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Abstract

2 Related Work

This paper presents a new approach for animating 2D steady flo Max and Becker proposed a texture advection technique which

fields. It is based on an original data structure called théidvio
Map. The Motion Map contains not only a dense representation
the flow field but also all the motion information required toraate
the flow. An important feature of this method is that it allgisa
natural way, cyclical variable-speed animations. As fafisiency

is concerned, the advantage of this method is that comptitieg
Motion Map does not take more time than computing a single sti

warps a texture alongside the flow [8]. A grid is embedded & th
field, each grid point beeing assigned a texture coordinatee
motion effect is obtained by changing the texture coordisiditom

a frame to the next. A fading up and down mechanism allows to
limit texture distortions.

A number of papers have been published on animating line

image of the flow and the Motion Map has to be computed only integral convolution (LIC) textures [1][2][3][10]. A LICeixture

once. Another advantage is that the memory requirementa for

cyclical animation of an arbitrary number of frames amouothe
memory cost of a single still image.

1 Introduction

Effective visualization of flow fields is a difficult issue lmcse
direction and velocity are difficult to render. Efficient mets

is generated by convoluting an input texture with a streaenli
oriented one dimensional filter kernel. Each pixel of theIfina
texture is computed separately. To create cyclical anidhate
sequences of LIC textures, periodic filters have been usgd [4
This method is suitable for constant-speed animation. Makie
frequency of the filter function varying could achieve val&
speed animation, but the dynamic range of discernable speed
drastically limited. To solve this problem, Forsell haspgwsed to
modulate the rate of the function phase shift as a functiothef

have been proposed to compute dense images of 2D flow fieldslocal vector magnitude [2][3]. A set of constant-speed Letures

[12][1][7] but direction and velocity of the flow are diffiduto
render in a still image and areas of high vorticity are geheret
adequately rendered. Animating the field helps to betteerstdnd
its topology, especially where the flow is highly turbulevilocity

variations within the flow could also be depicted by way of

animation.

Methods proposed to compute such an animation generalbiston
in computing a cycle of frames which are then played in order t
produce the animation. Problems arise when perfectly cyuoid

is pre-computed at various phase shifts of the kernel. Tha fin
intensity of a pixel in a given frame is computed by interpioig
pixel intensities between the two closest pre-computaddsa(that
is the frames whose filter kernel phase values bound the wdlue
the current frame). Detlev and Stalling noticed this apphodoes
not yield periodic sequences any more and that applyingekern
phases to neighboring pixels would lose any correlation],[10
introducing spatio-temporal aliasing effects. As a consege, the
texture may appear to move in the opposite direction in sasex

variable-speed animations have to be computed. The dr&wbac 10 avoid this, to achieve cyclical variable speed animattogy

of such methods rely both in the computation cost, since all Only use frames where filter kernel phases are correlateen &h
the images have to be computed separately, and in the memorylrame blending method is used to produce a periodic sequeince
requirements which are related to the number of frames dieciu N frames by composing a set 2V LIC textures.

in the sequence (although animation compression techsigae i o

be used). Van Gelder and Wilhelms used the color table animation tech-

This paper presents a new approach for computing cyclicdl an Nique to animate 3D flow fields [5]. Particle paths are integta
variable-speed animations of 2D steady flow fields. It is Base and drawn in 3D as tubes in which colored particles seem t@mov

on an original data structure called the Motion Map. We show The tubes have a length equal to the integration step distand
that computing the Motion Map amounts to compute a single sti  a'¢ compounded with a fixed number of segments (1, 3 or 12).
image of the flow field and that memory requirements to store an Within each of these segments the velocity is treated ast@ons
animation of an arbitrary number of frames amounts to the amgm ~ S° that a linear interpolation of color indexes can be donke T
cost of a single still image. tubes are randomly “seede_d” proportionally to the cellsighe
The remainder of the paper is organized as follow. Sectimea i and rendered as opaque using Z-buffer.

state of the art on related work. Section 3 gives an overviesup ) o .

method while section 4 explains how to include motion infation ~ The method presented in the remaining sections allows-creat
in the streamline representation. Section 5 describes thiEoM ing 2D textures in a more natural way than LIC-based appesach
Map structure and how it is built and section 6 shows how the Real-time animation is achieve by way of either color taller-
computed animation sequence is played. Section 7 concthges  tion or cyclical textures animation.

