
Isosurface Extraction in Time-varying Fields

Using a Temporal Hierarchical Index Tree

Hml-Wei Shen*

MRJ Technology Solutions / NASA Ames Research Center

Abstract

Many high-performance isosufface extraction algorithms have

been proposed in the past several years as a result of intensive
research efforts. When applying these algorithms to large-scale

time-varying fields, the storage overhead incurred from storing the
search index often becomes overwhelming. This paper proposes

an algorithm for locating isosufface cells in time-varying fields.
We devise a new data structure, called Temporal tlierarchical

Index Tree, which utilizes the temporal coherence that exists in

a time-varyIng field and adaptively coalesces the cells' extreme

values over time; the resulting extreme values are then used to
create the isosufface cell search index. For a typical time-varying

scalar data set, not only does this tem_)ml hierarchical index

tree require much less storage space, but also the amount of I/O

requited to access the indices from the disk at different time steps

is substantially reduced. We illustrate the utility and speed of

our algorithm with data from several !arge-scale time-varying
CFD simulations. Our algorithm can achieve more than 80% of

disk-space savings when conlpared with the existing techniques,
while the isosufface extraction time is nearly optimal.

Keywords: scalar field visualization, volume visualization, isosur-

face extraction, time-varying fields, marching cubes, span space.

1 Introduction

An isosufface represents regions that ha m a constant value in a

throe-dimensional scalar field. Displaying isosuffaces is a useful

technique for analyzing scalar data due to its effectiveness in re-

vealing the spatial structures of the field's value distribution. To

compute the isosufface, Lorensen and Clhlc [1] proposed a March-

ing Cubes algorithm which extracts snmll polygon patches from
individual cells in the field. The Marching (hbes algorithm is sim-

ple and robust. However, the process of linear search for isosurface
cells can be expensive. To improve the tzefformanee, researchers

have proposed various schemes that can accelerate the search pro-

cess. Examples include Wilhehn and Van Gelder's Octrees[2], Liv-
nat et al. 's NOISE method[3], Shen et a_. 's ISSUE algorithm[4],

Itoh and Koyamada's Extrema Graph melhed [5, 6], Bajaj et al.
's Fast Isocontouring method [7, 8], and Cignoni et al. 's Interval

Tree[9] algorithm.

Inevitably, these acceleration algorithms incur overhead for stor-

ing extra search indices. For a steady seal _r field, i.e., only a single

time step of data is present, this extra space is often affordable,

and the highly interactive speed of extracling isosuffaces can com-

pensate for the overhead. Ilowever, for lime-varying simulations,
a typical solution can contain a large nt tuber of time steps, and

every simulation step can produce a great amount of data. "['hc

overall storage requirement for the search index structures can be

overwhelming. Furthemlore, when ,analyzing a time-varying scalar

"NASA Ames Research Center, Mail Stop T27A-2, Moffett Field, CA

94035 (hwshen@ nas.nasa.gov)

field, a user may want to explore the data back and forth in time,
with the same or different isovalues. This will require a significant

amount of disk I/O for accessing the indices for data at different

time steps when there is not enough memory space for the entire

time sequence. As a result, the performance gain from the efficient
isosurfax-e extraction algorithm could be offset by the I/O overhead.

This ffaper presents an efficient isosufface extraction algorithm

for time-varying scalar fields. The main focus is to devise a new
search index structure for a time-varying field so that the storage

overhead is kept small, while the performance of the isosurface
extraction is still high. In addition, our algorithm allows flexible

control of the tradeoff between performance and storage space and,

thus, cml be used for data with different characteristics in different

computing environments. To achieve these goals, we characterize
each cell in the field based on its extreme values and the variation

of the extreme values over time. Consider a cell that has a high

temporal coherence and, thus, a small scalar variation over several

time steps. Such a cell, in a period of several time steps, may be ref-

erenced by a single Index entry based on that cell's overall extreme
values in time. On the other hand, for a cell that has little coherence

and, thus, a high scalar variation, the cell is indexed individually at

every time step by its corresponding extreme values. Our algorithm
creates _m isosurface cell search index for the time-varying field,

