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Abstract

A general volume rendering technique is described that efficiently

produces images of excellent quality from data defined over
irregular grids having a wide variety of formats. Rendering is done
in software, eliminating the need for special graphics hardware, as

well as any artifacts associated with graphics hardware. Images of
volumes with about one million cells can be produced in one to
several minutes on a workstation with a 150 MHz processor.

A significant advantage of this method for applications such

as computational fluid dynamics is that it can process multiple
intersecting grids. Such grids present problems for most current

volume rendering techniques. Also, the wide range of cell sizes (by

a factor of 10,000 or more), which is typical of such applications,

does not present difficulties, as it does for many techniques.

A spatial hierarchical organization makes it possible to access

data from a restricted region efficiently. The tree has greater depth

in regions of greater detail, determined by the number of cells in

the region. It also makes it possible to render useful "preview"

images very quickly (about one second for one-million-cell grids)

by displaying each region associated with a tree node as one cell.

Previews show enough detail to navigate effectively in very large
data sets.

The algorithmic techniques include use of a k-d tree, with prefix-

order partitioning of triangles, to reduce the number of primitives

that must be processed for one rendering, coarse-grain parallelism

for a shared-memory MIMD architecture, a new perspective

transformation that achieves greater numerical accuracy, and a

scanline algorithm with depth sorting and a new clipping technique.

Keywords: Computer Graphics, Scientific Visualization, Scanline,

Direct Volume Rendering, Curvilinear Grid, Irregular Grid, k-D

Tree.

1 Introduction

Direct volume rendering is an attractive technique because it can
convey a great deal of information in a single image by mapping
the scalar data values in a sample volume to color and opacity.

However, a great amount of computation is required to calculate
the information presented, particularly when the samples are on

irregular grids. The problem is further exacerbated when the data

sets are very large.

This paper presents a direct volume rendering technique

developed for a wide range of grids, including curvilinear grids
with hexahedral cells, tetrahedral irregular grids, and rectilinear

grids. Furthermore, this method can process multiple intersecting

grids, which are often produced in complex computational fluid

dynamics simulations [2]. Most previous methods will not work

correctly on such grids. The principal contributions are as follows:
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1. At the heart of the system is a software scan conversion

method of direct volume rendering based on treating the

faces of grid cells as independent polygons. This method

generalizes polygon scanline methods in that it renders semi-

transparent regions of space between polygons, as well as

opaque polygonal surfaces. Also, it introduces a new clipping

technique that makes it unnecessary to clip individual polygons.

This algorithm can be used independently of any hierarchy. It

does not require any graphics hardware and produces excellent

quality images (See Section 3.)

2. The basic algorithm has been implemented to run in parallel on

shared-memory MIMD machines. Parallelization is relatively

easy to implement and fits naturally into the algorithm. We

observed a speed-up of better than 3.25 on four processors.

(See Section 4.)

3. To efficiently visualize very large data sets, the program builds a

k-d tree over the polygons, organizing them by spatial location.

The hierarchy is useful in two ways. First, if one zooms in or

otherwise restricts viewing to a part of the volume, the hierarchy

permits the program to avoid processing data that is clearly not

visible. Second, an approximate model of the data present

within any subtree can be stored in the root node of the subtree.
An error term in each node indicates bow closely the local

model approximates the actual data. Approximate images can

be quickly produced. (See Section 5.)

4. A new perspective transformation achieves greater numerical

accuracy on geometrical elements spanning a great range of

sizes. Standard techniques lose accuracy in screen-z, leading to

significant errors, both in color integration and in element order

(See Section 6).

We chose a projection-style algorithm because we were not

designing our algorithm for massively parallel machines, we wanted
to maximize coherence, and we wanted to avoid the difficulties of

ray-casting intersecting cells.

We preferred the faced-based scanline approach because of its

generality and speed (Section 3). We parallelized on a scanline basis

because it limits duplication, is easy to implement, and provides

reasonable speed-up for small-scale parallelization (see Section 4).

