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Abstract

This paper presents a new approach for animating 2D steady flow
fields. It is based on an original data structure called the Motion
Map. The Motion Map contains not only a dense representationof
the flow field but also all the motion information required to animate
the flow. An important feature of this method is that it allows, in a
natural way, cyclical variable-speed animations. As far asefficiency
is concerned, the advantage of this method is that computingthe
Motion Map does not take more time than computing a single still
image of the flow and the Motion Map has to be computed only
once. Another advantage is that the memory requirements fora
cyclical animation of an arbitrary number of frames amountsto the
memory cost of a single still image.

1 Introduction

Effective visualization of flow fields is a difficult issue because
direction and velocity are difficult to render. Efficient methods
have been proposed to compute dense images of 2D flow fields
[11][1][7] but direction and velocity of the flow are difficult to
render in a still image and areas of high vorticity are generally not
adequately rendered. Animating the field helps to better understand
its topology, especially where the flow is highly turbulent.Velocity
variations within the flow could also be depicted by way of
animation.
Methods proposed to compute such an animation generally consist
in computing a cycle of frames which are then played in order to
produce the animation. Problems arise when perfectly cyclic and
variable-speed animations have to be computed. The drawbacks
of such methods rely both in the computation cost, since all
the images have to be computed separately, and in the memory
requirements which are related to the number of frames included
in the sequence (although animation compression techniques can
be used).
This paper presents a new approach for computing cyclical and
variable-speed animations of 2D steady flow fields. It is based
on an original data structure called the Motion Map. We show
that computing the Motion Map amounts to compute a single still
image of the flow field and that memory requirements to store an
animation of an arbitrary number of frames amounts to the memory
cost of a single still image.
The remainder of the paper is organized as follow. Section 2 is a
state of the art on related work. Section 3 gives an overview of our
method while section 4 explains how to include motion information
in the streamline representation. Section 5 describes the Motion
Map structure and how it is built and section 6 shows how the
computed animation sequence is played. Section 7 concludesthe
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2 Related Work

Max and Becker proposed a texture advection technique which
warps a texture alongside the flow [8]. A grid is embedded in the
field, each grid point beeing assigned a texture coordinate.The
motion effect is obtained by changing the texture coordinates from
a frame to the next. A fading up and down mechanism allows to
limit texture distortions.

A number of papers have been published on animating line
integral convolution (LIC) textures [1][2][3][10]. A LIC texture
is generated by convoluting an input texture with a streamline-
oriented one dimensional filter kernel. Each pixel of the final
texture is computed separately. To create cyclical animated
sequences of LIC textures, periodic filters have been used [4].
This method is suitable for constant-speed animation. Making the
frequency of the filter function varying could achieve variable-
speed animation, but the dynamic range of discernable speeds is
drastically limited. To solve this problem, Forsell has proposed to
modulate the rate of the function phase shift as a function ofthe
local vector magnitude [2][3]. A set of constant-speed LIC textures
is pre-computed at various phase shifts of the kernel. The final
intensity of a pixel in a given frame is computed by interpolating
pixel intensities between the two closest pre-computed frames (that
is the frames whose filter kernel phase values bound the valueof
the current frame). Detlev and Stalling noticed this approach does
not yield periodic sequences any more and that applying kernel
phases to neighboring pixels would lose any correlation [10],
introducing spatio-temporal aliasing effects. As a consequence, the
texture may appear to move in the opposite direction in some cases.
To avoid this, to achieve cyclical variable speed animationthey
only use frames where filter kernel phases are correlated. Then a
frame blending method is used to produce a periodic sequenceofN frames by composing a set of2N LIC textures.

Van Gelder and Wilhelms used the color table animation tech-
nique to animate 3D flow fields [5]. Particle paths are integrated
and drawn in 3D as tubes in which colored particles seem to move.
The tubes have a length equal to the integration step distance and
are compounded with a fixed number of segments (1, 3 or 12).
Within each of these segments the velocity is treated as constant
so that a linear interpolation of color indexes can be done. The
tubes are randomly “seeded” proportionally to the cells’ weight
and rendered as opaque using Z-buffer.

The method presented in the remaining sections allows creat-
ing 2D textures in a more natural way than LIC-based approaches.
Real-time animation is achieve by way of either color table anima-
tion or cyclical textures animation.



