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Abstract

Many high-performance isosurface extraction algorithms have
been proposed in the past several years as a result of intensive
research efforts. When applying these algorithms to large-scale
time-varying fields, the storage overhead incurred from storing the
search index often becomes overwhelming. This paper proposes
an algorithm for locating isosurface cells in time-varying fields.
We devise a new data structure, called Temporal Hierarchical
Index Tree, which utilizes the temporal coherence that exists in
a time-varying field and adaptively coalesces the cells’ extreme
values over time; the resulting extreme values are then used to
create the isosurface cell search index. For a typical time-varying
scalar data set, not only does this temporal hierarchical index
tree require much less storage space, but also the amount of /O
required to access the indices from the disk at different time steps
is substantially reduced. We illustrate the utility and speed of
our algorithm with data from several :arge-scale time-varying
CFD simulations. Our algorithm can achieve more than 80% of
disk-space savings when compared with the existing techniques,
while the isosurface extraction time is nearly optimal.

Keywords: scalar fleld visualization, volume visualization, isosur-
face extraction, time-varying fields, marching cubes, span space.

1 Introduction

An isosurface represents regions that have a constant value in a
three-dimensional scalar field. Displaying isosurfaces is a useful
technique for analyzing scalar data due 1o its effectiveness in re-
vealing the spatial structures of the field’s value distribution. To
compute the isosurface, Lorensen and Cline [1] proposed a March-
ing Cubes algorithm which exiracts small polygon patches from
individual cells in the field. The Marching, Cubes algorithm is sim-
ple and robust. However, the process of linear search for isosurface
cells can be expensive. To improve the performance, researchers
have proposed various schemes that can sccelerate the search pro-
cess. Examples include Wilhelm and Van Gelder’s Octrees[2], Liv-
nat et al. ’s NOISE method[3], Shen e ai. 's ISSUE algorithm[4],
Itoh and Koyamada’s Extrema Graph method [5, 6], Bajaj ef al.
’s Fast Isocontouring method [7, 8], and Cignoni ez al. ’s Interval
Tree[9] algorithm.

Inevitably, these acceleration algorithms incur overhead for stor-
ing extra search indices. For a steady scalar field, i.e., only a single
time step of data is present, this extra space is often affordable,
and the highly interactive speed of extracting isosurfaces can com-
pensate for the overhead. However, for time-varying simulations,
a typical solution can contain a large number of time steps, and
every simulation step can produce a great amount of data. The
overall storage requirement for the search index structures can be
overwhelming. Furthermore, when analy~ing a time-varying scalar
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field, a user may want to explore the data back and forth in time,
with the same or different isovalues. This will require a significant
amount of disk /O for accessing the indices for data at different
time steps when there is not enough memory space for the entire
time sequence. As a result, the performance gain from the efficient
isosurface extraction algorithm could be offset by the O overhead.

This paper presents an efficient isosurface extraction algorithm
for time -varying scalar fields. The main focus is to devise a new
search index structure for a time-varying field so that the storage
overhead is kept small, while the performance of the isosurface
extraction is still high. In addition, our algorithm allows flexible
control of the tradeoff between performance and storage space and,
thus, can be used for data with different characteristics in different
computing environments. To achieve these goals, we characterize
each cell in the field based on its extreme values and the variation
of the extreme values over time. Consider a cell that has a high
temporal coherence and, thus, a small scalar variation over several
time steps. Such a cell, in a period of several time steps, may be ref-
erenced by a single index entry based on that cell’s overall extreme
values in time. On the other hand, for a cell that has little coherence
and, thus, a high scalar variation, the cell is indexed individually at
every time step by its corresponding extreme values. Qur algorithm
creates an isosurface cell search index for the time-varying field,
called Temporal Hierarchical Index Tree. Cells that have a small
amount of variation over time are placed in a single node of the tree
that covers the entire time span. Cells with a larger variation are
placed in multiple nodes of the tree multiple times, each for a short
time span. When generating an isosurface, a simple traversal will
retrieve the set of nodes that contains all of the cell index entries
needed for a given time step. The cells are organized at each node
using a data structure that was developed for generating isosurfaces
from a steady data set. For a typical time-varying scalar field, not
only does this temporal hierarchical index tree require much less
storage space, but also the amount of VO required to access the in-
dices at different time steps from the secondary storage is greatly
reduced.