We associated irregular grid data (and/or polygon mesh data) with a

k-d tree. We believe this is the first use of a hierarchy with general

irregular, possibly intersecting, grids.

2 Background and Related Work

Early approaches for direct volume rendering used ray-casting, cell

projection, and splatting (voxel projection) [7]. Most research
has addressed only rectilinear grids, and most previously reported

acceleration and optimization techniques apply only to such grids.
New methods including Fourier transforms, shear-warp transforms,
or 3D texture maps suffer this limitation.

However, many applications create non-rectilinear volume data
sets, such as computational fluid dynamics (CFD), finite element



analysis (FEM), and atmospheric and oceanographic measurements.
Such data is often found on curvilinear grids (where a computational

regular grid is warped to fit around objects of interest), and

unstructured grids (where data points are connected to form

tetrahedral or other polyhedral cells). Sometimes non-tetrahedral

cells are broken into tetrahedra to simplify processing; however,

this can lead to artifacts and increases the number of primitives.

Multiple overlapping and intersecting grids may be used to sample

space around very complex shapes [2]. Our research concentrates

on rendering such irregular data.

Many complexities are introduced when imaging data on

irregular grids and multiple grids, as opposedto rectilinear grids. A

visibility ordering (front-to-back) is not implicit. Many operations

are much more expensive, such as intersecting rays with cells,

projecting irregular cells, and interpolating across faces or through
cells.

A number of algorithms have been developed for irregular grids.

Ray-casting general irregular grids is complicated and slow (though

it does parallelize beautifully) [3, 8, 16, 22]. Cell projection and

splatting have been used for irregular grids in software [9, 13, 10,

18, 19, 29] and hardware [21, 24]. Though we process faces and

they process volumetric regions, the methods of Max et al [19] and

Giertsen [9, 10] are related to ours in that they use scan-conversion

for efficiency.

Lucas [15] implemented a face projection method for irregular

grids. Unlike ours (Section 3), he appears to fully sort all faces in

depth and then scan convert them in visibility ordering. This is more

closely related to the classic "Painter's Algorithm" for polygons,

which is not widely used because of the costly z-sort. Lucas only

sorts on the centroids of faces, which can produce an incorrect

ordering. Challinger [4, 5] explored direct volume rendering of

irregular volumes on massively parallel machines. She initially

used ray-casting, but then developed a face projection method for

speed. She partitioned the screen into "tiles" for each processor, but

within each tile her algorithm is very close in philosophy to ours,

though data structures differ.

Two approaches for ray-casting of irregular grids on massively

parallel machines have been described [3, 16]. Challinger
distributed data to processors after conversion to screen space,

which must be redone after each transformation [3]. Ma distributed

subvolumes to processors once, and composited contributions found

by ray-casting the subvolumes [16]. In their projection methods,
Lucas [15], Challinger [5], and Giertsen et al [I 0] all parallelize by

breaking the screen space into rectangular tiles which are assigned

to processors. This may require duplication, and as scanlines are

broken into pieces, some coherence is lost.

Concerning hierarchies, Laur and Hanrahan used an octree

on regular volumes, stored an average value at each node to

approximate subtree data, and used splatting [14]. Two of the

present authors implemented an octree on regular volumes with
trilinear nodal models and a choice of error terms, explored more

complex approximate nodal models, and used cell projection for

rendering [28]. Cignoni et al [6] created a hierarchy over tetrahedral

grids.

3 The Scanline Algorithm

The scanline technique has the merits of both generality and
coherence. It is an extension of Watkin's scanline algorithm [7,

25]. Sample data values are supplied at the vertices of polyhedral
cells whose faces are (possibly non-planar) polygons. These faces

are processed independently in the algorithm. While a great deal

Procedure scan:

1. If a new geometrical transformation is specified, convert vertex

locations from world space to screen space (Section 6).

2. For each (horizontal) scanline of the image, create its y-bucket

list.