3 Algorithm Overview

The basic principle of our method consists in computing a dense
coverage of the image with a set of streamlines. But instead of
convoluting a white noise texture as it is usually performedwhen
computing a still image, streamlines are colored in such a way all
the motion information, in particular direction and magnitude of the
flow, is encoded within the streamlines, further allowing usto play
an effective animation of the flow. Our approach relies on an im-
portant property of steady flow fields: the topology and magnitude
distribution of the flow is constant over time. Thus the streamline
placement, once computed, remains valid for all frames. We ex-
ploit this property and propose a new concept and data structure
called theMotion Mapto store a cyclical variable-speed animation
of the flow field of an arbitrary number of frames. The method to
compute the Motion Map proceeds as follow. The first part of the
method consists in computing a dense coverage of the image by
a set of streamlines. The second part uses a method based on the
color table animation technique in order to color the streamlines and
thus adding the motion information to the Motion Map. Actually
both parts are executed subsequently each time a new streamline is
computed. Due to the random election of new starting points for
streamline integration (usually calledseed points), the algorithm
has to be stopped when a certain coverage percentage of the whole
image has been obtained. Remaining sections explain the different
part of the method.
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Figure 1: From vector field to output frame. A streamline is
integrated in the vector field, motion is added to it and then the
streamline is drawn in a Motion Map. To create the output texture
the Motion Map indexes are replaced with the associated colors.

4 Encoding Motion within the Stream-
lines Representation

The method uses the color table animation technique [9]. In this
technique, each pixel of the image is assigned an entry (alsocalled
an index) in the color table. If the color table entries are cyclically
shifted together, one place at a time, a motion effect appears on
the image. But a smooth animation requires each pixel to be well
correlated to the next. The main advantage if this techniqueis
that the image content has not to be updated while playing the
animation but only the color table, allowing real time display on
low performance graphic devices. Last, let us remark that, due
to the cyclical shift on the color table, the maximum number of
distinct frames in the animation sequence is given by the size
(number of entries) of the color table.
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Figure 2: Variable speed in the color table animation technique.

It is possible to define different speeds in the animation by
assigning consecutive pixels the same color table index. For
instance figure 2 shows a line of pixels and the associated
color table. Spans of identical pixels are longer on the right
of the line. When color table entries will be shifted to the
right, the flow will seem to speed up as it moves to the right. The
speed of the flow is proportional to the number of pixels in thespan.

The aim of our motion encoding algorithm is to compute such a
sequence of color table indexes as a function of the flow velocities
for each computed streamline. Each streamline is computed as a
serie of consecutive evenly spaced sample points (see section 5 for
details on the streamline computation method). Color tableentries
are assigned to the streamline sample points rather than to the pixels
covered by the streamline because an approximation occurs during
rasterization and therefore computing the motion before approxi-
mation will give more accurate results.

The formula used to compute color table indexes as a function
of the flow velocities is given by Equation 1:( SP0 = random(N)SPi = SPi�1 + k(kVPik)IndexPi = SPi mod N (1)

WhereN is the number of distinct colors in the color table (i.e.
the number of frames in the cyclical animation),Pi is the current
sample point,(SPi) is an increasing serie inIR+, k(kVPik) is the
instantaneous contribution of the velocity atPi andIndexPi is the
color table index. When processing a streamline we start by the
first sample point and then subsequent sample points are processed
in order.k(VPi) is a linear function that gives the increment value
of S when moving fromPi�1 to Pi as a function ofVPi . In order



to allow us to parameterize the visualization we introduce two new
variables:Lmin is the minimum number of sample points on which
a complete revolution of the color table could be mapped andR is
the ratio between the minimum and maximum speeds in the final
image.Lmin has been introduced in order to obtain a good correla-
tion between consecutive pixels and to avoid anti-aliasingartifacts.
Figure 3 illustrates the visual results obtained with different values
of Lmin with a constant speed vector field. We obtain the better
visual results with5 � Lmin � 14 image size. R has been intro-
duced in order to set the speed range in the final animation. Indeed
it could be interesting, in some cases, to increase (or decrease) the
speed range to better show the flow field properties. To obtainthe
actual velocity range (that is to keep the original proportion be-
tween the different velocities in the flow field), we just haveto setR = Vmin=Vmax. For instance to set the ratio between the max-
imum and minimum speed in the final image to 3, we just have to
setR = 1=3.
Sincek is a linear function of the velocity, we can write:k(v) = a� v + b

To determinea andb we used the limit conditions:� k(Vmin) = 1Lmink(Vmax) = R� k(Vmin)
Which yields:� a = R�1Lmin�(Vmax�Vmin)b = Vmax�R�VminLmin�(Vmax�Vmin)
Let us notice that for a constant speed animationR = 1 and thusa = 0 andb = 1Lmin .
With this method, all the sample points on a streamline (and

i.e. all pixels covered by the streamline) are strongly correlated
together. Figure 4 shows the large and continuous dynamic range
allowed with our index allocation method with a horizontal flow
of increasing speed. Figure 5 shows a frame of a variable speed
animation with its corresponding velocity map.