We begin this paper by giving an overview of the isosurface ex-
traction problem and some existing techniques. We then present
our algorithm on building the temporal hierarchical index tree and
the isosurface extraction method for time-varying fields. Finally,
we present experimental results to demonstrate the effectiveness of
our algorithm and provide concluding remarks and future research
plans.

2 Background and Related Work

Given an isovalue, cells that have minimum value lower, and max-
imum value higher, than the isovalue are intersected by the isosur-
face. We call these cells isosurface cells. To expedite the isosurface
cell search process, researchers have proposed various techniques
for creating search indices by partitioning the cells based on their
spatial and/or value information. An example of the space-pattition
methods is Wilhelm and Van Gelder’s octrees algorithm {2}, which



i.e., the minimum and maximum values, of cells within each ocal
cluster. The octrees algorithm is primarily for structured grid data.
The efficiency of the method is reported to e O(k4-log(n/k)) [3].
where k is the number of isosurface cells, :nd n is the total number
of cells.

There are many value-partition methods proposed in the past
years [10, 11, 12, 3, 4, 9]. Among thos¢ methods, Livnat et al.
[3} proposed span space, a two-dimensional space where every cell
in the field is represented by a point. The point’s z coordinate repre-
sents the corresponding cell’s minimum va:ue, and the y coondinate
represents the cell’s maximum value. Liviat ez al. use a Kd-Tree,
and subsequently Shen et al. [4] use a lattice subdivision, to sub-
divide the cells in span space based on their value ranges. Cignoni
et al. [9] proposed the use of an interval /ree as the search index,
which has an optimal efficiency of O(log(n)). Recently, Chiang
and Silva [13] proposed I/O optimal techniques to build the interval
tree on disk, and the access of the interval tree is driven by demand.
Chiang, Silva, and Schroeder also expanded the I/O-optimal tech-
niques for out-of-core isosurface extraction [14].

In addition to the space- and value-partition methods, Itoh ez al.
[5, 6] and Bajaj ef al. [7, 8] proposed algorithms using a surface
propagation scheme. In their methods, 2 smail set of seed cells
is first extracted; and isosurfaces of any given isovalue can then
be computed by propagating surfaces from certain seeds through
adjacencies. Bajaj ef al. ’s algorithm is atle to create only a small
number of seeds and has an optimal efficiency of O(log(n)).

The acceleration algorithms described above inevitably incur
overhead for storing extra search indices. For instance, the BON
octrees proposed in [2] increase the original data by 16%, which
is the ratio of the number of tree nodes to the original data points.
This overhead does not yet include the rainimum and maximum
scalar values associated with cach node - necessary information
for isosurface extraction. In addition, the leaf node in the BON oc-
trees is a cluster of eight cells, i.e., individual cells are not indexed.
The value-partition methods index down to individual cells so that
higher interactivity can be provided. However, each cell index en-
try needs to store the cell’s minimum and maximum values and the
cell identification. As a result, the total space required for the in-
dex can be larger than the size of the original data. Bajaj e al. ’s
method creates seed sets that incur the least amount of space over-
head. However, for unstructured grid dati, the required adjacency.
information is often not available and, thus, the space overhead can
be comparable to, or even higher than, the value-partition methods
if the adjacencies need to be computed an stored.

To our knowledge, to date there is no isosurface extraction algo-
rithm that is optimized for time-varying data. Although it is pos-
sible to extend the octrees to the fourth dimension, i.e., time, it
can only be used for structured grid data. In addition, the four-
dimensional ’octrees’ couple together the temporal and the spa-
tial dimensions, which makes cell partitioning awkward because
the underlying data may have very diffcrent resolutions in time
and space. Furthermore, treating temporai and spatial domains as
equals impedes the utilization of the temporal coherence existing in
the data. In the following, we propose an optimization algorithm
for isosurface extraction in time-varying fields. The value-partition
paradigm is used because of its interactivity and its equal effec-
tiveness for both structured and unstructured grid data. We assume
that the time-varying field has a steady grid, or has a grid that is
transformed, but not redefined, over time. Our goal is to reduce
the overall size of the search index for data in a time-varying field,
while still providing high-performance isosurface extraction.

