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Abstract

Terrain visualization is a difficult problem for applications requiring
accurate images of large datasets at high frame rates, such as flight
simulation and ground-based aircraft testing using synthetic sensor
stimulation. On current graphics hardware, the problem is to main-
tain dynamic, view-dependent triangle meshes and texture maps
that produce good images at the required frame rate. We present an
algorithm for constructing triangle meshes that optimizes flexible
view-dependent error metrics, produces guaranteed error bounds,
achieves specified triangle counts directly, and uses frame-to-frame
coherence to operate at high frame rates for thousands of triangles
per frame.

Our method, dubbed Real-time Optimally Adapting Meshes
(ROAM), uses two priority queues to drive split and merge op-
erations that maintain continuous triangulations built from pre-
processed bintree triangles. We introduce two additional perfor-
mance optimizations: incremental triangle stripping and priority-
computation deferral lists. ROAM execution time is proportionate
to the number of triangle changes per frame, which is typically a
few percent of the output mesh size, hence ROAM performance is
insensitive to the resolution and extent of the input terrain. Dynamic
terrain and simple vertex morphing are supported.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Viewing Algorithms; I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling -
Geometric Algorithms, Object Hierarchies; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism - Virtual Reality.

Additional Keywords: triangle bintree, view-dependent mesh,
frame-to-frame coherence, greedy algorithms.

1 INTRODUCTION

A complete system to display views of large datasets at high frame
rates consists of components to manage disk paging of geome-
try and texture, level-of-detail (LOD) selection for texture blocks,
LOD for triangle geometry, culling to the view frustum, and triangle
stripping. This paper focuses on the last three of these components,
which deal with in-memory geometry management.

During interactive visualizations, many types of geometric data
compete for limited polygon budgets. Terrain remains one of the
most challenging types because it is not naturally decomposed into
parts whose complexity can be adjusted independently, and because
the qualities required of a triangulation are view dependent. Clas-
sic geometry LOD optimization algorithms, such as those of Clark
[1] and Funkhouser and S´equin [7], are not immediately applica-
ble to terrain because they require independently adjustable parts.
Traditional triangulation optimizations [14, 2, 15, for example], do
not apply directly to terrain visualization because they do not ad-

�fmurray,sigeti,cha,marinerg@lanl.gov, Los Alamos, NM
yfduchaineau1,miller86g@llnl.gov, Livermore, CA

mit flexible view-dependent error objectives, and they are much too
slow to be used for each frame.

All of the existing algorithms that can interactively perform
view-dependent, locally-adaptive terrain meshing [12, 11, 17, 19,
10], including ours, rely on a pre-defined multiresolution terrain
representation that is used to build the adaptive triangle mesh for
a frame. An example frame generated by the ROAM implemen-
tation is depicted in Figure 1, both with and without visible mesh
edges. Figure 2 shows a birds-eye view of the domain mesh. The
mesh is typical for ROAM: neighborhoods that are flat or distant
are triangulated more coarsely than close or rough neighborhoods.

Figure 1: Example of ROAM terrain.

Figure 2: Triangulation for example frame, with eye looking right.
Dark region is outside view frustum, light region is inside, and grey
overlaps boundary.



ROAM consists of a preprocessing component and several run-
time components. The preprocessing component produces nested,
view-independent error bounds bottom-up for a triangle bintree. At
runtime, four phases of computation are performed per frame:

1. recursive, incremental update to view-frustum culling
2. priority update only for output triangles that can potentially

be split/merged in phase 3
3. triangulation update using greedy split and merge steps driven

by two priority queues (for splits and merges, respectively)
4. as-needed updates for triangle strips affected by the culling

changes from phase 1 and the splits/merges from phase 3

We evaluate our method with respect to twelve criteria of general
application as follows:

1. Time required to achieve a given triangle count: Our
implementation can maintain an optimized mesh containing
thousands of triangles at 30 frames per second for high-speed,
low-altitude flights over rough terrain. The algorithm’s run-
ning time is proportionate to the number of triangle changes
per frame, which is typically a few percent of the total mesh
size. Hence ROAM performance is insensitive to terrain
database extent and resolution (with the caveat that we must
have all the data in memory in the current implementation).

2. Flexibility in choosing view-dependent error metrics:
ROAM uses maximum geometric distortion in screen space
as a base metric and queue priority value. This metric can
be enhanced in many ways: ensuring correct visibility along
specified lines of site, providing correct terrain positions un-
der objects, and eliminating back-facing detail are examples.

3. Mesh representations (both pre-defined and run-time
selected): Our method uses a triangle bintree for pre-
computation, and builds continuous adaptive meshes by in-
cremental, fine-grained split and merge steps. The triangles
are always a right-isosceles shape, and therefore avoid the nu-
merical problems of thin, “slivery” triangles.

