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Abstract 

The plotting of streamlines is an effective way of vi- 
sualizing fluid motion in steady flows. Additional in- 
formation about the flowfield, such as local rotation 
and expansion, can be shown by drawing in the form 
of a ribbon or tube. In this paper, we present efficient 
algorithms for the construction of streamlines, stream- 
ribbons and streamtubes on unstructured grids. A spe- 
cialized version of the Runge-Kutta method has been 
developed to speed up the integration of particle pathes. 
We have also derived close-form solutions for calcu- 
lating angular rotation rate and radius to construct 
streamribbons and streamtubes, respectively. Accord- 
ing to our analysis and test results, these formulations 
are two to four times better in performance than pre- 
vious numerical methods. As a large number of traces 
are calculated, the improved performance could be sig- 
nificant. 

1 Introduction 

Streamlines, streamribbons and streamtubes are very 
powerful techniques for visualizing steady vector 
fields. A streamline is the path of a massless parti- 
cle which is released in a steady flow. The plotting 
of the particle paths produces a streamline picture, 
which is of both qualitative and quantitative value to 
the engineer. Streamline pictures allow the engineer 
to visualize fluid motion and to locate regions of high 
and low velocity and, from these, zones of high and 
low pressure. 

Given a fluid flow with velocity field Z(?(t)), a 
streamline is an integral curve of ii. That is, a stream- 
line can be calculated by solving the following equa- 
tion: 

d?(t) - = qqt>> 
dt 

where t is a parameter along the streamline and is not 
to be confused with time [ll]. 
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A streamribbon can show the translation, angular 
rotation, and rates of shear deformation of the flow. 
Ideally, it is constructed by tracing a set of streamlines 
originated from multiple seed locations on a straight 
line segment. That is, the path swept by the de- 
formable line segment becomes a streamribbon. Volpe 
[12] constructs a streamribbon in this fashion by trac- 
ing a large number of adjacent streamlines. However, 
the number of streamlines needed to form smooth rib- 
bon surfatces could be tremendous and the correspond- 
ing computational cost would be high. In practice, 
the construction of streamribbons is simplified, though 
some information such as shear deformation would be 
lost. In [4], a streamribbon is generated by comput- 
ing only a few streamlines and creating polygons be- 
tween adjacent streamlines to form the surface of the 
streamribbon. This method still requires complicated 
algorithms to deal with the convergence, the diver- 
gence and the splitting of streamribbons. Darmofal 
and Hairnes [2], Ma and Smith [7], and Pargendarm 
[9] use one streamline and vectors normal to the lo- 
cal velocity to form a streamribbon. In this way, the 
resulting ribbons only show the translation and an- 
gular rotation of the flow. We adopt Darmofal and 
Haimes’ algorithm by using two parallel edges to form 
a streamribbon. First, a streamline is generated to 
serve as the first edge of the streamribbon. A normal 
vector is calculated at each point of the streamline by 
rotating a constant length vector about the streamline. 
Then the second edge of the streamribbon is formed 
by connelcting the end points of the normal vectors. 

Formally, a streamtube is defined as the surface 
formed by all streamlines passing through a given 
closed curve in the flow [ll]. Streamtubes are used 
to visualize expansion, contraction and deformation of 
the flow. In [2], a streamtube is created by connecting 
the circular crossflow sections along a streamline. The 
radius of a cross flow section is determined by the local 
cross flow expansion rate. A streamtube constructed 
in this manner does not reveal the deformation of the 
flow. Again, this is a technique more computational 
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feasible and we adopt it in this work. In [7], to vi- 
sualize both flow convection and diffusion, stat,istical 
dispersion of the fluid element,s about a streamline is 
computed by using added scalar information about 
the root mea,n square value for the vector field and 
it,s Lara.ngian time scale. The result defines the ra- 
dius of t,he cross flow se&on a.nd also form a t,ube-like 
surfa.ce. Schroeder et. a.1. [lo] int.roduce a technique 
ca,lled Strea.m Polygon for visualizing 1oca.l deforma- 
t,ion of t,he flow. 