3 |sosurface Extraction from Time-

varying Fields

Given a time interval [1, j] and a time-vagying field, we define a
cell’s rtemporal extreme values, that is, the extreme values over time,
in this interval as:

min} = MIN(min),t = i..j
mazr] = MAX(mazx),t = i..j

where MIN and MAX are the functions that compute the mini-
mum am! the maximum values, and min, and maz. are the cell’s
extreme values at the £2* time step; we call them the cell’s fime-
specific extreme values. To locate the isosurface cells in the time-
varying field, one can approximate a cell’s extreme values at any
time step within the time span {3, j] by the cell’s temporal extreme
values, rnin] and max?}, and use them to create a single search in-
dex. Using this approximated search index, an isosurface at a time
stept,t € [4, §], can be computed by first finding the cells that have
min! smaller and maz] larger than the isovalue. The actual scalar
data of these cells at the specific time ¢ are then used to compute the
geometry of the isosurface. Using the approximated search index
can greatly reduce the storage space required since only one index
is used for all the j — 4 + 1 time steps. It also guarantees to find all
the isosurface cells because:

if t € [4, j] and min: < Viso and maz: > Viso
== min] < Vi, and maz] > Viso

where V., is the isovalue and ¢ is the time step at which the query
is issued.

The algorithm just described can be inefficient because the tem-
poral extreme values only provide a necessary but not a sufficient
condition to qualify a cell as an isosurface cell. As a result, many
non-isosurface cells are visited as well. In the following, we pro-
pose an adaptive scheme that enables high performance isosurface
extraction, while it also reduces the storage overhead incurred by
the search index for isosurface extraction in time-varying fields. We
devise a new search index structure, called Temporal Hierarchical
Index Tree. This tree is built by classifying the cells according to
the amount of variation in the cell’s values over time. Cells that
have a small amount of variation are placed in a single node of the
tree that covers the entire time span. Cells with a larger variation
are placed in multiple nodes of the tree multiple times, each fora
short time span. When generating an isosurface, a simple traver-
sal will retrieve the set of nodes that contains ali ceil index entries
needed for a given time step. The cells in each node can be or-
ganized using existing algorithms developed for generating isosur-
faces from a steady data set. It is noteworthy that a similar concept
independently developed by Finkelstein ef al. [15] on building a hi-
erarchical representation of multiresolution video has been recently
brought to our attention. The paper proposes a "Time Tree’ which
is a binary tree of sparse quadtrees. Each node in the time tree cor-
responds to a single frame at some temporal resolution. The tree
can grow to different depths for different regions of the frame to
support a video sequence with different temporal resolutions.

3.1 Temporal Hierarchical Index Tree

In this scction, the temporal hierarchical index tree data structure is
described. We first discuss how to characterize a cell by the tem-
poral variation of its extreme values. We then present the tree con-
struction algorithm using the 1esults of cell characterization.

The span space [3] is useful for analyzing the temporal variation
of a cell’s extreme values. In the span space, each cell is repre-
sented by a point whose z coordinate represents its minimum value



]
max /
/ ——
min

Figure 1: In this example, the span space is subdivided into 9 x 9
lattice elements. Each lattice element is «ssigned an integer coor-
dinate based on its row and column number. The shaded lattice
element in this figure has a coordinate (2, 1).
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Figure 2: Cells in a time-varying field arc classified into a tempo-
ral hierarchical index tree based on the ternporal variations of their
extreme values. In this figure, the tree is built from a time-varying
field with a time interval [0,5].

and whose y coordinate represcnts it maximum value. For a time-
varying field, a cell has multiple correspending points in the span
space, and each point represents the cell’s extreme values at one
time step. To characterize a cell’s scalar variation over time, the
area over which the corresponding points spread in the span space
provides a good measure — the wider these points spread, the higher
is the cell’s temporal variation. This variation can be quantified by
using the latrice subdivision scheme of the span space [4], which
subdivides the span space into L x L non-uniformly spaced rect-
angles, called lattice elements. To perfor. the subdivision, we first
sort, in ascending order, all the distinct extreme values of the cells
in the time-varying field within the given time interval and estab-
lish a list. We then find L + 1 scalar values, {do,d,...,dr}, in
the list that can evenly separate the list into L sublists with an equal
length. These L + 1 scalar values are used to draw L + 1 vertical
lines and L + 1 horizontal lines to subdivide the span space. The
list d; is chosen in this way to ensure that cclls can be more evenly
distributed among the lattice elements. Fig. 1 is an example of the
lattice subdivision.