4. Simplicity of algorithms: ROAM is simple to understand
and implement because it is centered on split and merge oper-
ations of bintree triangles whose structure naturally avoids the
complex case proliferation and legitimacy rules for selectively
refining and coarsening within irregular or even quadtree-
structured multiresolution spaces, and no special efforts are
required to avoid discontinuities (cracks) and thin triangles.
The greedy priority-queue technique that drives the splits and
merges provides a simple mechanism for incorporating an ex-
tensible set of error-metric enhancements.

5. Quality of mesh at a given triangle count: Our algorithm
produces optimal meshes in the sense of minimizing the max-
imum error bound formonotonicbounds (bounds that don’t
get larger after a split operation). Of course this optimum is
achieved over our particular choice of mesh space, and larger
or better spaces of triangle meshes certainly exist. Our results
in actual tests are qualitatively excellent.

6. Direct control of triangle counts: ROAM produces meshes
with a specified triangle count directly. Algorithms that ad-
mit only error tolerances can only indirectly control triangle
counts by hunting for the corresponding error threshold, a pro-
cess that is either slow or unreliable. ROAM can operate to
achieve specified tolerances, but triangle-count specification
is preferable for many applications.

7. Strict frame rates: ROAM can progressively optimize from
frame to frame and stop when the frame time is about to ex-
pire (although typically only a fraction of the frame time is
required). Our motivating application, aircraft sensor stimu-
lation, requires a strict frame rate governed by the equipment
under test. In conjunction with processor locking or real-time

operating systems on multi-processor graphics systems, our
implementation provides a strict frame rate at the highest tri-
angle counts that the graphics hardware can handle reliably.

8. Guaranteed error bounds: ROAM produces guaranteed
bounds on geometric screen-space distortions. These bounds
are obtained locally by a fast conversion from preprocessed
world-space bounds to view-dependent screen-space bounds,
and globally by the greedy nature of the optimization algo-
rithm.

9. Memory requirements: We distinguish between preprocess
data size and runtime size. Our preprocess size is equal to
the number of raw, finest-level height samples plus a sin-
gle “thickness” value per bintree triangle. The runtime data
structures take up space proportionate to the output mesh size,
which is minuscule compared to the preprocess data size.

10. Dynamic terrain: Since our preprocessing is fast and local-
ized, the preprocessed data can be updated quickly when the
terrain is changed by mud slides, explosions, etc.

11. Reduced “popping”: ROAM’s use of a screen-distortion
metric and its tendency to make very few mesh changes per
frame naturally reduces disturbing temporal artifacts (pops).
In some cases it is desirable to reduce pops further byvertex
morphing, which is easily incorporated in ROAM.

12. General input meshes:Although our motivating application
and implementation focuses on terrain (in the form of a height
field), ROAM’s mesh structure applies to manifolds of arbi-
trary genus with boundary. A drawback of the bintree meshes
we use, and more generally any subdivision surfaces, is that
irregular input meshes must be approximated, albeit as closely
as one likes [4].

In addition to these general criteria, ROAM was influenced by
the specialized requirements of our motivating application, syn-
thetic sensor stimulation for aircraft undergoing ground-based test-
ing with hardware and human controllers in the loop. In this setting
it is critical to query a runtime terrain data server for line-of-site
(LOS) visibility tests, object positions, and so on in addition to the
texture and triangle-mesh queries used for display to multiple sen-
sors with differing viewpoints and requirements for accuracy and
frame rate. Because of the approximations made to achieve high
frame rates, the issues of consistency and correctness for the various
queries becomes paramount. In earlier approaches, LOS and other
queries are made with respect to a single current terrain approxima-
tion. This at least gives consistency to the various query responses,
but requires a single “lowest common denominator” triangle mesh
suitable for all views and sensor frame rates, thus degrading quality
to unacceptable levels. The philosophy in ROAM is to give re-
sponses to LOS and position queries that are correct with respect to
the finest-level input data, and constrain each of the view-dependent
meshes to preserve the selected LOS visibilities and positions. The
ROAM architecture efficiently supports this philosophy, and thus
ensures consistency through correctness.

2 RELATED WORK

A general treatment of multiresolution LOD control is presented by
Heckbert and Garland [8], while more specific surveys and refer-
ences can be found in [3, 11, 19]. Triangle stripping cost models
and techniques are presented by Evanset al.[5]. Greedy algorithms
have been applied to terrain triangulation in the non-realtime, non-
view-dependent setting [6, 15, for example]. A general treatment
of subdivision surfaces and conversions from irregular meshes is
given by Ecket al. [4], while a specific application of wavelet anal-
ysis to terrain LOD is given by Staadtet al. [16]. In the remainder
of this section we give more detailed overviews of recent published
work most closely related to ROAM.