In t&his paper, we present efficient algorithms to 
c0mput.e streamlines, streamribbons and streamtubes 
on unstruct,ured grids. Our algorithms are mainly 
based on those developed in [a]. Several new com- 
put,ational techniques are derived and used to improve 
performance. These new computational techniques in- 
clude a, specialized version of Runge-Kutta method, 
a simpler procedure to compute t,he angula,r rotation 
rat,e of the flow a.nd an explicit solut.ion for calculating 
t,he radius of st,reamt,ube. An overview of our algo- 
rithms is described in Section 2. The new computa- 
t.iona.l t.echniques a.re derived in Sect,ion 3. The data 
&ruct,ures used a.nd the memory requirements for im- 
plementing t,he algorithms for testing are described in 
Section 4. Finally, we present some experimental re- 
sults using three different data. sets t,o demonstrate the 
time efficiency of the new particle tracing algorithm. 

2 Overview of the Algorithms 

In t,his paper, we a,ssume that all cells are tetrahe- 
dra.. Other t,ypes of cells have to be decomposed into 
t#etrahedra. in preprocessing stages. In a tetrahedral 
cell, t#he three components of the vector field are linear 
functions of t.he physical coordinates. Their int,erpo- 
lation functions can be formulat,ed as: 

wq(x, y, z) = U,IX + b,y + clz + dl, 
wz(x, y, z) = azx + bay + czz + dz, 
ws(x, y, z) = a3z + by + c3t + d3. 

(2) 

where wi, i = 1,2,3, a.re the three components of vec- 
t#or field; a. b. c’ di, i = 1,2,3, are the coefficients of 2, zi z, 
the int,erpolat,ion functions; Z, y, z are t.he physical co- 
ordina,tes. The a.bove equations ca.n be re-written in a 
concise form: 

C(Z) = ss+cf (3) 

B = ( Et; $ g ) (4) 

d’ = [ dl d2 d3 IT (5) 

When calculating a st,reamline, it is necessary to 
find t,he cell in which this st,rea.mline enters at. each 
t#ime st,ep. A met.hod is given in [6] to solve t.his prob- 
lem. In t,his met,hod, the physical coordinates of the 

1 
Transformation 

> 

Physical Coordinates Canonical Coordinates 

Figure 1: Coordinate System Transforma.tion 

point calculated at ea.ch time step are t.ransformed into 
the canonical coordinates as shown in Figure 1. Then 
the canonica,l coordinates are used to determine the 
cell which the streamline enters. In this work, we 
adopt a simpler method to convert the physical co- 
ordinates into the canonical coordinates: 

f = R&d (‘3) 

R = 
( 

rl1 rl2 r13 

r21 r22 r23 (7) 
T3l r32 r33 ) 

i = [ kl k2 k3 IT (8) 

where 2 is a physical coordinate vector and [is the 
canonical coordinate vect#or of 5. 

2.1 Streamline Construction 

Given an initial point in a physical domain, a stream- 
line can be calculated by solving Equation 1. The 
4th order Runge-Kutta method is applied to int,egra.te 
the equa.tion stepwise. After calcula,ting a point of 
the streamline, Equation 6 is used to transform the 
physical coordinates of the point into the canonical 
coordinates. If a,11 the t>hree components of the canon- 
ical coordinates are between 0.0 and 1.0, this point is 
still inside the current cell where t,he comput,at,ion of 
the point takes place. The coefficient,s of the interpola- 
tion functions of the current cell are still valid for next 
st,ep integration. Otherwise, a searching for a new cell 
which cont,ains the point is startBed according to the 
canonical coordinates. After finding the new cell, the 
computation of next position can be performed. This 
pattern of calcula.tion is repeated until the streamline 
rea.ches a. physical bounda.ry or the number of t,ime 
steps exceeds a pre-defined limit. 