Using the lattice subdivision, we proposc a binary tree data struc-
ture, called Temporal Hierarchical Index Tree, to classify the cells
in a time-varying field based on the temperal variations of their ex-
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Figure 3: In this example, tree nodes that are inside the rectangular
boxes are on the traversal path for an isosurface query at time step
1.

treme values. Given a time interval [4, j] in the time-varying field,
the root node in the temporal hierarchical index tree, denoted as
N}, contains cells that have low scalar variations in the time in-
terval [¢, j]. We determine that a cell has a low temporal variation
by inspecting the locations of the cell’s § — 4 + 1 corresponding
points in the span space. If all of the cell’s corresponding points
are located within an area of 2 x 2 lattice elements, we characterize
the cell as a cell of low temporal variation. This cell is then placed
into the node N}, and is represented by its temporal extreme values

min] and mazl. On the other hand, for cells that do not satisfy
the criterion, we split the time interval [¢, 5] in half, that is, into
[5,i+ (j—i+1)/2—1]and [i + (j — 3 + 1)/2, j], and continue
to classify the cells recursively into each of N} ’s two subtrees that

have roots IV, FOT#+D/271 ang Nf;‘_(j_i+1)/2. The temporal hier-

archical tree has leaf nodes Nf,t = i..j. The leaf nodes contain
cells that have the highest scalar variations in time so that the cells’
time-specific extreme values are used. Cells that are classified into
non-leaf nodes are represented by their temporal extreme values.
The use of the temporal extreme values directly contributes to the
reducticn of the overall index size because the temporal extreme
values are used to refer to a cell for more than one time step. Fig. 2
shows an example of the temporal hierarchical index tree with a
time interval [0, 5].

To facilitate an efficient scarch for isosurface cells, a scarch in-
dex for zach node of the temporal hierarchical tree is created. This
can be done by using any existing isosurface extraction algorithm
based on the value-partition paradigm. Here we propose to use a
modified ISSUE algorithm [4] which can provide optimal perfor-
mance. For every node V] in the temporal hierarchical index tree,
cells contained in the node are represented by their extreme values
(min?, max?). To create the search index, we use the lattice sub-
division described previously and sort cells that belong to the lattice
elements of each row, excluding the lattice element at the diagonal
line, into a list based on the cells’ representative minimum values
in ascending order. Another list in each row is created by sorting
the cells’ representative maximum values in descending order. For
those lattice elements at the diagonal line, the interval tree method
[9] is used to create one interval tree for cach element.

3.2 lIsosurface Extraction

Given the temporal hicrarchical index tree, this section describes
the algorithm that is used to locate the isosurface cells at run time.
We first describe a simple traversal method to retrieve the sets of
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Figure 4. In this case, lattice element {4,4) contains the point
(Viiso, Viso). Isosurface cells are located in the shaded area.

nodes that contain all cell index entries needed for a given time
step. We than describe the isosurface cell search algorithm used for
the lattice search index built in each node.

Given an isosurface query at time step £, we compute the iso-
surface by first locating the nodes in the trce that may contain the
isosurface cells. This is done by recursively traversing from the root
node IV} to one of its two child nodes, M osuchthata < t < b
until the leaf node N} is reached. Along the traversal path, we
perform the isosurface cell search, using a method that will be de-
scribed next, at each encountered node. The tree is constructed so
that every cell in the field exists in one of the nodes in the traversal
path. These cells have their representative 2xtreme values, temporal
or time-specific, as the approximation of their actual extreme values
at time step ¢. Fig. 3 shows an example of the traversal path.

At every node along the traversal path, the lattice search index
built at the node is used to locate the candidate isosurface cells.
Given an isovalue V;s,, we first locate the lattice element with inte-
ger coordinates [/, I] that contains the point {Viso, Viso) in the span
space. The isosurface cells are then located in the upper left comer
that is defined by the vertical line £ = V;., and the horizontal line
y = Viso as shown in Fig. 4. The candidate isosurface cells can be
collected from the following three categories:

o 1. For every list in the row R, R == I + 1..L — 1 that was
sorted by the cells” minimum values. we collect the cells from
the beginning of the list until the first cell is reached which
has a representative minimum value that is greater than the
isovalue.

e 2. Forthe listin row [ that was sortec. by the maximum values,
we collect the cells from the beginning of the list until the cell
is reached which has a representative maximum value that is
smaller than the isovalue.

e 3. Collect the isosurface cells from the interval tree built at
lattice element [, I]. The method and its details are presented
in {9].