Miller [12] uses a quadtree to preprocess a height field defined on
a uniform grid. In a pre-processing phase, vertices at each quadtree
level are computed using an approximate least-squares fit to the
level below. For each frame at run time, a priority queue drives
quadtree refinement top-down from the root, thus allowing spec-
ified triangle counts to be achieved directly. The priority for a
quadtree element is a heuristic involving view-independent (error
in surface) and view-dependent (screen-area coverage) components
aimed at minimizing the squared error in output image pixel inten-
sities. No advantage is made of frame-to-frame coherence, and only
one type of error metric is developed. A special effort is made to en-
sure continuous triangulations, but “T-vertices” are allowed, where
a vertex exists on only one side of an edge. Methods for overlaying
of point, linear and areal features are also discussed.

Lindstrom et al. [11] choose the same space of continuous
triangle-bintree meshes as we do. They do not recognize the sim-
ple bintree structure nor the split and merge operations that we
present, and so must take special care to maintain mesh continu-
ity. They obtain high frame rates for large output meshes using a
bottom-up vertex-reduction methodology enhanced by an elegant
block-LOD-reduction algorithm. The block-LOD updates are in-
cremental, taking advantage of frame-to-frame and object-space co-
herence. However, the fine-grained vertex deletion is performed
bottom-up, which tends to limit performance compared to our fine-
grained incremental mesh updates. Also, although they use the
same base metric of geometric screen-space distortion, the block-
based optimizations appear to make it difficult to enhance this met-
ric. They provide no guaranteed error bounds (only level-to-level
displacements are considered in the fine-grained LOD reduction).
A tolerance parameter is used to control the algorithm, but the lack
of guaranteed bounds precludes guaranteed success in attaining the
requested accuracy. A triangle-count parameter is not considered,
and would be difficult to incorporate with their block-LOD algo-
rithm (this precludes support for strict frame rates with maximum
triangle counts). Memory requirements are similar to ROAM, and
dynamic terrain is supported. Vertex morphing is not supported,
and only height maps are considered. A recursive triangle-stripping
method is described, but requires corner-turning and does not take
advantage of frame-to-frame coherence.

Willis et al. [17] describe a hierarchical triangulated-irregular-
network (TIN) data structure with “near/far” annotations for vertex
morphing, along with a queue-driven top-down refinement proce-
dure for building the triangle mesh for a frame. No automatic pro-
cedure is given to build the precomputed TIN hierarchies and mor-
phing annotations. No consideration is given to controlling errors
or triangle counts. Specific effort is taken to avoid T-vertices. No
advantage is taken of frame-to-frame coherence. Memory require-
ments are higher per preprocessed multiresolution element than in
ROAM. The method applies to general base (coarsest-level) triangle
meshes. The vertex-morphing capabilities are powerful and unique
(we consider only simple split/merge animations).

Xia et al. and Hoppe [19, 10, 18] give similar methods for in-
teractive, fine-grained LOD control of general TIN input meshes
based on view-dependent refinement of preprocessedprogressive
meshrepresentations [9]. Both algorithms allow flexible view-
dependent error metrics, and have demonstrated backface detail re-
duction based on nested Gauss-map normal bounds. Xiaet al. use
a base metric derived from the edge-collapse operations inherent
to progressive meshes, which gives only a loose heuristic estimate
of geometric or parametric screen-space distortions. Hoppe gives
a metric that separates non-directional and normal-direction errors,
and mentions the possibility of modifying this to measure errors
in approximating non-linear texture-coordinate mappings. Progres-
sive meshes are most naturally refined by undoing the edge-collapse
operations in exactly the reverse order of the preprocess collapse
sequence. Complex legitimacy rules are required to allow different

refinement orders. Only tolerance parameters are given to the view-
dependent refinement. In Xiaet al., special consideration is taken
to avoid thin triangles. Hoppe uses a feedback mechanism to per-
form rough frame-rate regulation. Nested bounds are provided by
analyzing neighborhoods defined by the binary vertex trees formed
during the preprocessing. Although some consideration is given to
frame-to-frame coherence, execution times are still proportional to
the full output mesh size. As a performance enhancement, Hoppe
considers traversing the active vertices once over the course of mul-
tiple frames, but indicates that this complicates frame-rate regula-
tion. Progressive-mesh preprocessing is organized as a global opti-
mization process, and thus is too slow to support dynamic terrain.
Animation of the edge collapse/expand operations reduces popping
similar to vertex morphing, but introduces degenerate thin triangles
temporarily in the process.