paper.
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3 Algorithm Overview

The basic principle of our method consists in computing asden
coverage of the image with a set of streamlines. But instdéad o
convoluting a white noise texture as it is usually performedn
computing a still image, streamlines are colored in such aalla
the motion information, in particular direction and magdg of the
flow, is encoded within the streamlines, further allowingaplay

an effective animation of the flow. Our approach relies onran i
portant property of steady flow fields: the topology and miagtd
distribution of the flow is constant over time. Thus the stitae
placement, once computed, remains valid for all frames. ¥e e
ploit this property and propose a new concept and data steict
called theMotion Mapto store a cyclical variable-speed animation
of the flow field of an arbitrary number of frames. The method to
compute the Motion Map proceeds as follow. The first part ef th

method consists in computing a dense coverage of the image by o nises
a set of streamlines. The second part uses a method based on th" e

color table animation technique in order to color the stigas and
thus adding the motion information to the Motion Map. Actyal
both parts are executed subsequently each time a new sineasl
computed. Due to the random election of new starting poiotts f
streamline integration (usually callested pointgs the algorithm
has to be stopped when a certain coverage percentage of the wh
image has been obtained. Remaining sections explain tieeatit
part of the method.
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Figure 1: From vector field to output frame. A streamline is
integrated in the vector field, motion is added to it and then t
streamline is drawn in a Motion Map. To create the outputuiext
the Motion Map indexes are replaced with the associated<olo

4 Encoding Motion within the Stream-
lines Representation

The method uses the color table animation technique [9].hik t
technique, each pixel of the image is assigned an entry ¢aléed

an index) in the color table. If the color table entries arelically
shifted together, one place at a time, a motion effect agpear
the image. But a smooth animation requires each pixel to e we
correlated to the next. The main advantage if this technigue
that the image content has not to be updated while playing the
animation but only the color table, allowing real time daplon
low performance graphic devices. Last, let us remark tha¢ d
to the cyclical shift on the color table, the maximum numbg&r o
distinct frames in the animation sequence is given by the siz
(number of entries) of the color table.
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Figure 2: Variable speed in the color table animation tempimi

It is possible to define different speeds in the animation by
assigning consecutive pixels the same color table indexr Fo
instance figure 2 shows a line of pixels and the associated
color table. Spans of identical pixels are longer on thetrigh
of the line. When color table entries will be shifted to the
right, the flow will seem to speed up as it moves to the righte Th
speed of the flow is proportional to the number of pixels ingban.

The aim of our motion encoding algorithm is to compute such a
sequence of color table indexes as a function of the flow itedsc
for each computed streamline. Each streamline is computed a
serie of consecutive evenly spaced sample points (se@séctor
details on the streamline computation method). Color tehtees
are assigned to the streamline sample points rather thha tixels
covered by the streamline because an approximation ocaursyd
rasterization and therefore computing the motion beforeafi-
mation will give more accurate results.

The formula used to compute color table indexes as a function
of the flow velocities is given by Equation 1:

Sp; = Sp,_y +k([|VR]])
Indexp, = Sp; mod N

Sp, = random(N)
{ @)

WhereN is the number of distinct colors in the color table (i.e.
the number of frames in the cyclical animatio, is the current
sample point{Sp,) is an increasing serie iR™, k(||Vz,||) is the
instantaneous contribution of the velocityBtandIndez p, is the
color table index. When processing a streamline we starhby t
first sample point and then subsequent sample points aregzed
in order. k(Vp,) is a linear function that gives the increment value
of S when moving fromP;_; to P; as a function ofV’p,. In order



to allow us to parameterize the visualization we introdwee hew
variables:L, i, is the minimum number of sample points on which
a complete revolution of the color table could be mapped sl

the ratio between the minimum and maximum speeds in the final
imageL.,;, has been introduced in order to obtain a good correla-
tion between consecutive pixels and to avoid anti-aliasitifacts.
Figure 3 illustrates the visual results obtained with défe values

of L, with a constant speed vector field. We obtain the better
visual results withb < Lin < iimage-size. R has been intro-
duced in order to set the speed range in the final animaticleelh

it could be interesting, in some cases, to increase (or deejehe
speed range to better show the flow field properties. To olbi@in
actual velocity range (that is to keep the original promortbe-
tween the different velocities in the flow field), we just haveset

R = Vinin/Vma=. FOr instance to set the ratio between the max-
imum and minimum speed in the final image to 3, we just have to
setR =1/3.

Sincek is a linear function of the velocity, we can write:

k(v)=axv+b
To determinex andb we used the limit conditions:

{ k(Vmin) =T lv

min

k(Vinaz) = R X k(Vinin)
Which yields:

{ a= Lminx(‘}/{malmemin)
b= maz —RXVimin
Lmin X (Vmaz —Vmin)

Let us notice that for a constant speed animafios 1 and thus
a=0andb= L—

With this method, all the sample points on a streamline (and
i.e. all pixels covered by the streamline) are strongly elated
together. Figure 4 shows the large and continuous dynamgera
allowed with our index allocation method with a horizontaivil
of increasing speed. Figure 5 shows a frame of a variabledspee
animation with its corresponding velocity map.