3. Initialize y-actives list as empty.

4. For each (horizontal) scanline of the image, in bottom-to-top
order:

(a) Update y-actives list from previous line's y-actives and this

line's y-bucket.

(b) For each pixel in scanline, create its x-bucket list.

(c) Initialize x-actives list as empty.

(d) For each pixel in scanline, in left-to-right order: update x-

actives list from previous pixel's x-actives and this pixel's

x-bucket; composite polygons in x-actives in front-to-back
order.

Figure 1 : The main processing steps are given here are described in
Section 3.

of work has been done (mostly in the 1980's) on the problem of

scanline rendering of polygonal data sets, we wish to emphasize

that using scan conversion for direct volume rendering is a different

problem. Most importantly, in polygon scan conversion it is the

surfaces that have color properties (and these are usually opaque,

permitting further simplifications). In direct volume rendering, it is

the material between the cell surfaces that has color properties, and

this material is often semi-transparent.

Figure 1 gives the high-level procedure. The remainder of this

section describes the main steps further. See the technical report

[26] for further details.

3.1 Polygon Creation

The volume is decomposed into polygons, each given a unique
integer identifier (polygon ID). Although many aspects of the design

are compatible with a variety of polygons, the implementation
permits only triangles. Because multiple grids are allowed, as well

as surface polygon meshes, a grid ID is encoded in certain bits of the

polygon ID, and specifies with which grid or surface this polygon
is associated. The remaining bits of the polygon ID comprise
either an index into an array of polygon structures (for irregular

grids), or a direct encoding of the polygon's position within the
grid (an option for curvilinear and rectilinear grids). Each polygon
structure consists of an array of its vertex indices. For curvilinear
and rectilinear grids, every cell has the same facial structure of 12

triangles, and the cell vertices can be inferred from the cell ID, so the
vertex information can be encoded into the polygon ID, bypassing

the use of polygon structures.
Any group of polygons to be rendered includes the faces of a

clipping box, which delimits the subvolume to be rendered. The

six faces (12 triangles) of the clipping box are treated much like

other polygons during processing, but take on a special meaning for

clipping during pixei processing (see Section 3.4).

3.2 Y-Bucket Processing
Each scanline has associated with it a y-bucket list consisting of the

IDs for those polygons that first appear on that scanline (processed



bottom-to-top). Polygons are excluded from y-buckets if they are

outside the clipping box or do not cross any pixel center. After

computing y-bucket lists, each scanline must be processed and

drawn into the software frame buffer. A y-actives list containing

the polygon IDs of those polygons contributing to a scanline is

maintained. Before processing the current scanline, the y-actives

list must be updated by removing polygons from the previous

scanline's y-actives that are no longer active on this scanline, and

adding new polygons from the current y-bucket. The y-actives list

is implemented as an array of structures, each containing various

polygon information.

For polygons on the boundary of a grid, the vertices are stored in
counter-clockwise order when viewed from outside the grid, so that

it can be easily recognized whether a boundary polygon is the first

or last in its grid, in visibility order.

3.3 X-Bucket Processing

When processing a scanline, information for each active polygon is
transferred to an x-bucket data structure associated with the leftmost

pixel in which the polygon appears. A linked list of these structures
is associated with each x-bucket in front-to-back visibility order.

As the scanline is processed, an x-actives list is maintained and
updated for each pixel. It contains the data value and the screen

depth (screen-z) for each polygon contributing to that pixel. As
with the y-actives list (Section 3.2), polygons that become inactive
at the current pixel are deleted, and polygons in the current x-

bucket are inserted, except that now the list is maintained in sorted
order. The surviving polygons of the previous pixel's x-actives

list must be updated with newly interpolated values of field data
and screen-z. New screen-z values may require rearrangement of

polygons among survivors, and new polygons must be merged in,
maintaining screen-z order.