3 OVERVIEW

In the remainder of this paper we describe the ROAM mesh rep-
resentation, optimization algorithm, error metrics, performance en-
hancements and results. In this section, we give an overview of
what follows.

More fundamental than the ROAM algorithm itself is the dy-
namic mesh representation based on triangle bintrees. In Section 4
we define triangle bintrees and describe the split and merge opera-
tions that are used to maintain continuous meshes while adding and
removing one vertex at a time. Animation of the splits and merges
is presented as a simple method for obtaining temporal continuity.
Applicability to surfaces with general topology is considered.

Given these fundamentals of the mesh representation, Section 5
goes on to describe the dual-queue incremental optimization algo-
rithm. A simplified version of the algorithm is given first that uses
only a single “split” priority queue. We explain why this top-down
algorithm produces optimal bintree-based triangulations for mono-
tonic priorities. A second “merge” priority queue is added to enable
incremental optimizations for time-varying priorities.

ROAM uses view-independent, preprocessed error bounds to fa-
cilitate the computation of view-dependent error bounds. In Sec-
tion 6, the metrics, preprocessing and view-dependent conversions
are given. In world space, we rely on nested bounds using a single
number per bintree triangle to define a “pie-wedge” bound shape.
Thesewedgiesare readily used to compute per-triangle bounds on
screen-space distortions in the projected “up” direction. We also
use wedgies to facilitate computations like view-frustum intersec-
tions and LOS tests. We consider various enhancements to the basic
screen-space geometric distortion metric.

For ROAM to operate at high frame rates, several performance
enhancements are needed. These are described in Section 7: incre-
mental view-frustum culling, incremental T-stripping, deferring pri-
ority recomputations, and progressive optimization. Results from
experiments with our implementation are given in Section 8. These
show the effect of the performance enhancements as well as the
overall behavior of the algorithm.

4 MESH REPRESENTATION

4.1 Triangle Bintree

Just as the square-shaped quadtree has a triangle-quadtree counter-
part, the familiar rectangle-shaped bintree [13] has a little-known
triangle-shaped counterpart. Figure 3 shows the first few levels of a
triangle bintree. The root triangle,T = (va; v0; v1), is defined to be
a right-isosceles triangle at the coarsestlevelof subdivision,̀ = 0.
At the next-finest level,̀ = 1, the children of the root are defined
by splitting the root along an edge formed from itsapex vertexva



to the midpointvc of its base edge(v0; v1). The left child of T is
T0 = (vc; va; v0), while theright child of T is T1 = (vc; v1; va).
The rest of the triangle bintree is defined by recursively repeating
this splitting process.

v0 v1

va

T

vcv0 v1

va

T0 T1

` = 0 ` = 1

` = 2 ` = 3

` = 4 ` = 5

Figure 3: Levels 0–5 of a triangle bintree.

4.2 Dynamic Continuous Triangulations

Meshes in world space are formed by assigning world-space posi-
tionsw(v) to each bintree vertex. A set of bintree triangles forms
a continuous mesh when any two triangles either overlap nowhere,
at a common vertex, or at a common edge. We refer to such con-
tinuous meshes asbintree triangulationsor simply triangulations.
Figure 4 shows a typical neighborhood about a triangleT within a
triangulation. We defineTB to be thebase neighborsharing base
edge(v0; v1), TL to be theleft neighborsharing left edge(va; v0),
andTR to be theright neighborsharing right edge(v1; va).

A key fact about bintree triangulations is that neighbors are either
from the same bintree level` asT , or from the next finer level̀+1
for left and right neighbors, or from the next coarser level` � 1
for base neighbors. All of these possible relationships are depicted
amongst the triangles in Figure 4.

WhenT andTB are both from the same level`, we refer to the
pair(T; TB) as adiamond. A simplesplit operation and its inverse,
merge, are depicted in Figure 4 for a triangulation containing a di-
amond. Split replaces triangleT with its children(T0; T1), and
triangleTB by its children(TB0; TB1). This split operation intro-
duces one new vertexvc at the diamond center, resulting in a new,
continuous triangulation. If triangleT does not have a base neigh-
borTB , onlyT is split into its children. Merging can be applied to
diamond(T; TB) when the children ofT andTB (if TB exists) are
all in the triangulation. In this case, we say(T; TB) is amergeable
diamondfor the triangulation.

An important fact about the split and merge operations is that
any triangulation may be obtained from any other triangulation by
a sequence of splits and merges.