2.2 Streamribbon Construction 

A streamribbon ha.s two edges as we have described. 
The first edge of a streamribbon is constructed by cal- 
culating a st,reamline, and t,he second edge is genera.ted 
by connecting the end points of the norma, vect,ors of 
the streamline. The normal vectors are ca,lcula.ted by 

314 

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95) 
1070-2385/95 $10.00 © 1995 IEEE 



x~(s~camlhe 

X(i-1) X(i) 

Figure 2: Example of Streamribbon Construction 

rotating a constant length vector about the stream- 
line at each point of the streamline. The constant 
length vector can be any vector which is orthogonal 
to the streamline at the initial point. The surface of 
the streamribbon is then formed by connecting the end 
points of the normal vectors and their corresponding 
points on the streamline. An example is depicted in 
Figure 2. The angle of rotating the constant length 
vector is governed by: 

d6’ 
z 

= +) (9) 

s’= ‘11 
Ilu’ll 

where % is the rotation angle. Equations 9 and 1 are 
solved stepwise when constructing a streamribbon. 

2.3 Streamtube Construction 

A streamtube is created by generating a streamline 
and by connecting the circular crossflow sections along 
the streamline. The radius of a streamtube is governed 
by the following ordinary differential equation: 

1 dr -- = 
r dt 

VT.li = 

where T is the streamtube radius, VT . G is the local 
cross flow divergence, and 5 represents the change 
of velocity magnitude along the streamline. Equa- 
tions 1,9 and 12 are solved stepwise when constructing 
a streamtube. Equation 1 is used to calculate the cen- 
ter of the streamtube, while Equations 9 and 12 are 
used to calculate the angle of rotation and the radius 
of the streamtube. Figure 3 contains an example of 
constructing a streamtube. 

3 New Computational Methods 

In order to construct streamlines, streamribbons and 
streamtubes, we need to solve the ODE’s mentioned 
in the previous sections. Based on the interpolation 
functions of linear tetrahedral cell, we had developed 
specialized ODE solvers to speed up our algorithms. 

Circular Crossflow Section 

Figure 3: Example of Streamtube Construction 

3.1 AL Specialized Version of the Runge- 
Kutta Method for Streamline Con- 
struction 

By combining Equations 1 and 3 the governing equa- 
tion of at streamline can be formulated as: 

!y=f(z,t)=Bz’+d (14 
The 4th order 

solve this ODE: 

qt -f h) = 

FI = 
F2 = 
F3 = 
F4 = 

Runge-Kutta method is applied to 

Z(t) + $(FI + 2Fz + 2F3 + F4)(15) 

hf (2, t> (16) 
hf(S + F1/2, t + h/2) (17) 
hf(iJ + F22/2, t + h/2) (18) 
hf(3 + F3, t + h) (19) 

where h is the time step size. By substituting Equa- 
tions 14 and 3 into the right hand sides, Equations 16 
- 19 can be expanded as: 

Fl q T: hf(Z, t) 

q - h(BI+ c$ 
F2 q = hf(Z + Fl/2, t + h/2) 

q = h(B(i+ Fl/2) + 4 

q : (h2B/2 + h)(BZ + 4 
Fs q = hf(j: + F2/2, t + h/2) 

q = h(B(S + F2/2) + i) 

=I (h3B2/4 + h2B/2 + h)(BZ’+ cij 
F4 =I hf(S+Fs,t+h) 

=: h(B(i+ F3) + cf) 

=I (h4B3/4 + h3B2/2 + h2B + h)(BZ+ cf) 

By using these equations, the Runge-Kutta method 
shown in Equation 15 can be expressed as: 

Z(t + h) = Z(t) + ;(FI + 2F2 + 2F3 + F4) 

= (I+h;+q+q+@$)rjl) 
hB ‘(hB)’ 

+h(l + 21 + - 
+ .(hB)3 -’ 

3! . -+d 
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= HIi + Hz2 (20) 
= HIS(t) + il (21) 

+ 
Since B and d are constants, HI and d; can be 
calculated by using Horner’s algorithm [3]. Here- 
after the computations of the 4th order Runge-Kutta 
method require only a matrix-vector multiplication 
and a vector-vector addition. 