called lemporal Hierarchical bMex Tree. Cells that have a small
amount of variation over time are placed in a single node of the tree

that covers the entire time span. Cells with a larger variation are

placed in multiple nodes of the tree multiple times, each for a short

time span. When generating an isosurface, a simple traversal will
retrieve the set of nodes that contains all of the cell index entries

needed for a given time step. The cells are organized at each node

using a data structure that was developed for generating isosurfaces

from a steady data set. For a typical time-varying scalar field, not

only does this temporal hierarchical index tree require much less

storage _pace, but also the amount of I/O required to access the in-
dices at different time steps from the secondary storage is greatly

reduced.

We begin this paper by giving an overview of the isosurface ex-

traction problem and some existing techniques. We then present

our algorithm on building the temporal hierarchical index tree and
the isosufface extraction method for time-varying fields. Finally,

we present experimental results to demonstrate the effectiveness of

our algorithm and provide concluding remarks and future research

plans.

2 Background and Related Work

Given an isovalue, cells that have mininmm value lower, and max-

imum value higher, than the isovalue al_e intersected by the isosur-
face. We call these cells isosufface cells. "lb expedite the isosurface

cell search process, researchers have proix)sed various techniques

for creating search indices by partitioning the cells based on their

spatial and/or value information. An example of the space-partition
methods is Wilhelm and Van Gelder's octrees algorithm [21, which

partitions the data hierarchically and coalesces the extreme values,

i.e.,theminimumandmaximumvalues,ofcellswithineachlocal
cluster,qlaeoctreesalgorithmisprimarilyforstructuredgriddata.
TheefficiencyofthemethodisreportedtobeO(k+ log(n/k)) [31,
where k is the number of isosurface cells, _nd _ is the total number

of cells.

There are many value-partition methods proposed in the past

years [10, 11, 12, 3, 4, 9]. Among thos(methods, Livnat et al.

[3] proposed span space, a two-dimensional space where every cell

in the field is represented by a point. The point's z coordinate repre-

sents the corresponding cell's minimum va ue, and the y coordinate

represents the cell's maximum value. Livnat et al. use a Kd-Tree,

and subsequently Shen et al. [4] use a lattice subdivision, to sub-

divide the cells in span space based on their value ranges. Cignoni

et al. [91 proposed the use of an interval .'ree as the search index,

which has an optimal efficiency of O(log(n)). Recently, Chiang

and Silva [13] proposed I/O optimal techniques to build the interval
tree on disk, and the access of the interval tree is driven by demand.

Chiang, Silva, and Schroeder also expanded the I/O-optimal tech-

niques for out-of-core isosufface extraction [14].

In addition to the space- and value-partition methods, Itoh et al.

[5, 61 and Bajaj et al. [7, 8] proposed algorithms using a surface

propagation scheme. In their methods, a small set of seed cells
is first extracted; and isosurfaces of any given isovalue can then

be computed by propagating surfaces from certain seeds through

adjacencies. Bajaj et al. 's algorithm is al'le to create only a small
number of seeds and has an optimal efficiency of O(log(n)).

The acceleration algorithms described above inevitably incur
overhead for storing extra search indices. For instance, the BON

octrees proposed in [2] increase the original data by 16%, which
is the ratio of the number of tree nodes to the original data points.

This overhead does not yet include the lninimum and maximum
scalar values associated with each node - necessary information

for isosurface extraction. In addition, the leaf node in the BON oc-

trees is a cluster of eight ceils, i.e., individaal cells are not indexed.

The value-partition methods index down to individual cells so that

higher interactivity can be provided. However, each cell index en-
try needs to store the cell's minimum and maximum values and the
cell identification. As a result, the total s pace required for the in-

dex can be larger than the size of the original data. Bajaj et al. 's
method creates seed sets that incur the least amount of space over-

head. However, for unstructured grid data, the required .adjacency
information is often not available and, thu_;, the space overhead can

be comparable to, or even higher than, the value-partition methods

if the adjacencies need to be computed and stored.