3.4 Pixel Processing
The x-actives list for a particular pixel is traversed front-to-back

to accumulate the color and opacity. In our implementation,
data values (interpolated to that pixel) for each pair of adjacent

polygons are averaged, and the average is used as the parameter of
a transfer function that provides a color and opacity value. Taking

into account the line-of-sight distance between the two polygons

(Section 6), the color-opacity contribution for that inter-polygon
region is calculated. This contribution is composited into a software

floating point frame buffer. Standard equations for this are found

elsewhere, e.g. [27].
A set of clipping polygons encloses the region to be rendered,

removing the need to explicitly clip any polygon. Therefore, there
are two clipping polygons in any pixel's x-actives list. The first
indicates pixel contributions should begin to be accumulated, and
the second indicates contributions should stop being accumulated.

4 Parallelizing the Algorithm

Three primary components of this algorithm can, by and large, be

easily parallelized. The first is the transformation of the vertices
from world space to pixel space, and is trivially parallelizable, as
each vertex can be transformed independently. The others require

some discussion. Step numbers in this section refer to Figure i.

The second parallelizable component is the task of grouping

polygons by scanline into y-buckets (step 2). Its parallelization is
more involved, but highly scalable. It proceeds in two passes. In

the first pass, each processor is given an equal number of polygons

to process. One temporary array stores, for each polygon, the

lowest scanline where it appears, or an invalidation flag if it doesn't

cross any pixel centers within the clipping box (as described in

Section 3.2). A second, two-dimensional, array stores, for each

scanline and processor, how many polygons the processor found

that belong in that y-bucket.

In the second pass, the number of polygons belonging in each

y-bucket is found by accessing the latter array, and space for each

y-bucket is allocated by partitioning a common output array. The

space for one y-bucket is further partitioned into space for each

processor to fill within that y-bucket. (While this transitional

step can also be parallelized by standard techniques, its work per

processor is only proportional to the number of scanlines, not the

number of polygons.) During the second pass, each process creates

appropriate y-bucket structures for all polygons that it processed in

the first pass, except those that were invalidated.

The third parallelizable component involves processing each

scanline in order from bottom to top, which involves the bulk of

the computation (steps 4a through 4d). There are several ways of

implementing this part in parallel. Our implementation contains a

"critical section" of code (step 4a). Only one processor can run the

critical section at a time. During this section, a processor updates

the current y-actives list for the scanline, takes a copy of it, and then

exits the critical section. Then it builds the x-buckets and processes

the scanline (steps 4b through 4d).

This implementation is not 100% scalable because the critical

section can act as a bottleneck as more processors are added.

However, it was fairly easy to implement and caused low contention

with the four processors we had available (Section 7). Our

measurements suggest that it can extend to about 16 processors

before contention becomes a serious drawback.

5 Use with a Multi-Resolution Hierarchy

A method of spatial partitioning in k dimensions, called k-d trees,

was introduced by Jon Bentley [1]. A binary tree is built that
splits in one dimension at a time. Our current implementation

splits in a round-robin fashion, but one could easily adopt a more
sophisticated policy based on the locations of objects. At tree node
v, the hyperplane that splits the region is orthogonal to the x,-axis

when splitting on dimension i. Our implementation bisects the
region, but in general, any partitioning value X_ can be chosen.

5.1 Creation of the Hierarchy
Each node v in the tree has associated with it a list of polygon IDs.

It is built as follows: for each polygon p passed into the tree node,
which is splitting on dimension i, if all vertices have an _c, location
less than X_, place p in the set to be passed to the left subtree. If all
vertices have an zi location that is greater than the bisection value,

place p in the set to be passed to the fight subtree. Otherwise, retain

p in the set to be stored at v (see Figure 2). Then, process the left
and fight subtrees. If the number of polygons passed into node v is
below a user-defined threshold, no splitting occurs, and the node is a

leaf. Note this results in polygons being associated with the smallest
node region that completely contains them, following Greene [ 11 ],
and avoids subdividing polygons.