Splits and merges can be animated usingvertex morphingto
provide a simple form of temporal continuity. For a time interval
t 2 [0; 1], consider the split of diamond(T; TB) shown in Figure 4.
Instead of movingvc immediately to its new positionwc = w(vc),
let it move linearly over time from the unsplit base-edge midpoint
wm = (w(v0) +w(v1))=2 aswa(t) = (1� t)wm + twc. Merges
can be animated in a similar way.

split

merge

T

TB

TL TR

T0 T1

TB0TB1

Figure 4: Split and merge operations on a bintree triangulation. A
typical neighborhood is shown for triangleT on the left.

A triangleT in a triangulation cannot be split immediately when
its base neighborTB is from a coarser level. To forceT to be split,
TB must be forced to split first, which may require further splits
in a recursive sequence. A case requiring a total of four splits is
depicted in Figure 5. Suchforced splitsare needed for the opti-
mization algorithm in Section 5.

T
TB

forced split

Figure 5: Forced splitting of triangleT .

Base meshes of more than one triangle can be used to represent
manifold surfaces of arbitrary genus with boundary. If the base
mesh can be tiled with diamonds, then the split and merge opera-
tions may be used freely as in the case with a single root triangle.
For terrain, a typical base mesh is a single diamond.

5 DUAL-QUEUE OPTIMIZATION

The split and merge operations provide a flexible framework for
making fine-grained updates to a triangulation. No special efforts
are needed to avoid cracks or T-vertices. This section presents a
greedy algorithm that will drive the split and merge process. The
idea is simple: keep priorities for every triangle in the triangulation,
starting with the base triangulation, and repeatedly do a forced split
of the highest-priority triangle. As shown next, this process cre-
ates a sequence of triangulations that minimize the maximum pri-
ority (which is typically an error bound) at every step. The only
requirement to ensure this optimality is that priorities should be
monotonic, meaning a child’s priority is not larger than its parent’s.
Adding a second priority queue—for mergeable diamonds—allows
the greedy algorithm to start from a previous optimal triangulation
when the priorities have changed, and thus take advantage of frame-
to-frame coherence.



5.1 Split Queue

Suppose that every bintree triangleT is given a monotonic priority
p(T ) 2 [0; 1]. As triangulationT is built top-down, we shall main-
tain a priority queueQs containing all of the current triangles inT.
The top-down greedy algorithm is the following:

LetT = the base triangulation.
For allT 2 T, insertT intoQs.
WhileT is too small or inaccuratef

Identify highest-priorityT in Qs.
Force-splitT .
Update split queue as follows:f

RemoveT and other split triangles fromQs.
Add any new triangles inT toQs.

g
g

This greedy algorithm produces optimal triangulations at every
step. Consider any other triangulationT0 that has a lower maxi-
mum priority thanT. ClearlyT0 must contain only descendents of
all the triangles that were forced to be split while buildingT. Be-
cause the force-split operation makes the minimum necessary re-
finements to preserve continuity,T0 can not contain any ancestors
to the triangles inT. Finally, becauseT0 has a lower priority, it
must contain only descendents of at least one triangle inT. There-
fore, T0 has a higher triangle count thanT and soT is optimal.
The total number of splits and merges performed by the top-down
algorithm is proportionate toN , the number of triangles in the final
triangulationT.

5.2 Merge Queue

Now suppose that we are given time-varying prioritiespf (T ) 2
[0; 1] for framesf 2 (0; 1; : : :), and the problem is to build opti-
mal triangulations(T0;T1; : : :). If these priorities are changing
slowly and smoothly, then the optimal triangulations for any two
consecutive frames will tend to be similar to one another. In this
case, performance will be enhanced if we use triangulationTf�1

as a starting point to build triangulationTf . This is done by main-
taining a second priority queue,Qm, that contains all the mergeable
diamonds for the current triangulation. The priority for a mergeable
diamond(T; TB) is set to the maximum of its two triangles’ prior-
ities,maxfpf (T ); pf(TB)g. The incremental greedy algorithm is
the following:

If f = 0 f
LetT = the base triangulation.
ClearQs, Qm.
Compute priorities forT’s triangles and diamonds, then

insert intoQs andQm, respectively.
g otherwisef

Continue processingT = Tf�1.
Update priorities for all elements ofQs, Qm.

g
While T is not the target size/accuracy, or the maximum split

priority is greater than the minimum merge priorityf
If T is too large or accuratef

Identify lowest-priority(T; TB) in Qm.
Merge(T; TB).
Update queues as follows:f

Remove all merged children fromQs.
Add merge parentsT , TB toQs.
Remove(T; TB) fromQm.
Add all newly-mergeable diamonds toQm.

g
g otherwisef

Identify highest-priorityT in Qs.

