure 9(c) shows the test volume
reconstructed using one such filter (B= 0:5, C = 0:85). We
can see that, while the overall geometry is reproduced quite
faithfully, the surface has a dimpled texture, due to near-
sample-frequency ripple. The ripples, although of low am-
plitude, are of high frequency, and so produce large local
variations in gradient, and therefore in shading. It is per-
haps a limitation of our postaliasing metric that it weights
leakage at all frequencies equally.

Our experience corroborates the space-domain conver-
gence analysis of Mitchell and Netravali [15], which sug-
gests that filters along the line 2C+B = 1 (which includes
Catmull-Rom and B-splines as extreme cases) are among
the best: we find that these filters have negligible near-
sample-frequency ripple. But we see no reason in general
to prefer any particular filter along that line a priori, since
we must always settle for a tradeoff between smoothing and
postaliasing.



Trilinear filter. The trilinear filter is plotted in Fig-
ure 6. It can be seen that its metrics are the same as for
a cubic of approximately B = 0:26, C = 0:1. Images for
these two filters are shown in Figure 9(d) and 9(e). They
look similar, except that the trilinear filter introduces gradi-
ent discontinuities, which our metrics do not measure.

Windowed sinc filter. The metrics for our particular
cosine-windowed sinc are shown in Figure 6 for a range of
radii. It can be seen from the figure that these filters are
in a sense superior to the entire family of cubics, since for
any cubic filter there are windowed sincs with both better
postaliasing and better smoothing. However, because of
their size, they are much more expensive to use than the cu-
bics.

Also, because sample-frequency ripple is so offensive,
only the labelled points are of interest, since they are the
only ones for which the filter’s spectrum has zeroes at the
nearest lattice points (see Section 3.1).

The results for a radius of 4.78 are shown in Figure 9(f).
The wave structure is free of both scalloping and excessive
smoothing. (As in all the images, we must ignore the pro-
nounced effects of filtering the discontinuous outer edge of
the volume.) However, the filter’s anisotropy causes signif-
icant variations in the height of the circular crests: the filter
smoothes more in directions near the coordinate axes than
along diagonals.

The results for a radius of 4.28 are similar, but with
slightly more postaliasing. Both these filters are roughly
two orders of magnitude more expensive (in an O(r3) al-
gorithm) than trilinear interpolation.

Pass-band optimal filters The metrics for three differ-
ent pass-band optimal filters are shown in Figure 6. As ex-
pected, their excellent pass band performance (low smooth-
ing) is achieved at the expense of relatively poor postalias-
ing.

The 5-point optimal filter is wider than the cubic filters
(twice the cost, in an O(r3) algorithm) and the 9-point fil-
ter is comparable in cost with the windowed sinc of radius
4.78. Also, the pass-band optimal filters are more difficult
to calculate and manipulate generally (e.g., to obtain gradi-
ents) than other filters, so we do not recommend them for
general-purpose reconstruction. Their primary use is prob-
ably for image and volume resampling at a fixed offset when
minimal smoothing is the goal.

Other filters. Table 1 shows the smoothing and postal-
iasing metrics for some representative separable Gaussian
and separable cosine bell filters. From the metrics, and from
several test images, we conclude that the cubics generally
perform better for similar cost and are more flexible. One
exception is the cosine bell of radius 1.5, which, as the met-
rics in Table 1 suggest, produces images similar to a B-
spline, but at a lower cost. The filter does introduce slight
local gradient variations, but in many rendering contexts
these would not be apparent.

We investigated a range of spherically symmetric fil-
ters. However, since the zeroes of their spectra fall on

Filter Radius Smooth. Postalias.
Cosine bell 1.0 0.67 0.096
Cosine bell 1.5 0.88 0.002
Cosine bell 2.0 0.95 0.00008

Gauss. σ= 0:50 2.5 0.81 0.014
Gauss. σ= 0:60 2.0 0.90 0.002
Gauss. σ= 0:75 2.5 0.95 0.0001

Table 1: Miscellaneous separable filter metrics.

spherical surfaces, rather than axis-aligned planes, it proved
impossible to adequately reject sample-frequency ripple
with filters of any reasonable cost. For very high-quality
reconstruction, the isotropy of spherically symmetric win-
dowed sinc filters could be a significant advantage.
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Figure 7: Overshoot metrics for cubic filters.

7.2 Overshoot
Our overshoot metrics for the cubic filters are graphed

in Figure 7. As discussed in Section 3.3, overshoot is pri-
marily of concern with volumes containing inadequately
smoothed discontinuities; filters with high overshoot should
be avoided in such cases. Figure 8 illustrates the effects of
reconstructing a point-sampled cube with a B-spline, which
has no overshoot, and with the cubic filter most prone to
overshoot, B = 0, C = 1.

8 Conclusions
Interpolation underpins all volume rendering algo-

rithms working from sampled signals. We have considered
the family of interpolationschemes that can be expressed as
convolution of a sample lattice with a filter.

The artifacts resulting from imperfect reconstruction
fall into three main categories: smoothing, postaliasing,

Figure 8: A point-sampled cube reconstructed with a
B-spline (left) and with the cubic (0,1).



and overshoot. Since reconstruction is necessarily imper-
fect, choosing a filter must involve tradeoffs between these
three artifacts.

We have defined metrics to quantify the characteristics
of a filter in terms of these artifacts. In general, the metrics
correlate well with the observed behavior of the filters, al-
though the postaliasing metric does not adequately address
the troublesome problem of ripple in the reconstructed sig-
nal at or near the sample frequency.

Trilinear interpolation is certainly the cheapest option,
and will likely remain the method of choice for time-critical
applications. Where higher quality reconstruction is re-
quired, especially in the presence of rapidly varying sig-
nals, the family of cubics is recommended. Cubics offer
considerable flexibility in the tradeoff between smoothing
and postaliasing. For applications in which near-sample-
frequency ripple could be a problem, we recommend cubics
for which 2C+B= 1; otherwise, filters along the “fold” line
in Figure 6 are preferred.

For the most demanding reconstruction problems, win-
dowed sincs can provide arbitrarily good reconstruction.
Their large radii make them extremely expensive in O(r3)
algorithms, such as ray-tracing, but they could certainly be
used in an O(r) resampling algorithm. The radius should be
chosen so that the Fourier transform is zero at the sampling
frequency, in order to eliminate sample-frequency ripple.

Spherically symmetric filters tend to produce sample-
frequency ripple, and do not seem to offer any significant
advantages over separable filters for most applications.

8.1 Future work
Although the metrics presented in this paper provide a

useful guideline, we believe they can be improved. In par-
ticular, the postaliasing metric could be made more sensi-
tive to the frequencies that produce the most objectionable
artifacts.

Given the better reconstruction techniques outlined in
this paper, it should be possible to represent volume data
with a sparser sampling lattice. Also, using a precise def-
inition of the reconstructed signal gives us a framework in
which to evaluate errors introduced by such subsampling or
other forms of data compression.
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(a) B-spline (b) Catmull-Rom
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Figure 9: Isosurface images of the test signal reconstructed using various filters.