After the candidate isosurface cells are 'ocated, we then use the
cells’ actual data at time step ¢ to perform triangulation.

Our algorithm has optimal performance since the isosurface cells
in categories 1 and 2 arc collected withou: the need for any search.
‘The number of cells in category 3 is usually small. Furthermore, the
interval tree method has an optimal efficiency of O(logN), where
N is the number of cells in the field.
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Figure 5: At every tree node, the non-isosurface cells being unnec-
essarily visited are confined within the two rows and two columns
of the lattice elements as shown in the shaded area. Increasing the
resolution of the lattice subdivision can reduce the number of cells
in this area, for the price of a larger temporal hierarchical index tree.

As mentioned previously, a candidate isosurface cell may not be
an isosurface cell after all. These non-isosurface cells come from
non-leaf nodes in our temporal hierarchical index tree since a cell’s
time-specific extreme values, min; and maz:, may not contain the
given isovalue even though the approximated extreme values, i.e.,
the temporal extreme values min? and max?}, do contain the iso-
value. Although this problem will not cause a wrong isosurface
to be generated, since the triangulation routine will detect the case
and create no triangles from these cells, it does incur performance
overhead. Actually, this performance overhead is an expected con-
sequence of using temporal extreme values as the approximated
extreme values for cells, where we trade performance for storage
space.

In fact, the performance overhead is bound by the resolution of
the lattice subdivision in the span space. In our algorithm, we place
a cell into the node N} in the temporal hierarchical index tree in
such a way that its representing points at different time steps within
time interval [¢, j] always reside within an area of 2 x 2 lattice ele-
ments in the span space. Therefore, for any node V] in the tree, the
worst case for the number of the non-isosurface cells being visited
is estimated as the number of cells in the twe rows and two coiumns
of the lattice elements at the boundary layers of the laitice elements
that are searched for the candidate isosurface cells, as shown in the
shaded area in Fig. 5. Therefore, the user-specified parameter L,
in an L x L lattice subdivision becomes a control parameter that is
used to determine the tradeoff factor between the storage space and
the isosurface extraction time.

3.3 Node Fetching and Replacement

Ideally, if the entire temporal hierarchical index tree resides in main
memory, there is no I/O required when the user randomly queries
for isosurfaces at different time steps. However, the memory re-
quirement is usually too high to make this practical. In our algo-
rithny, the temporal hicrarchical tree can be output to a file. When
an isosurface at a time step is queried, our algorithm foliows the
traversal path as described previously and brings those nodes into
main memory. Initially, all nodes on the traversal path need to be
read in. Subsequently, if the user queries for an isosurface at a dif-
ferent time step, our algorithm traverses the search tree and brings
in only thosc nodes that are not already in main memory. In fact,



Figure 6: In this case, if the user changes the isosurface query from
time step 1 to time step 2, only the node N7 needs to be brought in
from the disk.

Data Set F-18 Delta Wing Post
# of cells 1,662,290 658,944 123,039
# of nodes 1,764,711 686,147 131,072
Grid size 28.23 8.23 1.57
Solution size 7.05 2.74 0.53

Table 1: Density fields in three CFD simulation data sets were used
in our experiments. Information listed herc is for one time step, and
the file sizes are in megabytes.

because the non-leaf nodes contain cell incex entries that are shared
by several time steps, they are very likely o be in memory already.
In this case, only the differential nodes, a small portion of the index
tree, need to be read in from the disk. As a result, the amount of
/O required for a subsequent isosurface query can be considerably
smaller. Fig. 6 gives an example.

Although it is always desirable to retain as many nodes in mem-
ory as possible in case that the user needs to go back and forth in
time when querying the isosurfaces, those nodes that are not in use
have to be replaced when the memory limitation is exceeded. To
determine which node needs to be replaced, we develop a node re-
placement policy that assigns a priority to ¢very node, based on its
depth in the trec. The smaller the depth of a node is, the higher is its
priority. For example, the root of a tree has a depth of zero therefore
it has the highest priority. The reason is that the root node contains
search index entries to those cells that have the lowest temporal
variations, and, thus, these index entries are used by many time
steps. When a node has to be replaced, we select the node that has
the lowest priority. If there are more nodes than one with the same
priority, we remove the one that is the leat recently used (LRU).