Force-splitT .
Update queues as follows:f

RemoveT and other split triangles fromQs.
Add any new triangles inT toQs.
Remove fromQm any diamonds whose chil-

dren were split.
Add all newly-mergeable diamonds toQm.

g
g

g
SetTf = T.

The incremental greedy algorithm produces an optimal meshTf

that has the same priority as if the top-down algorithm had been per-
formed on the base mesh. The incremental algorithm does not gen-
erally produce optimal meshes during the intermediate steps (for
example,Tf�1 is usually not optimal for framef ), but it does reach
optimality using the smallest possible number of split/merge oper-
ations applied toTf�1. The total number of splits and merges per-
formed is proportionate to�N , defined as the number of triangles
fromTf andTf�1 that are not in common. In the worst case,�N
can beNf�1 + Nf . Situations like this are easily detected: there
will be a large number of triangles and diamonds whose priorities
are between the minimum merge priority and the maximum split
priority. The remedy in this case is to fall back on the top-down al-
gorithm, which can be accomplished by initializingT,Qs andQm

as thoughf = 0.

6 ERROR METRICS

This section describes the various error metrics and bounds that
are used to compute queue priorities. In the remainder of this pa-
per we restrict our attention to height maps. Specifically, we as-
sume that the vertex-to-world-space mappingw(v) is of the form
w(v) = (vx; vy; z(v)), where(vx; vy) are the domain coordinates
of the vertexv, andz(v) is the height atv. We denote the affine
height map for a bintree triangleT to be zT (x; y). We also as-
sume that camera coordinate systems and perspective transforms
are given for each frame. We will continue to use the triangle-
neighborhood notation from Section 4.

6.1 Nested World-Space Bounds

For height-map triangulations, a convenient bound per triangleT is
a wedgie, defined as the volume of world space containing points
(x; y; z) such that(x; y) 2 T and jz � zT (x; y)j � eT for some
wedgie thicknesseT � 0. We refer to the line segment from
(x; y; z � eT ) to (x; y; z + eT ) as thethickness segmentfor v.
Nested wedgie bounds are built bottom-up, starting witheT = 0
for all T at finest level̀ max. The wedgie thicknesseT for a par-
ent triangle is defined in terms of its children’s wedgie thicknesses,
eT0 andeT1 . The tightest nested wedgie bounds are given by the
formula

eT = maxfeT0 ; eT1g+ jz(vc)� zT (vc)j (1)

wherezT (vc) = (z(v0) + z(v1))=2. Note that this computation is
fast and localized, which facilitates dynamic terrain. A univariate
example of nested wedgies is illustrated in Figure 6, along with the
chain of wedgies that depend on a particular vertexv.

6.2 Geometric Screen Distortion

With textured triangulations it is natural to separate geometric
screen-space distortions from color distortions. We assume in this
paper that colors for a surface point are accurately represented by



v

Figure 6: Nested wedgies for 1-D domain with dependents ofv.

the texture. The remaining image errors can be represented as
purely geometric distortions: the distance between where each sur-
face point should be in screen space and where the triangulation
places the point. Over the whole image we measure the maximum
of these pointwise distortions. This is the base metric for ROAM.

Formally, lets(v) be the correct screen-space position for a do-
main pointv, andsT (v) be the approximate position from triangu-
lation T . We define the pointwise geometric distortion atv to be
dist(v) = ks(v)� sT (v)k2. For the whole image, we define the
maximum distortion to bedistmax = maxv2V dist(v) whereV
is the set of domain pointsv whose world-space positionsw(v) are
within the view frustum.

In practice an upper bound is computed for the maximum distor-
tion. For each triangleT in the triangulation, a local upper bound on
distortion is obtained by projectingT ’s wedgie into screen space,
as shown in Figure 7. The bound is defined as the maximum length
of the projected thickness segments over allv 2 T . These lo-
cal bounds are monotonic, and will be used to form queue prior-
ities. The maximum split-queue priority provides an upper bound
on maximum distortion. If a wedgie extends behind the near clip-
ping plane, the triangle’s priority is set to an artificial maximum
value and the distortion-bound computation is skipped.

Figure 7: Distortion bound by projecting wedgie to screen space.

