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Abstract
This paper discusses the problem of subdividing unstructured
mesh topologies containing hexahedra, prisms, pyramids and
tetrahedra into a consistent set of only tetrahedra, while
preserving the overall mesh topology. Efficient algorithms for
volume rendering, iso-contouring and particle advection exist for
mesh topologies comprised solely of tetrahedra. General finite-
element simulations however, consist mainly of hexahedra, and
possibly prisms, pyramids and tetrahedra. Arbitrary subdivision
of these mesh topologies into tetrahedra can lead to discontinuous
behavior across element faces. This will show up as visible
artifacts in the iso-contouring and volume rendering algorithms,
and lead to impossible face adjacency graphs for many
algorithms. We present here, various properties of tetrahedral
subdivisions, and an algorithm for determining a consistent
subdivision containing a minimal set of tetrahedra.

Keywords: tetrahedralization, mesh subdivision, volume
rendering, flow visualization, isosurfaces, metrics, irregular
grids.

1. Introduction
A tetrahedron is the most basic of solid primitives. It has several
attractive features for visualization. It is convex. It is defined by
four vertices, which can usually be specified in an independent
order. A function sampled at these four vertices leads to a unique
linear function throughout the tetrahedra. This is a very useful
property for interpolation and reconstruction. For these reasons,
many author’s have developed visualization algorithms for
tetrahedral meshes. Shirley and Tuchman [Shirley90], describe an
efficient algorithm for volume rendering tetrahedra in their
Projected Tetrahedra algorithm. Kenwright and Lane
[Kenwright96] describe a technique for efficient particle tracing
through tetrahedral meshes. They split the curvilinear cells in their
CFD data into five tetrahedra on the fly using an odd/even scheme
on the computational coordinates. Yagel, et. al. [Yagel96]
describe a volume rendering technique that calculates slices
through a finite-element mesh consisting of strictly tetrahedra.
Several additional authors describe algorithms that work only on
tetrahedral meshes (e.g., [Cignoni96], [Knight96]). Many
simulations however, use mesh topologies consisting of primarily
hexahedra, with occasional prisms, pyramids and tetrahedra.

The problem of subdividing a finite-element mesh into tetrahedra
is currently unknown. An inconsistent subdivision will have the
adjacent face of two primitives split differently for each primitive.
This inconsistency emanates as a discontinuity in the underlying

data field when using tri-linear interpolation (or many other
interpolation schemes). This discontinuity is readily visible when
taking an iso-contour of the data, as illustrated in Figures 1 and 2.
In Figure 1, a regular mesh is subdivided by splitting each voxel
into five tetrahedra randomly. Several holes and shading artifacts
are clearly visible. Figure 2, shows the same data set with a
consistent subdivision. Similar artifacts or numerical instabilities
occur using other visualization techniques. An efficient and robust
algorithm for subdividing irregular meshes into tetrahedra is
needed in order to allow us to use these visualization algorithms.

We will first discuss similar work in Section 2. Section 3 of this
paper will present our labeling scheme for discussing subdivisions
and present the possible set of subdivisions (without adding points
or edges) for a hexahedron. This is perhaps the heart of the paper,
and several interesting observations will be presented. Section 4
will discuss the possible subdivisions of pyramids and prisms.
Section 5 will then show some characterization experiments we
performed to determine what constraints we could impose on a
subdivision. Section 6, gives an overview of a simple greedy
algorithm we developed for consistently subdividing meshes into
tetrahedra. Section 7 presents results on both test data and some
real data sets. Finally, we conclude with some future research
directions in Section 8.

2. Previous Work
Calculating a 3D tetrahedralization from scattered data points is a
well know problem, and the 3D extension to the Delauney
triangulation algorithm [Preparata85] is the most prevalent
solution. This technique can be applied to unstructured meshes, by
simply throwing out the mesh topology. Not only does this
destroy the local topology of the mesh, but also ignores the
boundary of the original mesh, leading to representations of data
outside of the normal problem domain. What is needed is a
technique that can produce a consistent tetrahedralization while
preserving the original mesh. This implies that no edges or data
points can be removed, but only added. Furthermore, any points
added need to be within the original volume. Techniques to
constrain the Delauney triangulation do exist, but these are
usually only applied at the boundary.