3.2 Explicit Solution for the Angular Ro- 
tation Rate 

The angular rotation rate is governed by the ODE for- 
mulated in Equation 9. Since the velocity Z is linear 
within a cell, the curl of u’ is a constant vector. Ac- 
cording to Equation 3, we have: 

w’ = curl(?q 
= vxii 
= Vx(BiT+d 

= [ b3 - c2 Cl - a3 ~2 -h IT 

Then Equation 9 can be solved analytically: 

db’ 
dt 

J 

h de 
-dt = ;I$. 

h 

0 dt J s’dt 
0 

B(h) - 0(O) = $ii. (s’(h) + s’(O)); 

Q(h) = e(O) + $G. (& + &) 

where Q(0) is the rotation angle at the previous time 
step, e(h) is the rotation angle at the current time 
step, u’(h) is the velocity at the current time step, and 
ii(O) is the velocity at the previous time step. This 
closed form solution is used to compute the rotation 
angle of the normal vector about the streamline. The 
only unknown values involved in this solution are u’(h) 
and its velocity magnitude. Since G(h) can be cal- 
culated by using Equation 3, the major cost of this 
solution is reduced to a matrix-vector multiplication. 

3.3 Explicit Solution for the Radius of 
Streamtube 

The governing equation of streamtube radius is shown 
in Equation 12. This ODE can be solved analytically: 

J hid 1 
r = - 

0 r J h’ 

2 0 VT . iidt 

h(rh) - ln(re) = f lh VT . iidt 

ln(rh) = ln(rs) + ;(A” V. fidt - 1” $dt) 

From Equations 3 and 1, the divergence of Z is: 

and 

Therefore, 

V . u’= al + bz + c3 

dz’ = u’dt 

(22) 

(23) 

ln(rh) = ln(rc) + i((ui + bz + cs)h - J “dd) 
0 u’ 

rh = rg exp(i(ur + bz + cs)h - In(&) + ln(ub)> 

7-h = ro exp(i(ul -I- b2 -t es)h)* (24) 

Equation 24 is used to compute the radius of stream- 
tube, where rh is the streamtube radius at the current 
time step,, rc is the radius at the previous time step, 
ub and u,, are the magnitudes of velocity at the pre- 
vious step and the current step. Since the magnitude 
of velocity at current step has been calculated when 
computing the angle of rotation, there is no unknown 
value in the right hand side of this equation. The cost 
of calculating rh composes only a few multiplications. 

3.4 Integration Step Size 

The value of h is crucial for integration of particle 
paths. In [l], Buning suggested to choose this time 
step size based on the cell size and the inverse of ve- 
locity magnitude. Darmofal [2] used a similar method 
to determine the value of h for tracing particle paths, 
but for constructing streamribbons, h is furthered re- 
stricted by the angle of rotation to produce smoother 
ribbon surface. In our current implementation, h is 
fixed for the entire streamline. A default step size is 
determined for the overall domain by using Buning’s 
method at the preprocessing stage, though h can be 
interactively modified. 

4 Data Structures 

To implement the above methods, the major data 
structures are composed of a list of cell records and a 
list of node records. To further speed up the construc- 
tion of streamlines, streamribbons and streamtubes, 
at the expense of more memory space, we precompute 
and store the coefficients of the vector field interpola- 
tion function, coordinate transformation function, and 
the specialized Runge-Kutta method during the pre- 
processing stage. 