Because of the peculiarities of the perspective transform, the
maximum projected wedgie thickness does not always occur at one
of the triangle vertices. This leads to the following upper-bound
computation. Let(p; q; r) be the camera-space coordinates of a
pointw(v) without perspective, and without loss of generality as-
sume the perspective projection is of the forms = (p=r; q=r). The
screen-space distortion atv 2 T is bounded by projecting the thick-
ness segment atv. Let (a; b; c) be the camera-space vector corre-

sponding to world-space thickness vector(0; 0; eT ). The screen-
space distortion atv is bounded by

ddist(v) =
p+ a

r + c
�

p� a

r � c
;
q + b

r + c
�

q � b

r � c


2

(2)

This can be rewritten as

ddist(v) = 2

r2 � c2

�
(ar� cp)2 + (br � cq)2

�1=2
(3)

It is straightforward to show that the minimum ofr2 � c2 and the
maximum of(ar � cp)2 + (br � cq)2 occur at the corner vertices
of T (although not generally the same corner). An upper bound on
ddist(v) can thus be obtained by substituting these minimum and
maximum values into Equation 3.

6.3 Line-of-site Correction

So far, the queue priority was derived solely from the screen-
distortion bound for a triangleT . This priority can be modified
to ensure that selected lines of site are correctly occluded or not. A
simple method to do this is to change the priorities for any trian-
gles whose wedgies intersect the LOS. By setting these priorities
to an artificial maximum value, splits will be made preferentially
in a manner sufficient to ensure correct visibility along the LOS.
This method tends to promote more triangle splits than necessary,
although this excess is typically small in practice compared to the
overall triangle count. An example of LOS correction is given in
Section 8.1.

6.4 Other Metrics

We briefly mention other possible metric/priority variations that are
compatible with ROAM:

Backface detail reduction: Using nested Gauss-map normal
bounds (as in [18, 10]), priorities can be set to minimum for
triangles whose subtree of triangles are all back-facing.

Normal distortions: For specular highlights determined by
normal vectors interpolated from the vertices, priority should
be given to triangles having large normal distortions where
the highlights occur.

Texture-coordinate distortion: For curved mappings from sur-
face domain to texture coordinates, priority should be added
proportionate to the size of the screen-space position distor-
tions associated with the texture-coordinate approximation.

Silhouette edges:Specific emphasis can be placed on triangles
whose normal bounds indicate potential back-face to front-
face transitions.

View frustum: Wedgies outside the six clipping planes can be
given minimum priority, as discussed in Section 7.1.

Atmospheric obscurance: Wedgie priorities can be decreased
when fog reduces visibility.

Object positioning: To correctly position objects on terrain, the
priorities of triangles under each object can be artificially in-
creased.

Clearly this list can be extended to suit a variety of applications.

7 PERFORMANCE ENHANCEMENTS

In this section we describe enhancements that enable the ROAM
algorithm to operate at high frame rates for triangulations consisting
of thousands of triangles. The first three optimizations decrease
the respective computation times for their subtasks by more than a
factor of ten. The fourth ensures strict frame rates.



7.1 View-Frustum Culling

We assume the view frustum is defined as the intersection of six
halfspaces. Each triangle in the bintree (down to the current tri-
angulation) is given an IN flag for each of the six halfspaces, and
an overall label of OUT, ALL-IN or DONT-KNOW, defined as fol-
lows: IN is set when the wedgie is entirely inside the halfspace,
OUT is given when the wedgie is entirely outside at least one half-
space, ALL-IN is given if all IN flags are set, and DONT-KNOW is
given if not OUT or ALL-IN.

Updating these flags and labels from frame-to-frame is effi-
ciently handled by a recursive bintree traversal. If a triangleT was
labeled OUT or ALL-IN for the previous frame, and these labels
are correct for the current frame, then the subtree forT does not
need to be updated and recursion terminates. Otherwise,T inher-
its its IN flags from its parent and rechecks its wedgie against the
halfspaces not marked IN, setting new IN flags if appropriate. If
the wedgie is entirely outside any of these halfspaces,T and all its
children are marked OUT. If all IN flags are set,T and all its chil-
dren are marked ALL-IN. OtherwiseT is marked DONT-KNOW
and recursion continues to its children.

7.2 Incremental T-Stripping

Significant performance gains result from organizing triangles into
strips, although optimum stripping is a difficult problem [5]. We
consider only non-generalized strips (no “vertex swapping”). We
use a simple, sub-optimal, incremental approach that yields average
strip lengths of around four to five triangles. As triangles are split,
merged or change view-culling status, minimal re-linking of strips
is performed. Deleting a triangle from a strip causes the strip to
be deleted (for a singleton strip), shortened on the end, or split in
two. New triangles are first inserted as singleton strips, which we
subsequently attempt to glue to each of the neighboring strip ends.

7.3 Deferring Priority Recomputation

The screen-distortion priorities of the triangles change as the view-
ing position changes, typically in a slow and smooth manner. Re-
calculating priorities of all triangles for every frame is too costly.
Instead, priorities are recomputed only when they potentially affect
a split/merge decision.