Figure 3:Influence of Lmin. (t0P) Limin = 50, (bottom)Li», =
10. Criteria for flow field textures evaluation differ depenglian
5 The Motion Map whether still images or animated sequences are concerneas T
the top texture depicts more accurately the flow featuresstilla
Now we introduce the data structure which enables us to gemer  image whereas the bottom texture is more suitable for afomat
at low cost, the N frames cyclical animation of the flow. Wel cal Both images has been computed with= 1, that is a constant
Motion Map a bidimensional array of the same size the final im- speed over the field.
age and in which streamlines will be drawn. The two next sesti
explain the seed point selection and streamline computatigo-
rithms which are used to compute the Motion Map.

5.1 Seed Point Selection

Several seed point selection techniques have been propesset
cially for the computation of LIC images, such as selectiom{s in
the scanline order, dividing images into blocks or usingdbghiasi
random sequences [12]. We use the following algorithm. Eaoh
a new streamline has to be computed, a cell is randomly elesta
new candidate for starting the future streamline. If thatmn is al-
ready covered by another streamline, we choose a directioor{g
up, down, left and right) and the next cell in this directiccbme
the new candidate. If it is not free, the next cell in the sainecd

tion is tested and so on until either a free location is founthe Figure 4: Dynamic range. Animation of a horizontal shear flow.
boundary of the Motion Map has been reached. In the secord cas |y hoth images we set the ratio between maximum and minimum
a new cell is randomly elected and the selection procesesuésd speed to 25K = 1/25) and Lo, to 20. Left: Sp, = 0, right:

one more time. When a valid seed point has been found, itdéoca g, — ;-qndom(N). ’

is no longer free and a global counter of the number of frels ael 0

the Motion Map is decreased.




Figure 5: Variable Speed Top image: frame of a variable speed
animation (R=6 and..;» = 5). Bottom image: magnitude distri-
bution, areas of low magnitude (dark) corresponds to smail/es”

in the top image.

5.2 Computing Streamlines and Filling the Motion
Map

In order to obtain a smooth animation, the consecutive sampl
points within a streamline have to be evenly spaced. Many
integrators can produce such evenly spaced sequences pfesam
points [10]. The constant distance between two consecsidingle
points is set to be equal to one or two pixel.

The streamline integration is stopped when it reaches ae edg
of the Motion Map or a singularity of the flow (source or sink)
or becomes too close to another streamline. To validatelabts
stop condition, a simple and effective test consists tofyefi

the current sample point hits a non-free cell in the MotionpMa
Best results has been obtained when we allow a streamlini to h
several non-free cells before stopping the integratiogss. As

a consequence, we obtain longer streamlines, which yielo® m
correlation between subsequent pixels.

Once a streamline is computed and motion added to it, asidedcr

in section 4, the streamline is drawn as a polyline in the bfoti
Map using Bresenham’s algorithm [6]. The “color” of each
segment is the index which was assigned to the first sampie poi
of each segment (see Figure 6).
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Figure 6: Drawing streamlines in a Motion Map.

As the Motion Map coverage increases, the number of free
cells covered by each new streamline tends to decreasengnaki
the convergence toward the complete filling of the Motion Map
slowing down (see Figure 7). Fortunately it is not really aljpem
because the last free cells are randomly isolated over the ma
Furthermore, affecting an arbitrary index to those fredscehn
justintroduce spatio-temporal aliasing since they arecooelated
with their neighborhood. For these reason the algorithmiteates
when the number of free cells in the Motion Map falls under a
certain threshold. In fact, before the beginning of the oéthall
the Motion Map is initialized with neutral value (-1 for iastce)
corresponding to a non-animated index of the color table. We
allow generally between 3% and 5% of unset pixels in the final
image. Also we noticed a quicker convergence is reached when
the number of allowed hits of non-free cells during streamli
integration is greater (see Figure 7).

Another remark concerns the length of the streamlines which
tends to decrease as the coverage of the Motion Map incteases
In order to maintain a good correlation along each streamtime
new streamlines are drawn “behind” previously computedsone
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Figure 7: Convergence toward the complete filling of the proti
map. The four plots was obtained with different numbers lofxd

hits during streamline integration. These measures wede mih
a512x512 image and the algorithm was stopped at a coverage per-
centage of 95%.

6 Playing the Animation

Once we have built the Motion Map, we have to generate an ani-
mation. In the two next sections, we presents two ways tcesehi
cyclical animation derived from our motion map. The first oges

the simple but effectiveolor table animationthe second exposes
how to obtain high qualitgyclical set of textures

6.1 Color Table Animation

Color table animation of the flow field is a direct and effegtiv
way to visualize the flow using the Motion Map. The extra work
required at this stage is to fill the color table.