To our knowledge, to date there is no isosurface extraction algo-
rithm that is optimized for time-varying data. Although it is pos-
sible to extend the octrees to the fourth dimension, i.e., time, it

can only be used for structured grid data. In addition, the four-
dimensional 'octrees' couple together the temporal and the spa-
tial dimensions, which makes cell partitioning awkward because

the underlying data may have very different resolutions in time
and space. Furthermore, treating tempond and spatial domains as

equals impedes the utilization of the temI_ral coherence existing in

the data. In the following, we propose ma optimization algorithm
for isosurface extraction in time-varying l_elds. The value-partition

paradigm is used because of its interactivity and its equal effec-
tiveness for both structured and unstructured grid data. We assunle
that the time-varying field has a steady _',rid, or has a grid that is
transformed, but not tvedefined, over time. Our goal is to reduce
the overall size of the search index for data in a time-varying field,

while still providing high-performance isosuffacc extraction.

3 Isosurface Extraction from Time-

varying Fields

Given a time interval [i, j] and a time-yawing field, we define a

cell's temporal extreme values, that is, the extreme values over time,
in this interval as:

min_ = M1N(mint), t = i..j

mazJi = MAX(maxt), t = i..j

where MIN and MAX are the functions that compute the mini-

mum and the maximum values, and mint and maxt are the cell's

extreme values at the t th time step; we call them the cell's time-

specific extreme values. To locate the iso_urface cells in the time-

varying field, one can approximate a cell's extreme values at any

time step within the time span [i, j] by the cell's temporal extreme

values, min_ and maz_, and use them to create a single search in-

dex. Using this approximated search index, an isosurface at a time

step t, t E [i, j], can be computed by first finding the cells that have

min_ smaller and maacj larger than the isovalue. The actual scalar
data of these ceils at the specific time t are then used to compute the

geometry of the isosurface. Using the approximated search index

can greatly reduce the storage space required since only one index

is used for all the j -- i + 1 time steps. It also guarantees to find all
the isosurface cells because:

if t E [i,j] and mint < Vi,o and maxt > V_o

min_ < V,o and maz_ > V,,o

where V,.,o is the isovalue and t is the time step at which the query

is issued.

The algorithm just described can be inefficient because the tem-

poral extreme values only provide a necessary but not a sufficient

condition to qualify a cell as an isosurface cell. As a result, many
non-isosurface cells are visited as well. In the following, we pro-

pose an adaptive scheme that enables high performance isosurface
extraction, while it also reduces the storage overhead incurred by

the search index for isosurface extraction in time-varying fields. We
devise a new search index structure, called Temporal Hierarchical

Index Tree. This tree is built by classifying the cells according to
the amount of variation in the cell's values over time. Cells that

have a small amount of variation are placed in a single node of the

tree tha! covers the entire time span. Cells with a larger variation

are placed in multiple nodes of the tree multiple times, each for a

short time span. When generating an isosufface, a _imple traver-
sal will retrieve the set of nodes that contains all ceil index entries

needed for a given time step. The cells in each node can be or-

ganized using existing algorithms developed for generating isosur-
faces from a steady data set. It is noteworthy that a similar concept

independently developed by Finkelstein et al. [15] on building a hi-
erarchical representation of multiresolution video has been recently

brought to our attention. The paper proposes a 'Time Tree' which
is a binary tree of sparse quadtrees. Each node in the time tree cor-

responds to a single frame at some temporal resolution. The tree

can grow to different depths for different regions of the frame to

support a video sequence with different temporal resolutions.

3.1 Temporal Hierarchical Index Tree

In this section, the temporal hierarchical index tree data structure is

described. We first discuss how to characterize a cell by the tem-

poral wwiation of its extreme values. We then present the tree con-

stmction algorithm using the lesults of cell characterization.

The span space [3] is useful for analyzing the temporal variation
of a cell's extreme values. In the span space, each cell is repre-

sented by a point whose x coordinate represents its minimum value

max

/

J

• °i

! i io

ol°i •!,
! ! io

......... [......... t....
J _ __L_J

1.1" If

.....I';7-"J-

i•

T'
i

-|--.
I

.-[--.
I

4--.