4 Results and Discussion

In this section, we present experimental ressults of isosurface extrac-
tion for time-varying scalar fields using the temporal hierarchical
index tree. Three curvilinear gridded tinic-varying data sets gen-
erated from computational fluid dynamics (CFD) simulations were
used [16, 17, 18], as shown in Table 1. The time and storage space
measurements shown in the following for the Delta Wing and the
Post data sets were performed on an SGI Onyx2 workstation with
an R10000 microprocessor and 512 megabytes of memory. For the
1218 data set, the measurements were performed on an SGI Onyx2
RealityMonster with an R 10000 micropro-cssor and four gigabytes

Data Set F-18 Delta Wing Post
AT 100 1 10
Sequence 1 10000-11900 750-769 12000-12190
Sequence 2 12000-13900 770-789 12200-12390
Sequence 3 14000-15900 790-809 12400-12590
Index Size (one time step)
ISSUE 26.73 10.68 2.10
Interval Tree 26.61 10.55 1.97
Index Size (twenty time steps)

ISSUE 534.6 213.6 42
Interval Tree 532.2 211 39.4

Table 2: The time sequences in the test data sets and the storage
space (in megabytes) required for creating the search indices for
one time step and for twenty time steps of data using the ISSUE
and the [nterval Tree algorithms.

F-18
[ attice Resolution | 10 x 10 | 40 x 40 | 80 x 80
Sequence 1 316 56.1 82.5
5.9% 10.5% 15.4%
Sequence 2 329 67.2 102.5
6.2% 12.6% 19.2%
Sequence 3 304 53.4 79.3
L 5.7% 10% 14.8%

Table 3: The sizes (in megabytes) of the temporal hierarchical index
trees for the F- 18 data set using three different lattice resolutions.

of memory. We studied the characteristics of our algorithm and
comparcd these characteristics with the regular Marching Cubes al-
gorithm, the Interval Tree algorithm, and the ISSUE algorithm. All
of these algorithms were implemented by the author.

In our tests, each temporal hierarchical index tree was built using
twenty time steps of data. We performed our experiments at three
different time sequences in each of the test data sets, as shown in
Table 2: and we denote these sequences as Sequence 1, Sequence
2, and Sequence 3. To understand the storage overhead incurred
by the existing value-partition techniques, the Interval Tree and the
ISSUE algorithms were used to create search indices for data at
every time step. Table 2 shows the sizes of search indices for one
time step and the sizes of the search indices for twenty time steps.
It is not a surprise that the size of the search index for one time step
is much larger than the solution data itself because the cell search
index nceds to store each cell’s minimum, maximum values, and the
cell’s identification.! For a time-varying field such as the F-18 data
set, more than 500 megabytes of storage were required to index 20
time steps of data. This overhead is rather overwhelming.

Three different resolutions of lattice subdivisions were used in
our experiments to build temporal hierarchical index trees. A coarse
resolution of lattice structure indicates that more cells are charac-
terized as having low temporal variations. As a result, the temporal
hierarchical index tree will have a smaller size since more cells in
the time -varying field are placed into the non-leaf nodes in the tree.
The tracleoff is that the search index tree that results from a coarse
lattice subdivision will be relatively less efficient in extracting iso-

Un our experiments, we intentionally chose not to cluster multiple cells
to form meta cells for building the index as in [2, 14], or use the nice chess-
board approach as suggested in [9], so we can more casily study the behavior
of the underlying algorithms. However, these techniques can be equally well
applied to all the methods, including our new algorithm, discussed in this
section.



Delta Wing
Lattice Resolution | 10 x 10 | 40 x 40 | 80 x 80
Sequence | 14.4 36.2 58.4
6.7% 16.9% 27.3%
Sequefite 2 143 355 56.9
6.8% 16.6% 26.6%
Sequence 3 14.6 37.1 59.4
6.8% 17.3% 27.8%

Table 4: The sizes (in megabytes) of the temporal hierarchical index
trees for the Delta Wing data set.