As described in [5], in addition to the directional inforriaat we
can visualize a scalar quantity, such as a density or anenesgio
it we divide the color table in several distinct sectiongtesection
beeing assigned a base hue and lighting within each seetiging
from dark to bright. To find the index of a given pixel, we apply
the same algorithm as explained earlier assuming the caibbe ts
one section large and then we add an offset which is detedmine
by the value of the scalar variable at the same point. In théec
the colormap cannot be shifted globally but an independaift s
must be performed on each section. This is not a problem rewev
it just involves a more general shifting algorithm whicheakinto
account the number of sections in the color table (1 if notaattil
variable has to be visualized). With a standard color map56f 2
colors, we can compute a 16-frames cyclical animation wiéh 1
different possible values for the additional scalar fieldiffg 16
levels of brightness, the brightness coding the motion).

The Motion Map can be saved together with the color table as
a GIF file for instance, thus enabling common viewers to digpl
a still image of the flow field. Assuming we have a viewer able to
cyclically shifting the color table indexes, the Motion Magpthe
more efficient way to store an animation of an arbitrary nunufe
frames since the size of the animation is equal to the sizestifia
image.

6.2 Cyclical Set of Textures

The Motion Map can also be exploited to produce a cyclical set
of textures which could be used to make a movie or to be mapped
on complex objects. Cycle of textures is also more suitdide t
color table animation for creating color animation withbatiting

the number of available colors. Now we explain how to detfWe
cyclical textures from the Motion Map and how to use the cbloe

to visualize an independent scalar variable.

Let M be the Motion Map, withV/ (z,y) = 4, € {0... N — 1}

and letf(i) : {0; N —1} — [0; 1] be a discrete function which
associates an intensity to each index in the Motion Map. flime-

tion will give the shape of the wave which seems to move on the
streamline. LeC be a color map wher€', ; ,(z,y) = (r, g,b) is

the RGB color corresponding to the independent value atoibe |
tion (z,y) in the Motion Map. The colored texture is obtained by
multiplying colors with intensities:

f(M(z,y)) * Crgp(x,y)
DTag,b(x7 y)

Tr,g,b(m, y) = {

Where D(z,y) is the default color function which gives a
RGB value for the locations where any steamline passed ghrou
(generally,D, g5 = Cr,g,0).

The N framesT?, ..., TV~ of the cyclical animation are ob-
tained by cyclically shifting the index values:

, f((M(z,y)+t)ymod N) | te{0;.;N—1}
Tr,g,b(x7y) = X Cr,g,b(m,y) VM(I,y) 2 0
Dr,g,b(xyy) VM(I,y) <0

Let notice that the number of available colors to represeat t
independent scalar value is not limited. Moreever we haviee
that the motion effect keeps very effective, even if colanfes are
reduced to black and white textures (black pixels for vahmslsw
a given threshold, white pixels for values above).

6.3 Discussion and Results

The advantages of the Motion Map for the generation of cgtlic
animations are both quantitative and qualitative. Quatitily, the
memory requirements to store the Motion Map are not grehger t

for storing a still image of the flow (by comparison, LIC-bdse
animations require to store all frames separately). Thiama¢hat,
instead of storing a still image of the flow, we are now able to
store an animation at no extra cost but increasing the irdtam
contained in the data since direction and magnitude of thedie
better rendered in an animated sequence. Concerning catigout
requirements, Table 1 gives the computation times for tifergint
textures. These values have been obtained on a 150 MHz MIPS
R4400-32Mo based system. The algorithm terminated when a
coverage of 95% was reached. This table shows that this ghetho
is not computationally expensive as compared to LIC-based
approaches where all frames have to be computed indepéndent
Qualitatively, the method achieves a good correlation betw
consecutive pixels along a streamline, the last one bedsm a
correlated with the first one. Since the method uses the same
streamlines for all frames, the frames are correlated begebo.

Some animation examples and executable files can be found at
the address: http:www-lil.univ-littoral.frfjobard/MotionMap



| Image | Computation times |
Fig 3: 512 x 512 7 seconds
Fig 5: 900 x 900 14 seconds

Table 1: Computation times needed to create a cyclical Maria
speed animation of an arbitrary number of frames.

7 Conclusion

We have presented a new approach for computing a cyclical and
variable-speed animation of a steady flow field. It is basedron
original data structure called tivdotion Map We showed that, both
qualitatively and quantitatively, our method gives goosltts, es-
pecially when compared to LIC-based approaches. Whensinges
remote datasets through the net, the Motion Map could be down
loaded at no additional cost as compared to a still imageeofithv

and thus does not require higher bandwidth. Thus, as famastee
access to steady flow fields is concerned, one can imaginplecee
usual still thumbnails included in HTML pages (or in certdataset
file headers) by animated thumbnails which would be animbyed

a plugin or a helper able to shift the color table entries. ffaén
drawback of our method is that it is limited to 2D steady flowd a
future works will address the issues of animating unsteaalysfl
and 3D flows.
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