_[__.
I
1

i• i• _///

• -i ,

d

l

II.....................
I i

ITlin

Figure 1: In this example, the span space is subdivided into 9 x 9
lattice elements. Each lattice element is _ssigned an integer coor-

dinate based on its row and column number. The shaded lattice

element in this figure has a coordinate (2, 1).

5

No

/\
2

No N"

/\ /\,
5

o N_ 3 N 4

No / \ N3 / \

1 2 4 5

Nt N2 N4 N5

Figure 2: Cells in a time-varying field ar_: classified into a tempo-
ral hierarchical index tree based on the temporal variations of their

extreme values. In this figure, the tree is built from a time-varying

field with a time interval [0,5].

and whose y coordinate represents it maximum value. For a time-

varying field, a cell has multiple correspcnding points in the span

space, and each point l_epresents the cell's extreme values at one

time step. To characterize a cell's scalar variation over time, the

area over which the corresponding points spread in the span space

provides a good measure - the wider these points spread, the higher

is the cell's temporal variation. This variation can be quantified by

using the lattice subdivision scheme of rite span space [4], which
subdivides the span space into L x L noa-uniformly spaced rect-

angles, called lattice elements. To perform the subdivision, we first
sort, in ascending order, all the distinct extreme values of the cells

in the time-varying field within the given time interval and estab-

lish a list. We then find L + 1 scalar values, {do,d1, ...,alL}, in

the list that can evenly separate the list into L sublists with an equal

length. These L + 1 scalar values are used to draw L + 1 vertical
lines and L + 1 horizontal lines to subdivide the span space. The

list di is chosen in this way to ensure that cclls can be more evenly

distributed among the lattice elements. Fig. I is an example of the
lattice subdivision.

Using the lattice subdivision, we propose a binary tree data struc-

ture, called Temporal Hierarchical lmlex l'ree, to classify the cells

in a time-varying Iield based on the temixmd variations of their ex-

NO N:
-_ 2 4 5N2 N 4 N5

Figure 3: In this example, tree nodes that are inside the rectangular

boxes are on the traversal path for an isosurface query at time step
1.

treme v_dues. Given a time interval [i, j] in the time-varying field,

the root node in the temporal hierarchical index tree, denoted as

N_, contains cells that have low scalar variations in the time in-

terval [i, j]. We determine that a cell has a low temporal variation

by inspecting the locations of the cell's j - i + 1 corresponding

points hi the span space. If all of the cell's corresponding points
are locazed within an area of 2 x 2 lattice elements, we characterize

the cell as a cell of low temporal variation. This cell is then placed

into the node N j, and is represented by its temporal extreme values

min_ and maze. On the other hand, for cells that do not satisfy

the criterion, we split the time interval [i, j] in half, that is, into

[i, i + (j - i + 1)/2 - 1] and [i + (j - i + 1)/2, j], and continue

to classify the cells recursively into each of Ni J's two subtrees that

have roots N_ +(J - i+l)/2-1 and NiJ+(j _ i+1)/2" The temporal hier-

archical tree has leaf nodes Nt t, t = i..j. The leaf nodes contain

cells that have the highest scalar variations in time so that the cells'

time-specific extreme values are used. Cells that are classified into
non-leaf nodes are represented by their temporal extreme values.

"Ilae use of the temporal extreme values directly contributes to the

reduction of the overall index size because the temporal extreme
values are used to refer to a cell for more than one time step. Fig. 2

shows an example of the temporal hierarchical index tree with a

time interval [0, 5].
To facilitate an efficient search for isosufface cells, a search in-

dex for each node of the temporal hierarchical tree is created. This

can be done by using any existing isosurface extraction algorithm

based (m the value-partition paradigm. Here we propose to use a

modified ISSUE algorithm [4] which can provide optimal perfor-

mance. For every node Ni _ in the temporal hierarchical index tree,

cells contained in the node are represented by their extreme values

(min_, rnax_). To create the search index, we use the lattice sub-

division described previously and sort cells that belong to the lattice

elements of each row, excluding the lattice element at the diagonal

line, into a list based on the cells' representative nfinimum values

in ascer_ding order. Another list in each row is created by sorting

the cells' representative maxinmm values in descending order. For
those lattice elements at the diagonal line, the interval tree method

[9] is used to create one interval tree for each element.