We developed a new, flexible storage method that allows us
to avoid the extra space of linked lists and still pass all objects
associated with a subtree in one operation. Polygon IDs are stored

in one common array Tid, and arranged in the order that they would

appear during a prefix-order traversal of the k-d tree. (A post-fix
order can also be easily made to work.) Thus, all polygons stored
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Figure 2: Distributing polygons in a k-d tree, as described in Section 5. Grid is shown as solid lines, with numbered cells, upper left. Dashed

lines show partitioning by k-d tree, whose skeleton appears lower left. The Tid array is partitioned into segments, as shown at fight. For the

view indicated, the "Possibly Visible" list identifies the segments belonging to tree nodes whose regions intersect the subvolume to be imaged.

in a subtree form a contiguous section in Tid, and all polygons

associated with that subtree's root node are at the beginning of that

segment.

Assuming the array begins with a known subscript of 0, it is

necessary to store globally the total number of polygons in the tree,
and to store in each node the offset to the beginning of its set of

polygons. The remaining values can be recovered during traversal,

provided the end-point for each subtree is passed in as a parameter
of the traversal. For the whole tree, this is just the total number of

polygons. Thus if a tree node v is visited with end-point £ passed
in:

• The end-point for polygons associated with node v is the offset

(begin-point) of v's left child;

• the end-point for the left child is the offset of v's right child;

• and the end-point for the fight child is E.

In this convention, an end-point is the first index above the segment.

5.2 Fully Detailed Rendering

To prepare for rendering, the tree is traversed and a set of subranges
of polygon IDs is developed, which represent all polygons within

the user-defined restrict box. Recall that all polygon IDs within the

spatial region represented by one node are stored contiguously in
the polygon array, Tid (Section 5.1). If the entire node is outside the
restrict box, the traversai returns from that branch immediately. If

the node is entirely inside the restrict box, then the subrange for that
node is added to the set of subranges to be rendered, and again the
traversal returns without exploring the subtrees. The same applies
for leaf nodes, and for nodes whose region contains fewer polygons

than a user-specified cut-off. If a node is partially inside the restrict
box and none of these exceptions applies, then the subrange of Tid

associated with the node itself (but not its descendants) is added to

the set of subranges to be rendered, and traversal continues into this
node's children, which are treated recursively in the same manner.

When this traversal is completed, we have a possibly visible list

(represented as a set of start and end positions within Tid) of all

possibly relevant polygons (see Figure 2). This list is then sent to

the renderer for processing (see Section 3).

5.3 Multi-Resolution Rendering

For multi-resolution rendering, we wish to display error-controlled

approximations of the data for speed. For this, each k-d tree node

must contain a model representing an approximation of the data in

the subregion it represents, called a nodal region. The tree node also
stores an error term representing the deviation of the model from the

data. Our multi-resolution technique departs from that associated

with wavelets [17] in that each level represents a complete model

of its region, whereas wavelets represent just the detail information

not represented at higher levels. For rendering, the user specifies

an acceptable error. During the traversal, if the error associated

with the node is less than the acceptable error, or the node is a leaf,

traversal stops there and the nodal region is drawn.

At present, our nodal model is a rather simple one, but it

constructs very fast "preview" images to help orient the user in

a very large data set (see Figure 9). Eight data values are stored

with each k-d tree node representing the values of the eight comers

of its nodal region. These comer values induce a trilinear function

throughout the nodal region. The data values are found, for each

comer point, by locating the grid cell that contains the comer of the

nodal region, then interpolating within that grid cell to compute the

data value at that nodal comer point.

A future implementation is planned to support a mixture of

rendering modes, with some nodal regions being approximated by

the model and others being rendered in detail with their polygons.