Post
Tattice Resolution | 10 x 10 | 40 x 40 | 80 x 80
Sequence | 11.9 18.5 23.1
28.3% 44% 55%
Sequence 2 4.8 12.7 18.9
11.4% 30.2% 45%
Sequence 3 49 12.9 19.1
11.7% 30.7% 45.5%

Table 5: The sizes (in megabytes) of the temporal hierarchical index
trees for the Post data set.

surfaces. Table 3 shows the sizes of the teinporal hierarchical index
trees built for the F-18 data set. The percentages shown in the table
are the ratios of the tree sizes to the overall space required by the IS-
SUE algorithm, in a period of twenty time steps, as listed in Table 2.
The test results from the three different time sequences consistently
showed that the storage overhead was sign:ficantly reduced, namely
from more than 500 megabytes to about 30 megabytes in the 10x 10
lattice, and to about 100 megabytes in the 80 x 80 lattice; the disk
space savings amount to more than 80%. Table 4 and Table 5 list
the results for the Delta Wing and the Post data sets. The Post
data set has a higher scalar variation in time. However, even with
a high resolution of lattice subdivision we still had about 50% sav-
ing in storage; for the smaller resolutions of lattice subdivision, we
achieved about 75% — 90% space savings.

Table 6 shows the performance of isosurface extraction using the
temporal hierarchical index tree for the F- I8 data set. We also show
the performarce of the regular Marching Cubes algorithm (denoted
as MCs), the Interval Tree method (denoted as Int. Tree), and the
ISSUE algorithm. We chose two representative isovalues at each
of the three representative time steps. Among the techniques, the
Interval Tree and the ISSUE algorithms have optimal performance,
which can save about 80% — 95% isosurface extraction time com-
pared with the regular Marching Cubes ai gorithm. Using the tem-
poral hierarchical index tree, it can be seen that when a high res-
olution lattice such as the 80 x 80 subdivision was used, the per-
formance of isosurface extractions was very close to the optimal
performance gained from using the Interval Tree or the ISSUE algo-
rithms, while only about 20% of the storage space used by the Inter-
val Trec or the ISSUE algorithm was needed for storing the tempo-
ral hierarchical index tree. For the low resolution lattice such as the
10 x 10 subdivision, although the perforrnance was slightly lower,
it was still significantly faster than the regular Marching Cubes al-
gorithm. Considering that less than 10% of space was required to
store the search index compared with a full set of ISSUE or Interval
Tree indices, this tradeoff can be very beneficial for certain applica-
tions. Table 7 and Table 8 show the resulis for the Delta Wing and
the Post data sets, which had very similar characteristics. Table 9
shows the number of non-isosurface cells that were visited with lat-
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Figure 7: The time (in milliseconds) for restoring tree nodes from
the disk when the user sequentially queries the isosurface in time.
The F-138 data set was used.

tice subdivisions of different resolutions. The percentage numbers
are the ratios to the total number of cells in the field. It can be seen
that even with a low resolution subdivision such as 10 x 10, the
overhead is fairly small.

In our algorithm, the nodes in the temporal hierarchical index
tree are read into main memory only when necessary. In the case
when a user roams a time-varying data set back and forth in time,
many non-leaf nodes containing search indices that are shared by
consecutive time steps can be retained in memory. As a result, only
nodes that are specific to the time step for the current isosurface
query need to be brought into main memory and placed into the
tree. This can result in a substantially smaller amount of I/O. Fig. 7
shows our experimental results. In our tests, we used the F-18 data
set and queried the isosurfaces for a fixed isovalue of 0.99 from
time step 10000 to 11900 in ascending order. As shown in the
figure, at the first time step, no node in the traversal path was in
main memory, so a higher amount of I/O was required. However,
in the subsequent time steps, only the nodes that are not resident
in main memory needed to be brought in. The amount of time for
fetching the nodes shown in the figure is proportional to the number
of nodes specific to each time step.

Finally, the color plate shows images of isosurfaces extracted
from the test data sets.

5 Conclusions and Future Work

We have presented a new isosurface extraction algorithm for time-
varying scalar fields. In the algorithm, we characterize the cells
in the field based on their extreme values and the extreme values’
variations over time. For a cell that has a low temporal variation,
its extreme values at consecutive time steps are coalesced, and the
overall cxtreme values are used to refer to a cell at many time steps.
We adaptively compute the representative extreme values for every
cell in the time-varying field and place the cells into a search struc-
ture called Temporal Hierarchical Index Tree. This index tree can
efficiently locate isosurface cells in a time-varying field, while the
size of the tree for a series of time steps is substantially smaller than
the spacc required by the search indices of the existing isosurface
extraction algotithms. Our algorithm allows flexible control of the
tradeoff between performance and storage space and, thus, can be
used for data with different characteristics in different computing
environments. We have tested our algorithm using threc large-scale
time-varying data sets from CFD simulations. The space savings



can amount to more than 80%, while the isosurface extraction per-
formance remains nearly optimal. In addition, using the temporal
hierarchical index tree, the amount of /O for accessing the search
indices at different time steps can be great:y reduced.