3.2 Isosurface Extraction

Given the temporal hiemLrhical index tree, this section describes
thc algorithm that is used to locate the isosmface cells at mn time.

We first describe a simple travelsal method to retrieve the sets of

i

......... i...................

........................

(V_,,"%.)...........

min

max

I

• 4

iiiii,?
o o

/

iE !e,/_
'*J i i •
!ii'+

I

_il !
t--i-i.........I.......

.......t--t--r........+........................
i I ,Ii i

|ii i
l.--.i--,tr..........._..............
....l...t' '
i l:-r--F.........t.........................ill

ID_in

Figure 4: In this case, lattice element {4,4) contains the point
(V,._o, Vi+o). Isosurface cells are located in the shaded area.

nodes that contain all cell index entries needed for a given time

step. We than describe the isosurface cell _,:carch algorithm used for
the lattice search index built in each node.

Given an isosurface query at time step t, we compute the iso-

surface by first locating the nodes in the lree that may contain the

isosurface cells. This is done by recursivel ¢ traversing from the root

node N_ to one of its two child nodes, 2v_', such that a < t < b
until the leaf node _Ntt is reached. Along the traversal path, we

perform the isosurface cell search, using .'t method that will be de-

scribed next, at each encountered node. q]_e tree is constructed so

that every cell in the field exists in one of the nodes in the traversal

path. These cells have their representative extreme values, temporal

or time-specific, as the approximation of tl:eir actual extreme values

at time step t. Fig. 3 shows an example of the traversal path.

At every node along the traversal path. the lattice search index
built at the node is used to locate the candidate isosurface cells.

Given an isovalue Viso, we first locate the lattice element with inte-

ger coordinates [1, I] that contains the point (Vi+o, V_+o) in the span

space. The isosurface cells are then located in the upper left comer

that is defined by the vertical line x = Vi_,o and the horizontal line

y = V,,o as shown in Fig. 4. The candidate isosurface cells can be
collected from the following three catego[ies:

1. For every list in the row R,R :: I + 1..L - 1 that was

sogted by the cells' minimum values, we collect the cells from

the beginning of the list until the first cell is reached which

has a representative minimum valu,; that is greater than the
isovalue.

• 2. For the list in row I that was sorte(: by the maximum values,

we collect the cells from the beginning of the list until the cell

is reached which has a representative maximum value that is
smaller than the isovalue.

• 3. Collect the isosurface cells from tile interval tree built at

lattice element [I, I]. The method and its details are presented

in [91.

After the candidate isosurface cells are ocated, we then use the

cells' actual data at time step t to perform triangulation.

Our 'algorithm has optimal performance since the isosurface cells

in categories 1 and 2 ate collected withou_ the need for any search.

The number of cells in category 3 is usuall _,small. Futthemlore, the

interval tree method has an optimal effici,mcy of O(logN), where
_/Vis the number of cells in the field.

Figure 5: At every tree node, the non-isosurface cells being unnec-

essarily visited are confined within the two rows and two columns
of the lattice elements as shown in the shaded area. Increasing the

resolution of the lattice subdivision can reduce the number of cells

in this area, for the price of a larger temporal hierarchical index tree.

As mentioned previously, a candidate isosurface cell may not be
an isosurface cell after all. These non-isosurface cells come from

non-leaf nodes in our temporal hierarchical index tree since a cell's

time-specific extreme values, mint and max.t, may not contain the

given isovalue even though the approximated extreme values, i.e.,

the temporal extreme values min_ and max,, do contain the iso-

value. Although this problem will not cause a wrong isosurface

to be generated, since the triangulation routine will detect the case

and create no triangles from these cells, it does incur performance

overhead. Actually, this performance overhead is an expected con-

sequence of using temporal extreme values as the approximated
extreme values for cells, where we trade performance for storage