Several authors describe how to decompose a uniform or
curvilinear mesh into tetrahedra [Garrity90], [Max90],
[Shirley90], [Kenwright96]. Here, each voxel or hexahedra is
subdivided into five tetrahedra. An alternating pattern of two
subdivisions is used to ensure consistency. Max [Max92] employs
a subdivision of six tetrahedra per curvilinear cell for a global
climate simulation to handle non-planar faces in the data. In their



flow volumes paper [Max93], they also describe a technique for
generating a complex unstructured mesh with prisms, such that
the prisms can be consistently subdivided into tetrahedra. For
curvilinear data sets, care must be taken when the mesh folds back
upon itself. Here, a simple alternating scheme fails at the merged
seam when the periodic length of the cells is odd. As can be seen

in Section 3, this can easily be fixed by using a subdivision into
six tetrahedra at the seam. For finite-element meshes, with
arbitrary topologies, a robust algorithm is needed that can
consistently subdivide the mesh into tetrahedra.

If we are only interested in consistency, then a subdivision of a
hexahedron into 24 tetrahedra would ensure consistency. Here,
each face is split into four triangles about either the face centroid,
or the diagonal intersections, and each triangle is then connected
to the hexahedron’s centroid to construct tetrahedra. Since each
face produces four tetrahedra, and there are six faces, a total of 24
tetrahedra are produced. The draw back, of course, is that the
efficient algorithms we are trying to use have a cost proportional
to the total number of tetrahedra. Our goal therefore is to
construct a tetrahedralization that is consistent and has as few
tetrahedra as possible.

3. Possible Hexahedron Subdivisions
It is only possible to subdivide a hexahedron into either five or six
tetrahedra without adding additional data points. By adding the
hexahedron centroid as a data point, we can produce a subdivision
into 12 tetrahedra, where each face is still split by a single
diagonal. From here, we can progressively add face centroids,
splitting a face into four triangles to produce 14, 16, 18, 20, 22 or
24 tetrahedra. Ideally, we would like to be able to subdivide a
mesh using splittings into either five or six tetrahedra. This avoids
the large jump to 12, but more importantly, avoids the difficulties
in adding new data points to a mesh. This section will examine
possible splittings of a single hexahedron.

Consider a single face of a hexahedron. There are two possible
diagonals along which the face can be split into tetrahedra. We
can encode the diagonal direction in a one bit entity, with a zero
indicating the bottom-left to upper-right diagonal and a one
indicating the upper-left to lower-right diagonal. For a hexahedron
therefore, we have a six bit entity that can encode all of the
diagonal directions. Let’s order the bits (or faces) such that
opposing faces have adjacent bits, say {front | back | left | right |
bottom | top}. Figure 3 shows a hexahedron with eight numbered
vertices. Our bit assignment is thus:

Slice
Face 0 1

Bottom 1 to 6 2 to 5
Top 4 to 7 3 to 8
Left 1 to 8 4 to 5
Right 2 to 7 3 to 6
Front 1  to 3 2 to 4
Back 5 to 7 6 to 8

Table 1. Diagonal slice labeling

This table states that the “front” face has a zero bit for the
diagonal slice from node 1 to node 6 and a one bit for the diagonal
slice from node 2 to node 5. The other faces are similarly labeled.
This six-bit vector leads to 64 possible diagonal sets. Of these 64,
it can be shown (Table 2) that 46 can easily be subdivided into
either 5 or 6 tetrahedra. The remaining 18 configurations present
problems or are configurations we need to avoid. There are
exactly two possible configurations that lead to subdivisions into
five tetrahedra. These are labeled 010101 and 101010. The two
alternating bit patterns. The remaining 44 “good” configurations
can be subdivided into 6 tetrahedra (2 prisms each subdivided into
three tetrahedra).