As a result, a cell record has three coefficient ma- 
trices, four node numbers and four cell numbers. The 
four node numbers are indices of nodes that comprise 
this tetrahedral cell. The four cell numbers are indices 
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of cells that are adjacent to this cell. The values stored 
in a node record include the physical coordinates of 
the node as well as the vector field on the node. After 
the preprocessing stage, node records become redun- 
dant and can be deleted since the cell records contain 
all the information needed for performing the particle 
tracing. 

Using our tracing method, each cell record takes 

(3 matrices + 4 node indices + 4 cell indices) 
1(137;(443)+4+4)x4 bytes 

es 

For a typical 500,000-cell data, about 88 megabytes 
are needed. If memory becomes a problem, the matri- 
ces for the interpolation and the transformation func- 
tions can be computed on the fly, but the curl and 
divergence for each cell then must be stored at the ex- 
pense of much less memory space, and the memory 
requirement for each cell becomes 96 bytes. 

In order to compare the performance of the new 
algorithms with the conventional Runge-Kutta meth- 
ods, we have also implemented the second and the 
fourth order Runge-Kutta methods. Similarly, to 
speedup the tracing as much as possible, the matrices 
for the interpolation and transformation functions are 
precomputed and stored. Therefore, each cell record 
takes 

(2 matrices + 4 node indices + 4 cell indices) 
= 128 bytes 

However, the list of node records is needed during the 
tracing stage. On the other hand, without storing 
these two matrices, the memory requirement becomes 
only 32 bytes per cell record, and 24 bytes per node 
record. To cope with the high memory requirements 
for visualizing on unstructured grids, some divide-and- 
conquer strategies must be taken to make possible vi- 
sualization of large data sets such as those with mil- 
lions of cells. 

5 Test Results 

To study the performance of our algorithms, we 
compare experimentally our specialized Runge-Kutta 
method (SRK4) with both the conventional second 
and fourth-order Runge-Kutta methods (RK2 and 
RK4) for integrating particle paths. To derive fair 
measurements, as described in previous section, all the 
needed matrices are precomputed and stored for the 
implementation of each method. Three data sets are 
used for our tests. The first data set was generated 
analytically; it contains 68,921 nodes uniformly posi- 
tioned in a cubic domain, in which there are totally 
320,000 tetrahedra. The vector fields on a node is de- 

termined by evaluating three linear functions: 

ul(z, y, z) = -0.52 - 6.Oy, 
u2(2, y, z) = 6.02 - 0.5y, 
u3(z, y, 2) = -2.02 + 20.5. 

The second data set is the blunt fin data set ob- 
tained from the National Aerodynamic Simulation Fa- 
cility at the NASA Ames Research Center. This data 
set was -from a computational fluid dynamics simula- 
tion of air flow over a flat plate with a blunt fin rising 
from the plate [5]. The flow is symmetrical about a 
plane through the center of the fin, so only one half 
of the complete geometry is present. Note that origi- 
nally the computational grid was a single, curvilinear, 
structured block grid. We converted it into an un- 
structured grid by splitting each hexahedron into six 
tetrahedra. The resulting unstructured grid contains 
224,874 tetrahedral cells and 40,960 nodes. 

We obtained the third data set from the NASA Lan- 
gley Research Center. It was from a computational 
fluid dynamics simulation of transonic flow abount an 
ONERA-M6 wing with free-stream Mach-number 0.84 
and 3.06 degrees angle of attack [8]. There are 287,962 
tetrahedral cells and 53,961 nodes in this data set. 

On each data set, one hundred seed points are ran- 
domly selected. Then, streamlines are constructed by 
using these seed points. The streamline constructions 
are stopped when either the streamlines reach domain 
boundaries or the number of time step exceeds a pre- 
defined limit (e.g. 1,500). 