space.
In fact, the performance overhead is bound by the resolution of

the lattice subdivision in the span space. In our algorithm, we place

a cell into the node N_ in the temporal hierarchical index tree in

such a way that its representing points at different time steps within

time interval [i, j] always reside within an area of 2 x 2 lattice ele-

ments in the span space. Therefore, for any node _N_ in the tree, the
worst case for the number of the non-isosurface ceils being visited

is estimated as the number ofce!ls in the twe rows and two coiumns

of the lattice elements at the boundm'y layers of the lattice elements
that are searched for the candidate isosufface cells, as shown in the

shaded area in Fig. 5. Therefore, the user-specified paranteter L,
in an L x L lattice subdivision becomes a control parameter that is

used to detelrnine the tradeoff factor between the storage space and

the isosurface extraction time.

3.3 Node Fetching and Replacement

Ideally, if the entire temporal hierarchical index tree resides in main

memot3; there is no I/O required when the user randomly queries
for isosurfaces at different time steps. However, the memory re-

quirenwnt is usually too high to make this practical. In our algo-
rithm, tile temlx_ral hierarchical tree can be output to a file. When

an isosurface at a time step is queried, our algorithm follows the

traversal path as desetSbed previously and brings those nodes into

main memory. Initially, all nodes on the traversal path need to be

read in. Subsequently, if the user queries for an isosurface at a dif-

ferent thne step, our algorithm traverses the search tree and brings

in only those nodes that are not ah_zady in main memory. In fact,

0 3 5

N N4

Figure 6: In this case, if the user changes the isosurface query from

time step 1 to time step 2, only the node/Xr_ needs to be brought in
from the disk.

Data Set F- 18 Delta Wing Post

of cells 1,662,290 658,944 123,039

of nodes 1,764,711 686,147 131,072
Grid size 28.23 8.23 1.57

Solution size 7.05 2.74 0.53

Table 1: Density fields in three CFD simulation data sets were used

in our experiments. Information listed hen'. is for one time step, and

the file sizes are in megabytes.

because the non-leaf nodes contain cell imex entries that are shared

by several time steps, they are very likely Eo be in memory already.

In this case, only the differential nodes, a small portion of the index
tree, need to be read in from the disk. As a result, the amount of

I/O required for a subsequent isosurface qaery can be considerably

smaller. Fig. 6 gives an example.

Although it is always desirable to retai_ as many nodes in mem-

ory as possible in case that the user need_ to go back and forth in

time when querying the isosurfaces, those nodes that are not in use

have to be replaced when the memory limitation is exceeded. To
detelxnine which node needs to be replaced, we develop a node re-

placement policy that assigns a priority to every node, based on its
depth in the tree. The smaller the depth of a node is, the higher is its

priority. For example, the root of a tree ha._ a depth of zero therefore

it has the highest priority. The reason is that the root node contains
search index entries to those cells that have the lowest temporal

variations, and, thus, these index entries are used by many time

steps. When a node has to be replaced, we select the node that has

the lowest priority. If there are more nodes than one with the same

priority, we remove the one that is the least recently used (LRU).

4 Results and Discussion

In this section, we pi_esent experimental re:mlts of isosurface extrac-
tion for time-varying scalar fields using the temporal hierarchical

index tree. Three cutvilinear gridded tin|c-varying data sets gen-

erated from computational fluid dynamics ((1:D) simulations were

used [16, 17, 18], as shown in Table 1. Tltc time and storage space

measurements shown in the following fo_" the Delta Wing and the

Post data sets wet_e performed on an SGI ()nyx2 workstation with

an RI0000 microprtx'essor _md 512 megal_ytes of memory. For the

F-18 data set, the measurements were perfomaed on an SGI Onyx2

RealityMonster with an R 10000 micropro.:essor ,and four gigabytes

Data Set F- 18 Delta Wing Post

A T 100 1 l0

Sequence 1 10000-11900 750-769 12000-12190
Sequence 2 12000-13900 770-789 12200-12390

Seque.nce 3 14000-15900 790-809 12400-12590
Index Size (one time step)

ISSUE 26.73 10.68 2.10

Intet-val Tree 26.61 10.55 1.97

Index Size (twenty time steps)

ISSI JE 534.6 213.6 42

Interval Tree 532.2 211 39.4

Table 2: The time sequences in the test data sets and the storage

space (in megabytes) required for creating the search indices for

one time step and for twenty time steps of data using the ISSUE

and the Interval Tree algorithms.