Examining all 64 of these cases leads to some interesting insights.
All of the 18 “bad” cases can actually be converted to a “good”
case with a single bit change. In fact, eight of these can take a
single bit change in all but one face, and changing the bit of the
appropriate face will produce one of the five tetrahedra
configurations. Four other “bad” cases can take a bit change in
any of four faces to produce a “good” case, but require three bit
changes to produce one of the five tetrahedra configurations.
Finally, six of the “bad” cases will take a bit change in only two
of the faces, and require 2 bit changes to produce a five tetrahedra
configuration.

We can also classify the “bad” cases into two distinct classes.
Twelve of the cases actually produce two prisms that can be
subdivided. The problem arises on the interior face, where an
inconsistent diagonal is chosen for the two prisms. This is
annotated as “interior” in Table 2. The remaining 6 bad cases
have bit patterns such that opposite faces have diagonals in
opposite directions. Alternating directions would thus have a 2-bit
pattern of either 01 or 10 for each of the three sets of opposing
faces. This leads to 8 possible configurations where the opposing
faces have different diagonals. Two of these are the valid
subdivisions into 5 tetrahedra, and the remaining 6 are
undividable. These six require the 2 bit changes to produce a five
tetrahedra configuration.

4. Pyramids and Prisms
Of course, many finite-element meshes consist of other solid
primitives (and even non-solid primitives). An analysis of prisms
and pyramids was also conducted, and produced similar
promising results. Pyramids are especially easy to deal with. They
have a single quadrilateral face, which can be split about either
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Figure 3. Hexahedron numbering scheme.



diagonal to produce two tetrahedra. Thus, a pyramid abutted
against a hexahedron face, will not impose any additional
constraints on the system. Note, that the authors are assuming
triangular faces are not abutted against quadrilateral faces in any
real finite-element meshes.

As pointed out in Max, et. al. [Max93], a prism can be split into
three tetrahedra. There are three quadrilateral faces that need to be
split, bottom, left and right. If we choose diagonals, such that
none of the them share a common vertex, then an inconsistent
state exists, and a valid subdivision does not exist. A similar
scheme of subdividing about the prism centroid can be used for
bad configurations. This would produce eight tetrahedra, rather
than three, and again, leave us with the additional centroid point
to manage. Of the eight possible configurations, there are only
two bad cases where the diagonals do not touch. Note, that if two
diagonals touch, we have a tetrahedra containing the shared
vertex. Separating this from the prism, yields a pyramid which
can be split arbitrarily into two tetrahedra. Therefore, we can
constrain any two faces of a prism and pick the appropriate
diagonal for the remaining face. Since two out of eight possible
configurations (25%) are bad choices, prisms impose perhaps
more constraints on our system.

5. Constrained Subdivisions
Since a substantial number of cases can be subdivided into 5 or 6
tetrahedra, our next investigation was examining the effect that
flipping a diagonal on one of the bad cases would have on the
adjacent hexahedra. Our first question was whether given a 2x2x2
set of hexahedra, in which all of the 24 external faces had their
diagonals constrained, could a consistent subdivision always be
found. Amazingly, all 16 million possible external face
assignments led to consistent internal subdivisions. In fact, on
average each configuration could be subdivided in over 290

different sets of tetrahedra. The twelve unconstrained internal
faces gives us plenty of freedom in choosing a subdivision.
Further constraining the systems, we examined a 2x2x1 set of
hexahedra. Here, we have 16 external faces, over 65 thousand
possible diagonal assignments, and only 4 internal faces whose
diagonals can be selected for a possible tetrahedralization. Of
these possible configurations, only 1520 or 2.32% could not be
subdivided into 5 or 6 tetrahedra. Similarly, we also examined a
2x1x1 set of hexahedron, having only a single internal face. Of
the 1024 possible external diagonal settings, 110 or 12% led to
configurations that could not be consistently subdivided.