Future work includes devising an out-of -core algorithm for creat-
ing and accessing the temporal hierarchical index tree. The method
we described in section 3.3 is a coarse ont-of-core model since a
whole node is fetched into main memory at a time. In fact, it is also
desirable to devise a finer grind out-of-corc algorithm for accessing
the temporal hierarchical index tree so that only the subset of the
nodes’ lattice needed for the current isovalue is brought into main
memory at a time. In addition, we would like to investigate a com-
bination of the space- and value-partition ulgorithms. Furthermore,
developing time-varying methods for surfuce-propagation schemes
is also an interesting research subject.
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F-18
Time Step 11000 13000 15000

Isovalue 0.99 0.93 0.99 0.93 0.9 0.93
# of Triangles | 272,163 | 80,970 | 257,394 | 71,689 | 257,644 | 73,730
Ms 22.43 21.61 22.38 21.58 22.38 21.59

Int. Tiee 423 1.21 4.0 1.08 4.0 1.11
ISSUE 4.18 1.18 3.96 1.05 3.96 1.09
Temporal Hierarchical Index Tree
10 x 10 5.63 1.50 547 1.51 5.3 1.28
40 x 40 4.76 1.42 4.53 1.33 4.46 1.21
80 x 30 4.49 1.34 4.27 1.22 4.25 1.18

Table 6: The performance of isosurface extraction (in seconds) for the F- 18 data set.

Delta Wing
Time Step 760 780 800

Isovalue 0.96 0.89 0.96 0.89 0.96 0.89
# of Triangles | 50,962 | 17,288 | 52,728 | 16,760 | 47,842 | 17,990

MCs 7.86 1.72 7.87 772 7.85 773

Int. Tree 0.63 0.21 0.65 0.20 0.59 0.22

ISSUE 0.61 0.20 0.63 0.19 0.57 0.21
Temporal Hierarchical Index Tree
10 < 10 1.39 0.35 0.14 0.36 0.13 0.36
40 < 40 0.82 0.27 0.84 0.28 0.75 0.30
80 < 80 0.70 0.25 0.73 0.25 0.66 0.27

Table 7: The performance of isosurface extraction (in seconds) for the Delta Wing data set.

Post
Time Step 12100 12300 12500

Isovalue 1.00 0.98 1.00 0.98 1.00 0.98
# of Triangles | 18,932 | 11,168 | 20,476 | 11,430 | 20,158 | 11,064

MCs 1.52 1.48 1.52 1.48 1.52 1.48

Int. Tree 0.22 0.13 0.24 0.13 0.23 0.13

ISSUE | 0.22 0.12 0.24 0.13 0.23 0.12
Temporal Hierarchical Index Tree
10 :< 10 0.26 0.16 0.39 0.20 0.39 0.20
40 < 40 0.25 0.14 0.29 0.16 0.27 0.15
80 < 80 0.24 0.14 0.26 0.14 0.26 0.14

Table 8: The performance of isosurface extraction (in seconds) for the Post data set.

Lattice Resolution 10 x 10 40 x 40 80 x 80
F-1¢ Time Step 13000

Isovalue 0.99 0.93 0.99 093 0.99 093

Non-isocell Visited | 62,551 | 20,193 | 22,972 | 12,031 | 11,973 | 7,186

Percentage 3.7% 1.2% 1.4% 0.7% 0.7% | 0.4%

Delta Wing Time Step 780

Isovalue 0.96 0.89 0.96 0.89 0.96 0.89

Non-isocell Visited | 48,261 | 9,738 | 11,289 | 4,586 | 4,531 | 2918

Percentage 7.3% 1.5% 1.7% 0.7% 0.7% | 0.4%
Post Time Step 12300

Isovalue 1.00 0.98 1.00 0.98 1.00 0.98

Non-isocell Visited | 10,062 | 4,266 | 3,138 1,429 1,558 595

Percentage 8.2% 3.5% 2.6% 1.2% 1.3% | 0.5%

Table 9: Number of non- sosurface cells that were visited with lattice subdivisions of different resolutions.