Tree traversal occurs in front-to-back visibility order. When

rendering a nodal region by scan conversion, the algorithm of

Section 3 will be used, with the local clipping box being the

intersection of the boundary of the nodal region and the global



Symbol Definition Units
h, screen height pixels

e _ eye-to-screen distance pixels

eo eye-to-Vbb-origin distance world units

d Vbb diagonal world units

s user's scale factor pure number

xt, *It, zt user translation (after rot.) world units

z,,, y,,, z,, world coordinates (after rot.) world units

a:_, g_, z_ screen coordinates pixels

Figure 3: Perspective calculation notation. Visibility bounding box

(Vbb) is centered at (0, 0, -eo) before user translation.
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Figure 4: Figure of perspective view in world space. Eye is at

(0,0,0). Vbb is projected onto screen at left.

restrict box. Nodal regions with smooth data will be rendered by

an approximation technique. Separately rendered regions will be

composited in the usual manner. There are numerous technical

problems to be overcome to avoid discontinuities on the boundaries

between nodal regions using different rendering methods.

If we restrict ourselves to only drawing nodal regions, then

standard cell projection methods can be used [27], which may take

advantage of the graphics hardware. To avoid color-interpolation

inaccuracies (as produced by hardware Gouraud shading), we

subdivide large nodal regions on the fly and interpolate data to

their comers, until nodes that cover a reasonably small number of

pixels are obtained.

6 Numerically Stable Perspective

Transformation

Standard computer graphics software provides perspective trans-
formations based on the eye being at the origin [7]. Standard

preparation for a perspective transformation is to translate the eye to
the origin. However, with our data, that resulted in translating many
vertices away from the origin in screen-z, introducing substantial

relative floating point errors. Some ordering inconsistencies arose in

later computations. Double precision for all values involved would

have imposed unacceptable space requirements. For numerical
accuracy we needed a different geometrical basis, in which the

eye is away from the origin. The transformation introduced here

preserves accuracy of the screen-z values near the center of the

visibility bounding box (Vbb), which is the portion of the volume

being imaged. In fact, our transformation maps the center of the
Vbb to 0 in screen-z.

Some texts give perspective transformations based on the

projection plane passing through the origin [20]. While this puts

the eye away from the origin, it did not suffice for our purposes

because a user-specified translation might separate the center of the

Vbb from the projection plane. (For a general 3D perspective

transformation, the projection plane is the set of points whose

transformed homogeneous coordinate is 1.)

This section presents a perspective transformation with a new

geometrical basis, in which both the eye and the projection plane

may be away from the origin (see Figs. 3 and 4). Specifically, the

eye point is at (0,0, eo-zt), and the projection plane is z = -zt.
In addition, the Jacobian of this transformation is the identity at the

origin. This transformation provided us with the numerical accuracy
we needed in screen-z.

The Vbb is first centered at (0,0,0) in world space, then it is

rotated by the user rotations. Now the eye is placed at (0, 0, eo).

At this time the projection plane is z = 0. Then the user translates

(exaggerated in the diagram) are applied, as follows. The user

translate in z has the effect of moving the eye and the projection

plane by -zt. However, the user translates in x and y move the
Vbb off the z-axis. The user translate in z is restricted to obey

zt + ½d + .05eo < eo. Finally, transformed points are uniformly
scaled by a factor:

e_ s h_
_ (1)

eo d '

to convert world units into pixels. For additional details of the

derivations, see [26].

e,(x_ + x,)
eo -- zt -- Zv

e,(y_ + y,)
go -- Zt -- Zv

es Zv eo

Z, = (2)
(eo - z,)(eo - z, -- z_)

To invert the z,-to-z, mapping, just solve for z,,. The following

equation gives the difference in world-z between two points along

one sight line (z,,2 - z,,t), in terms of their screen-space values,

again in a numerically stable form:

eoe_(zs= - z,i)
z_2-z_l = (3)

go -- Zt \ eo -- zt

Finally, the world distance between two points on a sight line is

inversely proportional to the cosine of the angle 0 between the sight

line and the screen-z axis:

disl = _z_2- z_l _ (z_2- z_l) (4)

C08(0) / (Zvl -- eo) 2

V = +Y_l +(z_' - eo)=Xvl

Accurate values of this distance are critical because they affect the

compositing of color through possibly thousands of triangles that

are very close to each other, as seen in the space-shuttle grid (see

Figure 8).