Given a velocity bound on the viewpoint, bounds can be obtained
for screen-distortion priorities over time (i.e. a time-dependent
bound). Also, the crossover priority (defined as the maximum split-
queue priority when the incremental split/merge process is com-
plete) changes slowly from frame to frame (typically around 1%
change). Recomputation of a triangle can safely be deferred until
its priority bound overlaps the crossover priority. A deferral list is
kept for each of the next few dozen frames. Only the triangles on
the current frame’s deferral list must have priorities recomputed.
If time allows, additional triangles may be recomputed in subse-
quent deferral lists. After recomputation, the triangle is placed on
the deferral list farthest ahead that will provide safe recomputation
scheduling.

7.4 Progressive Optimization

To ensure strict frame rates, triangulation optimization should stop
when the alloted frame time is about to expire. The ROAM al-
gorithm readily supports this because optimization processing and
stripping updates occur one split/merge at a time. Of course, early
termination yields non-optimal triangulations. However, because
the split/merge steps are performed in decreasing order of impor-
tance, the partial work done is optimal in the sense that we have
gotten as close to true optimal as time permits while maintaining the

specified triangle count. We refer to this stepwise processing aspro-
gressive optimization. Priority recomputations can also be limited
based on time available. The only phase of ROAM not amenable to
progressive completion is view-frustum culling, which fortunately
requires only a small fraction of the frame time and is completed
before priority recomputation and mesh optimization.

8 RESULTS

Performance figures were measured on an Indigo2 Silicon Graphics
workstation with Maximum Impact graphics hardware and a single
R10000 processor. These figures were obtained simulating a fighter
aircraft in terrain avoidance mode flying at high speed over very
hilly terrain1. With all incremental features of the algorithm turned
on and 3000 triangles rendered the total time per frame is approx-
imately 30 milliseconds. Of this, 5 milliseconds is spent doing the
view-frustum culling, 5 milliseconds calculating the queue priori-
ties, 5 milliseconds splitting/merging the triangles in the mesh and
15 milliseconds outputting the triangle strips.

Turning off the priority recomputation deferral increases the time
calculating the queue priorities to about 43 milliseconds resulting in
a total frame time of 68 milliseconds. Turning off incremental strip-
ping further increases the frame time to 140 milliseconds. Finally,
turning off incremental split/merge optimization increases the time
to 210 milliseconds.

On a single R10000 processor Silicon Graphics Onyx with an
Infinite Reality graphics board, performance improves so that 6000
triangles can be rendered at 30 frames per second. The subjective
quality of the terrain geometry is very good. In a high-speed terrain-
following scenario over rough terrain with 3000 terrain triangles in
the mesh, silhouettes appear realistically complex and stable and
there are virtually no popping artifacts. In a similar flight over less
rough but still mountainous terrain 1500 triangles suffice to elim-
inate perceptible popping. Since the system is capable of produc-
ing meshes with 6000 triangles or more at 30 frames per second,
ROAM appears to completely eliminate perceptible popping arti-
facts for even the most stringent flight regimes.

To understand this qualitative assessment better, we measured
“pop” sizes and average number of splits and merges for the same
high-speed, low-altitude loop over very rough terrain. A histogram
of pop sizes in pixels (for a1000�1000 image with 3000 triangles
per frame), is shown in Figure 8. On average, only 43.2 splits and
merges are performed per frame. In other words, less than 3% of the
triangles change, and these few, scattered pops almost all measure
under 1.5mm on a typical 21 inch workstation monitor.

0 1 2 3 4 5 6 7 8 9 10

Figure 8: Histogram showing relative number of pops versus pop
size (in pixels) totaled over the full test flight.

1Specifically, we use the USGS 1-degree DEM data (90 meter post spac-
ing) for Northern New Mexico. We test on a circular flight 300 meters above
the Jemez mountains, with trajectory smoothing, and camera facing in the
direction of flight.



8.1 Line-of-site Example

An example of LOS visibility correction is shown in Figure 9. In
this example, 8 triangles were “stolen” from the surrounding ter-
rain to provide the correct occlusion along the line of site to the
centermost box.

Figure 9: Left side is before LOS correction, right is after.

9 CONCLUSION

We have presented ROAM, an algorithm for optimizing triangula-
tions given view-dependent error metrics. The method has been im-
plemented and provides high-quality triangulations with thousands
of triangles at high frame rates. A novel dual-queue incremen-
tal optimization process was combined with fast, localized prepro-
cessing and several runtime performance enhancements, including
incremental view-frustum culling, incremental stripping, priority-
computation deferral and progressive optimization.

Critical future issues include management of geometry- and
texture-loading from disk, and optimization of texture-block LOD.
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