5 The Motion Map

Now we introduce the data structure which enables us to generate,
at low cost, the N frames cyclical animation of the flow. We call
Motion Mapa bidimensional array of the same size the final im-
age and in which streamlines will be drawn. The two next sections
explain the seed point selection and streamline computation algo-
rithms which are used to compute the Motion Map.

5.1 Seed Point Selection

Several seed point selection techniques have been proposed, espe-
cially for the computation of LIC images, such as selecting points in
the scanline order, dividing images into blocks or using Sobol quasi
random sequences [12]. We use the following algorithm. Eachtime
a new streamline has to be computed, a cell is randomly elected as a
new candidate for starting the future streamline. If the location is al-
ready covered by another streamline, we choose a direction (among
up, down, left and right) and the next cell in this direction become
the new candidate. If it is not free, the next cell in the same direc-
tion is tested and so on until either a free location is found or the
boundary of the Motion Map has been reached. In the second case,
a new cell is randomly elected and the selection process is executed
one more time. When a valid seed point has been found, its location
is no longer free and a global counter of the number of free cells in
the Motion Map is decreased.

Figure 3:Influence ofLmin. (top)Lmin = 50, (bottom)Lmin =10. Criteria for flow field textures evaluation differ depending on
whether still images or animated sequences are concerned. Thus
the top texture depicts more accurately the flow features in astill
image whereas the bottom texture is more suitable for animation.
Both images has been computed withR = 1, that is a constant
speed over the field.

Figure 4: Dynamic range. Animation of a horizontal shear flow.
In both images we set the ratio between maximum and minimum
speed to 25 (R = 1=25) andLmin to 20. Left: SP0 = 0, right:SP0 = random(N).



Figure 5: Variable Speed. Top image: frame of a variable speed
animation (R=6 andLmin = 5). Bottom image: magnitude distri-
bution, areas of low magnitude (dark) corresponds to small “waves”
in the top image.

5.2 Computing Streamlines and Filling the Motion
Map

In order to obtain a smooth animation, the consecutive sample
points within a streamline have to be evenly spaced. Many
integrators can produce such evenly spaced sequences of sample
points [10]. The constant distance between two consecutivesample
points is set to be equal to one or two pixel.
The streamline integration is stopped when it reaches an edge
of the Motion Map or a singularity of the flow (source or sink)
or becomes too close to another streamline. To validate thislast
stop condition, a simple and effective test consists to verify if
the current sample point hits a non-free cell in the Motion Map.
Best results has been obtained when we allow a streamline to hit
several non-free cells before stopping the integration process. As
a consequence, we obtain longer streamlines, which yields more
correlation between subsequent pixels.
Once a streamline is computed and motion added to it, as described
in section 4, the streamline is drawn as a polyline in the Motion
Map using Bresenham’s algorithm [6]. The “color” of each
segment is the index which was assigned to the first sample point
of each segment (see Figure 6).
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Figure 6: Drawing streamlines in a Motion Map.

As the Motion Map coverage increases, the number of free
cells covered by each new streamline tends to decrease, making
the convergence toward the complete filling of the Motion Map
slowing down (see Figure 7). Fortunately it is not really a problem
because the last free cells are randomly isolated over the map.
Furthermore, affecting an arbitrary index to those free cells can
just introduce spatio-temporal aliasing since they are notcorrelated
with their neighborhood. For these reason the algorithm terminates
when the number of free cells in the Motion Map falls under a
certain threshold. In fact, before the beginning of the method, all
the Motion Map is initialized with neutral value (-1 for instance)
corresponding to a non-animated index of the color table. We
allow generally between 3% and 5% of unset pixels in the final
image. Also we noticed a quicker convergence is reached when
the number of allowed hits of non-free cells during streamline
integration is greater (see Figure 7).

Another remark concerns the length of the streamlines which
tends to decrease as the coverage of the Motion Map increases.
In order to maintain a good correlation along each streamline, the
new streamlines are drawn “behind” previously computed ones.
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Figure 7: Convergence toward the complete filling of the motion
map. The four plots was obtained with different numbers of allowed
hits during streamline integration. These measures were made with
a 512�512 image and the algorithm was stopped at a coverage per-
centage of 95%.

6 Playing the Animation

Once we have built the Motion Map, we have to generate an ani-
mation. In the two next sections, we presents two ways to achieve
cyclical animation derived from our motion map. The first oneuses
the simple but effectivecolor table animation, the second exposes
how to obtain high qualitycyclical set of textures.

6.1 Color Table Animation

Color table animation of the flow field is a direct and effective
way to visualize the flow using the Motion Map. The extra work
required at this stage is to fill the color table.