7 Experimental Results

We first compare the performance of the method on a curvilinear
multi-grid using single and multiple processors. Next, we compare



Scale 1.00 2.07 3.00 5.16

Active

Polygons 0.865 1.495 1.836 2.360

(Millions)

I processor 54 113 138 174

2 processors 31 63 78 98

3 processors 21 44 54 68

4 processors 17 34 42 53

4 (ideal) 14 28 35 43

Figure 5: Elapsed time comparisons (in seconds) on an SGI Onyx

using four 150-MHz processors, with 256MB memory. (NASA

space shuttle data set)

the performance of the algorithm against other renderers we have

implemented. Finally, we explore the ramifications of the hierarchy.
For our results, we used the following data volumes: the blunt fin

[12] (a single curvilinear grid of 40,960 data points); the space
shuttle [2] (nine intersecting curvilinear grids consisting of941,159

data points); the Lockheed fighter, courtesy of John Batina of

NASA Langley Research Center (an unstructured tetrahedral grid

with accompanying polygon surface file consisting of 13,832 data

points and 70,125 tetrahedra); and, for comparison to rectilinear grid

renderers, the hipip molecular data set courtesy ofL. Noodleman and

D. Case, Scripps Clinic (a rectilinear grid with 64x64x64 resolution,

or 262,144 data points); and the rectilinear CTHead data set from

UNC (at a resolution of 200x200x50 or 2,000,000 sample points).

7.1 Performance on Single and Multiple

Processors

Performance with one to four processors on an SGI Onyx, with four

150-MHz processors, is shown in Figure 5. For this evaluation,

we used the nine-grid space shuttle data set with a spatial rotation

of (-90°X, - 10*Y, 0°Z), and scale factors that ranged from 1.0

to 5.16. A scale factor of 1.0 causes the long diagonal of the

volume's bounding box to equal the width of the screen window.

The window size is 500x500 pixels. We see that four-processor

efficiency is about 80%.

We looked separately at the one-processor and four-processor

times of different sections of the algorithm, including transformation

of the points to screen space, creation of the Y-buckets, and

generating scanlines. Times mentioned below are averaged over

the four scale values reported in Figure 5.

Using a single processor, the average total CPU time to transform

the shuttle vertex locations from world space to screen space was

1.25 seconds; four processors achieved a 3.8 speedup. The CPU

time for creating Y-buckets averaged 17.8 seconds; four processors

achieved a 3.5 speedup. The average CPU time for rendering the

scanlines was 100 seconds. The speedup factor with four processors

for this task was only 3.3, because of the critical section mentioned

in Section 4.

From Figure 5, it is clear that, although 100% scalability is

not achieved, there are significant speedups: 1.8, 2.5, and 3.3,

respectively, for two, three, and four processors.

Memory use is another important factor in measuring the

efficiency of an algorithm. Considering only the basic algorithm,

without a hierarchy, the space shuttle grid itself takes 33.9 Mbytes,
and the transformed vertex locations take 11.3 Mbytes. For a

500 x 500 window, the software frame buffer takes 5.0 Mbytes,
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Blunt Fin scale 5
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Fighter scale 5
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CTHead scale 5

Soft Incoh.

Scan Proj.

60.9

202. I

19.4 16.4

51.4 16.5
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74.5 109.4

128.9 109.4

180.1

203.9

Cohe_

Proj.

Ray
Cast

12.2 63.0

1.8 187.0

56.7 48.0

9.46 140.0

Figure 6: Speed comparison of various renderers (CPU seconds)

on an SGI Onyx with Reality Engine 11 graphics, using one 150-

MHz processor. Only renderers relevant to a particular data type

are shown. Projection methods utilize the Reality Engine graphics,

while ray-casting and scan conversion do not.