F-18

-T_attice Resolution 10 × 10 40 × 40 80 x 80

Sequence l 31.6 56.1 82.5
5.9% 10.5% 15.4%

Sequence 2 32.9 67.2 102.5
6.2% 12.6% 19.2%

"Sequence 3 30.4 53.4 79.3
5.7% 10% 14.8%

Table 3: The sizes (in megabytes) of the temporal hierarchical index

trees fol the F- 18 data set using three different lattice resolutions.

of memory. We studied the characteristics of our algorithm and

compared these characteristics with the regular Marching Cubes al-

gorithm, the Interval Tree algorithm, and the ISSUE algorithm. All

of these algorithms were implemented by the author.

In out" tests, each temporal hierarchical index tree was built using

twenty time steps of data. We perfomled our experiments at three

different time sequences in each of the test data sets, as shown in
Table 2: and we denote these sequences as Sequence I, Sequence

2, and Sequence 3. To understand the storage overhead incurred
by the existing value-partition techniques, the Interval Tree and the

ISSUE algorithms were used to create search indices for data at

every time step. Table 2 shows the sizes of search indices for one

time step and the sizes of tt_e sea_-ch indices for twenty time steps.

It is not a surprise that the size of the search index for one time step

is much larger than the solution data itself because the cell search
index needs to store each cell's minimum, maximum values, and the

cell's identification) For a time-varying field such as the F- 18 data

set, mote than 500 megabytes of storage were required to index 20

time steps of data. This overhead is rather overwhelming.
Three different resolutions of lattice subdivisions were used in

our experiments to build temporal hierarchical index trees. A coarse
resolution of lattice structure indicates that more cells are charac-

terized _s having low temporal variations. As a result, the temporal
hierarchical index tree will have a smaller size since more cells in

the time-varying field are placed into the non-leaf nodes in the tree.
The tradeoff is that the search index tree that results from a coarse

lattice subdivision will be relatively less efficient in extracting iso-

qn otlr experiments, we intentionally chose not to cluster multiple cells

to fore1 recta cells for building the index as in [2.14], or use the nice chess-

bom'd apl_roach as suggested in [9]. so we can more easily study the behavior
of the un_terlying algorithms, t lowever, these techniques can be equally well

applied to all the meth_xls, including our new algorithm, discussed in this
st_ction.

DeltaWing
Lattice Resolution 10 x 10 40 x 40 80 x 80

Sequence l 14.4 36.2 58.4
6.7% 16.9% 27.3%

Sequeffce 2 14.5 35.5 56.9
6.8% 16.6% 26.6%

Sequence 3 14.6 37.1 59.4
6.8% t7.3% 27.8%

Table 4: The sizes (in megabytes) of the temporal hierarchical index

trees for the Delta W'mg data set.

Post

Lattice Resolution 10 x l0 4(1 x 40 80 x 80

Sequence l I 1.9 18.5 23.1
28.3% 44% 55%

Sequence 2 4.8 12.7 18.9
11.4% 30.2% 45%

Sequence 3 4.9 12.9 19.1
11.7% 30.7% 45.5%

Table 5: The sizes (in megabytes) of the temporal hierarchical index

trees for the Post data set.

surfaces. "Fable 3 shows the sizes of the temporal hierarchical index

trees built for the F-18 data set. The perce,atages shown in the table
are the ratios of the tree sizes to the overall space required by the IS-

SUE algorithm, in a period of twenty time _teps, as listed in Table 2.
The test results from the three different time sequences consistently

showed that the storage overhead was sign_licantly reduced, namely
from more than 500 megabytes to about 30 megabytes in the 10 x 10

lattice, and to about 100 megabytes in the 80 × 80 lattice; the disk

space savings amount to more than 80%. Table 4 and Table 5 list

the results for the Delta Wing and the Post data sets. The Post

data set has a higher scalar variation in time. ttowever, even with

a high resolution of lattice subdivision we still had about 50% sav-

ing in storage; for the smaller resolutions _f lattice subdivision, we

achieved about 75% - 90% space saving:;.