Since the major function evaluations of all the three 
methods are of the same kind, i.e. matrix-vector mul- 
tiplication, we can predict their performances by cal- 
culating the number of function evaluations used in 
these ml&hods. For a single step integration, only 
one function evaluation is required by using the SRK4 
method while four function evaluations are needed if 
the RK4 method is applied and two function evalua- 
tions are performed if the RK2 method is used. Theo- 
retically, the SRK4 method should be faster than the 
RK2 method by a factor of 2.0, and faster than the 
RK4 method by a factor of 4.0. 

The testing results for the three data sets are shown 
in Figure 4, Figure 5, and Figure 6. Numbers are 
seconds and the measurements were performed on a 
Sun SparclO Model 51 (50MHz). Only the core of 
the integration algorithms was measured. The test 
results agree with our analysis; the SRK4 method is 
the fastest method while the RK4 is the slowest one. 

The average cost of computing a single step inte- 
gration by using these three methods are listed in Ta- 
ble 1. Note that now the time unit used is microsec- 
ond. According to the timing results listed in Table 1, 
the speeQup achieved by using the SRK4 method is 
slightly higher than 2.0 when compared with the RK2 
method but may be lower than 4.0 when compared 
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Figure 4: Timing of Constructing Streamlines on Data 
Set 1 
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Figure 5: Timing of Conskucting Strea.mlines on Data 
Set, 2 

Time 

(4 

411 60 
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Figure 6: Timing of Construct,ing Streamlines on Da.ta 
Set 3 

Table 1: Execution Time of a Single Time Step 
I 

with the RK4 met,hod. The lower speed-up numbers 
and t.he differences between different da.ta sek could 
be due to both the timing calculations and the over- 
head for fetching the coefficient,s of the interpolation 
functions, etc. 

Some visualiza.tion resulk generated by using t#he 
algorit*hms described in t,his paper are presented in 
Figure 7. Figure 7 (a,) shows a streamribbon ima.ge of 
the ana.lytical da.ta. set. From this image, we can see 
the st.rea.mribbons spiral toward a critical point which 
is a saddle point in the vector field. The streamrib- 
bons are colored according to the velocit,y magnitudes. 
Figure 7 (b) shows an image of plotting streamkrbes 
in the same da.ta set and using the same initial seed 
points. This image reveals not only rot,ation of the 
flow but also expansion and contraction of the flow. 

Figure 7 (c) and (d) show t,he streamribbon and 
streamtube visualizat5ion of the blunt fin dat,a set. 
For both images, the view is selected such that t,he 
blunt fin is laid down toward the viewer and the plane 
surface becomes orthogona.1 to the viewing direction. 
From these t,wo ima.ges, some interesting flow move- 
ments a.re revealed near the leading edge of the fin 
a.nd the plane. 

Figure 7 (e) a,nd (f) display t,he strea.mribbon and 
the st,rea,mtube visualization of the ONERA-M6 wing 
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data set. It is shown in the images that the forma- 
tion of a wing tip vortex caused by the flow expand- 
ing around the wing tip due to pressure differences 
between the the upper and lower surfaces of the wing. 

6 Conclusions 

The fourth order Runge-Kutta method is the fun- 
damental procedure for constructing streamlines. A 
new computational method has been derived to speed 
up the Runge-Kutta method. A closed form formula 
is deduced to compute the angular rotation rate of 
flow for making streamribbons. We have also de- 
rived an explicit solution for computing the radius of 
streamtube that is governed by an ordinary differen- 
tial equation. The performance of the new methods 
were measured by using three different data sets on 
a Sun SparclO. The test results match our analytic 
predictions. The speed-up currently achieved can be 
significant resulting in better interaction when tracing 
a large number of particles and in a large data space. 

While we have improved particle tracing calcula- 
tions, the use of parallel processing can further speed 
up the tracing of a significantly large number of parti- 
cles. In addition, for data sets that do not fit into the 
main memory of an average workstation, the design of 
out-of-core or distributed-memory parallel algorithms 
is needed just to make visualization possible. We are 
currently designing an out-of-core particle tracing al- 
gorithm. 
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