Scale Factor 1 4 16 64 256

Hierarchy Speedup 0.95 0.98 1.15 1.37 1.96

Figure 7: Speedups on space shuttle using a hierarchy to avoid

invisible regions. Times are CPU seconds on an SGI Onyx using

one 150-MHz processor.

and the Y-bucket array takes i 1.0 Mbytes. These sizes are view-

independent, and total to 51 Mbytes.

The rest of the memory is used by the program to keep track of

the polygons that it is rendering, so depends on the view. There

is also some overhead for using multiple processors. For the scale

5.16, as reported in Figure 5, the total memory requirement ranged

from 75 Mbytes for one processor to 87 Mbytes for four processors.

7.2 Comparison to Other Renderers

We have done speed comparisons of this new renderer against
other direct volume renderers we have written. None of these

other renderers have the generality to handle irregular multi-grids

like the space-shuttle (which most renderers will not handle),
and we have no other renderer that handles tetrahedral volumes.

However, we can compare image quality and performance against

the following: Ray Casting for rectilinear grids [23]; Coherent

Projection (hardware Gouraud shading) for rectilinear grids [27];

and Incoherent Projection (hardware Gouraud shading) for single

curvilinear grids [24].

Because of its extreme generality, our new software scan

conversion algorithm cannot compete with methods designed to

take advantage of the simplicity of regular grids. Figure 6 compares
the time taken to render each of the data sets described above by

the renderers capable of handling them. Each volume is drawn in a

500x500 pixel window at a scale of 1 or 5 times.

We can provide some further general comments. First, software

scan conversion generally produces pictures equivalent in image

quality to ray casting, but much faster, because of the use of

coherence. Also, our cell projection methods are not optimized

for opaque data sets, while a ray caster processing front to back

can easily halt when the pixel becomes opaque. Thus on a data set

such as the head, the ray tracer can be competitive or even faster

than other methods. In general, software scan conversion produces



anoticeablyclearerimagewithlessartifactsthanthehardware
Gouraudshadingmethods.Whileit isnoticeablyslower,thiscost
mayoftenbeworthitforthe improvement in image quality. Figure 8
shows three images of the space shuttle at different scales.

7.3 Performance with the Hierarchy

There are two aspects of the hierarchy. First, there is the temporal

savings of discarding whole invisible subregions at one time, rather
than examining their primitives individually. We found this a

significant savings only when zoomed in on the volume considerably
(see Figure 7), though with larger volumes, the gains may be more
significant. For example, at a scale of 1, the hierarchy is slightly
slower, whereas at a scale of 256, about twice as fast. As Figure 8

indicates, scales of 256 and larger are needed to view these volumes.

The second aspect is the use of a multi-resolution model to
approximate the information. Figure 9 shows a comparison of

the Lockheed fighter jet rendered using the scanline algorithm on
every cell, and rendered using the hierarchy to draw an approximated

version using hardware-assisted cell projection. The scanline image
on the left is much better quality, but took over 3 minutes to render.

The approximated version is suitable for exploring the volume and

identifying regions of interest, and took less than three seconds to
render.

8 Conclusions

The renderer described in this paper allows rendering of large

multiple intersecting irregular and regular grids including polygonal
meshes without the use of expensive graphics hardware. Factors
such as screen size and scale can affect the time needed to render

the volume. The renderer is parallelizable and measurements show
that this can greatly reduce elapsed time without greatly increasing

memory requirements. Use of a k-d tree makes the algorithm better

able to handle very large data sets. Accurate depth calculation can

be achieved by using the projection method described in Section 6.

Future work should investigate more sophisticated methods to use
the multi-resolution model effectively, including seamless mixtures

of polygons and approximated regions.
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Figure8:Threeimagesofthespaceshuttleatdifferentscales.Imagestookfrom27to64secondsonanSGIOnyxwithfour150-MHz
processors.

Figure9:Softwarescanconversionof the Lockheed fighter (a tetrahedral data set) on the left (time about 3 minutes), and an approximate
version rendered using hardware cell projection (Section 5.3) on the right (time about 3 seconds). Times are on a 150-Mhz SGI workstation.