In a single hexahedra, if five faces are randomly assigned, for
only sixteen of the 192 cases (8.3%), it is impossible to choose the
diagonal direction on the remaining face, such that a good
configuration results. Additionally, for more than half (100 of
192) of the cases, either choice of the remaining diagonal leads to
a good subdivision.

6. A Simple Greedy Algorithm
Our initial idea was to mark each face to be split by the shortest
diagonal. This provides well shaped tetrahedra and ensures
consistency. We could then use this as a starting point to
determine a tetrahedralization, changing diagonal choices as
needed. A further refinement to this would be to associate weights
with each diagonal, such that those faces that are really skewed
would show a strong preference to be split by the shortest
diagonal. The preceding analysis illustrates that any 2x2x2 set of
hexahedra with exterior constraints can be consistently
subdivided, so if we employ a greedy algorithm to assign
subdivisions, we can always re-coupe in a relatively small area. In
other words, a configuration can not be produced, that can not be
corrected within a small localized area.

Our algorithm performs a depth first traversal of a finite-element
mesh, starting at a random element. A face adjacency graph is
needed to perform the traversal. As we march through the mesh,
we mark those zones that have already been processed. If we
reach a point where all of the current zone’s neighbors have
already been processed, we then take the next active cell on the
wait list. As we process a cell, we randomly choose a neighbor to
process next. Hence, we have a random walk through the mesh.
All other neighboring zones that have not been marked are put on
the wait list.

A problem arises if we encounter an area where a consistent
subdivision can not be achieved without adding centroids. We
have two possible solutions for handling this. In the first
alternative, we back up to the zone we just came from and try an
alternative configuration. In practice, this solves many of the
problems. Alternatively, we can pick a good subdivision for the
zone giving us difficulty and then try to fix any neighbors that are
subsequently in a bad configuration state. We choose to
implement the first approach.
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Figure 4. Simple Prism Labelling



Hexahedra List Encoding Works? Number of Tets Reason of failure Decimal Value
000000 yes 6 0
000001 yes 6 1
000010 yes 6 2
000011 yes 6 3
000100 yes 6 4
000101 yes 6 5
000110 no Interior 6
000111 yes 6 7
001000 yes 6 8
001001 no Interior 9
001010 yes 6 10
001011 yes 6 11
001100 yes 6 12
001101 yes 6 13
001110 yes 6 14
001111 yes 6 15
010000 yes 6 16
010001 no Interior 17
010010 yes 6 18
010011 yes 6 19
010100 no Interior 20
010101 yes 5 21
010110 no Undividable 22
010111 no Interior 23
011000 yes 6 24
011001 no Undividable 25
011010 no Undividable 26
011011 yes 6 27
011100 yes 6 28
011101 no Interior 29
011110 yes 6 30
011111 yes 6 31
100000 yes 6 32
100001 yes 6 33
100010 no Interior 34
100011 yes 6 35
100100 yes 6 36
100101 no Undividable 37
100110 no Undividable 38
100111 yes 6 39
101000 no Interior 40
101001 no Undividable 41
101010 yes 5 42
101011 no Interior 43
101100 yes 6 44
101101 yes 6 45
101110 no Interior 46
101111 yes 6 47
110000 yes 6 48
110001 yes 6 48
110010 yes 6 50
110011 yes 6 51
110100 yes 6 52
110101 yes 6 53
110110 no Interior 54
110111 yes 6 55
111000 yes 6 56
111001 no Interior 57
111010 yes 6 58
111011 yes 6 59
111100 yes 6 60
111101 yes 6 61
111110 yes 6 62
111111 yes 6 63

Table 2. Possible Hexahedron subdivisions



Given an arbitrary mesh, it is not clear if a valid subdivision is
possible without adding zone or face centroids. This is a problem
that the Computational Geometry community has not seemed to
address yet. Ruppert and Seidel [Ruppert92] shows that the
problem of subdividing a single concave polyhedra is NP-
complete. Our finite-element meshes are certainly concave, but
the individual elements are typically convex and of small
dimension. The minimal subdivision of an unstructured mesh is
still a future area of research. Since it is also unknown whether a
valid subdivision should exist, we avoid endless alterations by
stopping the subdivision process after several failed attempts.  We
handle the bad zone by splitting it about its zone centroid,
producing 12 tetrahedra in these rare cases.