As described in [5], in addition to the directional information we
can visualize a scalar quantity, such as a density or an energy. To do
it we divide the color table in several distinct sections, each section
beeing assigned a base hue and lighting within each section ranging
from dark to bright. To find the index of a given pixel, we apply
the same algorithm as explained earlier assuming the color table is
one section large and then we add an offset which is determined
by the value of the scalar variable at the same point. In this case
the colormap cannot be shifted globally but an independant shift
must be performed on each section. This is not a problem however,
it just involves a more general shifting algorithm which takes into
account the number of sections in the color table (1 if no additional
variable has to be visualized). With a standard color map of 256
colors, we can compute a 16-frames cyclical animation with 16
different possible values for the additional scalar field (using 16
levels of brightness, the brightness coding the motion).

The Motion Map can be saved together with the color table as
a GIF file for instance, thus enabling common viewers to display
a still image of the flow field. Assuming we have a viewer able to
cyclically shifting the color table indexes, the Motion Mapis the
more efficient way to store an animation of an arbitrary number of
frames since the size of the animation is equal to the size of astill
image.

6.2 Cyclical Set of Textures

The Motion Map can also be exploited to produce a cyclical set
of textures which could be used to make a movie or to be mapped
on complex objects. Cycle of textures is also more suitable than
color table animation for creating color animation withoutlimiting
the number of available colors. Now we explain how to deriveN
cyclical textures from the Motion Map and how to use the colorhue
to visualize an independent scalar variable.
LetM be the Motion Map, withM(x; y) = i; i 2 f0 : : : N � 1g
and letf(i) : f0;N � 1g �! [0; 1] be a discrete function which
associates an intensity to each index in the Motion Map. Thisfunc-
tion will give the shape of the wave which seems to move on the
streamline. LetC be a color map whereCr;g;b(x; y) = (r; g; b) is
the RGB color corresponding to the independent value at the loca-
tion (x; y) in the Motion Map. The colored texture is obtained by
multiplying colors with intensities:Tr;g;b(x; y) = � f(M(x; y)) � Cr;g;b(x; y) 8M(x; y) � 0Dr;g;b(x; y) 8M(x; y) < 0

Where D(x; y) is the default color function which gives a
RGB value for the locations where any steamline passed through
(generally,Dr;g;b = Cr;g;b).

TheN framesT 0; :::; TN�1 of the cyclical animation are ob-
tained by cyclically shifting the index values:T tr;g;b(x; y) =8<: f( (M(x; y) + t)mod N)�Cr;g;b(x; y) � t 2 f0; ::;N � 1g8M(x; y) � 0Dr;g;b(x; y) 8M(x; y) < 0

Let notice that the number of available colors to represent the
independent scalar value is not limited. Moreever we have noticed
that the motion effect keeps very effective, even if color frames are
reduced to black and white textures (black pixels for valuesbelow
a given threshold, white pixels for values above).

6.3 Discussion and Results

The advantages of the Motion Map for the generation of cyclical
animations are both quantitative and qualitative. Quantitatively, the
memory requirements to store the Motion Map are not greater than
for storing a still image of the flow (by comparison, LIC-based
animations require to store all frames separately). This means that,
instead of storing a still image of the flow, we are now able to
store an animation at no extra cost but increasing the information
contained in the data since direction and magnitude of the flow are
better rendered in an animated sequence. Concerning computation
requirements, Table 1 gives the computation times for two different
textures. These values have been obtained on a 150 MHz MIPS
R4400-32Mo based system. The algorithm terminated when a
coverage of 95% was reached. This table shows that this method
is not computationally expensive as compared to LIC-based
approaches where all frames have to be computed independently.
Qualitatively, the method achieves a good correlation between
consecutive pixels along a streamline, the last one beeing also
correlated with the first one. Since the method uses the same
streamlines for all frames, the frames are correlated together too.

Some animation examples and executable files can be found at
the address: http:www-lil.univ-littoral.fr/�jobard/MotionMap



Image Computation times
Fig 3: 512� 512 7 seconds
Fig 5: 900� 900 14 seconds

Table 1: Computation times needed to create a cyclical variable-
speed animation of an arbitrary number of frames.

7 Conclusion

We have presented a new approach for computing a cyclical and
variable-speed animation of a steady flow field. It is based onan
original data structure called theMotion Map. We showed that, both
qualitatively and quantitatively, our method gives good results, es-
pecially when compared to LIC-based approaches. When accessing
remote datasets through the net, the Motion Map could be down-
loaded at no additional cost as compared to a still image of the flow
and thus does not require higher bandwidth. Thus, as far as remote
access to steady flow fields is concerned, one can imagine to replace
usual still thumbnails included in HTML pages (or in certaindataset
file headers) by animated thumbnails which would be animatedby
a plugin or a helper able to shift the color table entries. Themain
drawback of our method is that it is limited to 2D steady flows and
future works will address the issues of animating unsteady flows
and 3D flows.
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