Storing a valid subdivision of a large mesh would be prohibitively
expensive. Instead, we simply store with each zone the resulting
six-bit vector that dictates the needed splitting. This allows for the
use of algorithms optimized to handle hexahedra to work
efficiently, and those that require tetrahedra can quickly and
easily subdivide the hexahedra (or prisms and pyramids) into the
needed tetrahedra on the fly. The six-bit vector is actual stored as
a byte, leaving additional bits to flag zones that need to generate a
face centroid. This amounts to a fairly insignificant increase in
storage for most finite-element meshes.

7. Results
The real results of this research is more the analysis described in
Sections 3 through 5. We tested our algorithm first on regularly
gridded data so that we would have an optimal subdivision to
compare with. We generated regular grids with several aspect
ratios, randomly fixed an increasing number of diagonal slices in
order to impose some constraints, and then applied our algorithm.
Our algorithm always tries to use one of the subdivisions into five
tetrahedra first, before attempting any of the prism subdivisions.
With no constraints, we always produce the expected five
tetrahedra per cell. The average number of tetrahedra per
hexahedra over several runs with varying degrees of constraints
was 5.5 tetrahedra per cell. Therefore, half of the hexahedra were
split into five tetrahedra and half into six tetrahedra. This amounts
to a ten percent increase over the optimal solution without
constraints. We also never encountered a bad case that could not
be handled by backtracking one zone and trying alternative
configurations.

We applied the algorithm to several data sets, summarized in
Table 3. The shuttle data, is part of the IRIS Explorer distribution,
as is the blunt fin data. The blunt fin is actually a curvilinear grid,
so produces trivial results. We also applied it to some sample data
distributed with AVS (avs.inp, and box10.inp). The submarine
data is courtesy of Lawrence Livermore National Laboratory
(LLNL).  We are still searching for more complex mesh
topologies.

The table lists the number of hexahedra, the resulting number of
tetrahedra, and the time to build the adjacency graph. The time to
actually perform the subdivision was less than a second on all of
these data sets, once the adjacency graph was available. A
theoretical bound on the minimal number of tetrahedra is five per
hexahedra. Both the bluntfin and the box10 produce this
minimum, as expected.

Data set Hex's Tetras CPU time
Shuttle 644 3275 7 sec.
Avs.inp 690 3450 7 sec.
Post 13800 69000 365 sec.
Bluntfin 441 2205 4 sec.
Box10.inp 2744 13720 60 sec.

Table 3. Number of tetrahedra generated.

8. Future Work
There is still some work needed in the analysis of the subdivision
of a single hexahedron. Several possible symmetries can be
employed to reduce the total set of configurations. More
enumeration of which bits will turn good cases into bad cases, and
visa versa, would also aid in the development of more efficient
algorithms.

There are also several theoretical questions that have arisen as
part of this investigation. We have already mentioned the question
of whether a mesh is subdividable without additional data points.
The subdivision problem can be expressed in terms of graph
theory. If we start off with the initial adjacency graph of the mesh,
the goal then is to expand each node into either five or six new
nodes (for a hexahedron) and refine the connections. Other
questions are: Can a mesh be subdivided using strictly a five
tetrahedra split? What is the optimal (fewest tetrahedra) splitting
of a mesh? Hopefully, this research will stimulate interest in these
problems.

Finally, many improvements into the simple algorithm presented
here are possible. A genetic or simulated annealing algorithm may
be ideally suited for determining a (locally) optimal subdivision.
Processing the zones in larger blocks may avoid any bad zones
and backtracking. Our current algorithm also makes no use of the
kernels of insight uncovered in Section 3. More intelligent picking
up the splittings would leverage this information.
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