Table 6 shows the performance of isosufface extraction using the

temporal hierarchical index tree for the F- 18 data set. We also show

the penfonnar, ce of the regular Marching (_bes algorithm (denoted

as MCs), the Interval Tree method (denoted as Int. Tree), and the

ISSUE algorithm. We chose two representative isovalues at each

of the three representative time steps. Among the techniques, the
Interval Tree and the ISSUE algorithms have optimal performance,
which can save about 80% - 95% isosurface extraction time com-

pared with the regular Marching Cubes a! gorithm. Using the tem-
poral hierarchical index tree, it can be seen that when a high res-
olution lattice such as the 80 x 80 subdivision was used, the per-

formance of isosurface extractions was very close to the optimal

performance gained from using the Interval Tree or the ISSUE algo-

rithms, while only about 20% of the storage space used by the Inter-

val Tree or the ISSUE algorithm was needed for storing the tempo-
ral hierarchical index tree. For the low resolution lattice such as the

10 x 10 subdivision, although the performance was slightly lower,

it was still significantly faster than the re_,mlar Marching Cubes al-

gurithm. Considering that less than 10% of space was required to
store the search index compared with a full set of ISSUE or Interval

"Free indices, this tradeoff can be very benelicial for cel_ain applica-

tions. Table 7 and Table 8 show the resulls for the Delta Wing and

the Post data sets, which had very similar characteristics. Table 9
shows the number of non-isosurface cells that were visited with let-

E
.=_
o_

E
i_
I---

o

2500

2000

1500

1000

500

Node Fetch Time

0
0 2 4 6 8 10 12 14 16 18

Time Step
20

Figure 7: The time (in milliseconds) for restoring tree nodes from
the disk when the user sequentially queries the isosurface in time.

The F- 18 data set was used.

tice subdivisions of different resolutions. The percentage numbers

are the ratios to the total number of cells in the field. It can be seen

that even with a low resolution subdivision such as l0 x 10, the

overhead is fairly small.

In our algorithm, the nodes in the temporal hierarchical index
tree are read into main memory only when necessary. In the case

when a user roams a time-varying data set back and forth in time,

many non-leaf nodes containing search indices that are shared by

consecutive time steps can be retained in memory. As a result, only

nodes that are specific to the time step for the current isosurface

query need to be brought into main memory and placed into the
tree. This can result in a substantially smaller amount of I/O. Fig. 7

shows our experimental results. In our tests, we used the F-18 data

set and queried the isosurfaces for a fixed isovalue of 0.99 from

time step 10000 to 11900 in ascending order. As shown in the

figure, at the first time step, no node in the traversal path was in

main memory, so a higher amount of I/O was required. However,

in the subsequent time steps, only the nodes that are not resident
in main memory needed to be brought in. The amount of time for

fetching the nodes shown in the figure is proportional to the number

of nodes specific to each time step.

Finally, the color plate shows images of isosurfaces extracted
from the test data sets.

5 Conclusions and Future Work

We have presented a new isosurface extraction algorithnl for time-

varying scalar fields. In the algorithnl, we characterize the cells
in the field based on their extreme values and the extreme values'

variations over time. For a cell that has a low temporal variation,
its extreme values at consecutive time steps are coalesced, and the

overall extreme values are used to refer to a cell at many time steps.

We adaptively compute the representative extreme values for every

cell in the time-varying field and place the cells into a search struc-

ture called Temporal llierarchical Index Tree. This index tree can

efficiently locate isosurface cells in a time-varying field, while the
size of the tree for a series of time steps is substantially smaller than

the space required by tire search indices of the existing isosurface
extraction algorithros. Our algorithm allows flexible control of the

tradeofl between performance and storage space and, thus, can be

used for data with different characteristics in different computing

environments. We have tested our algorithm using three large-scale

time-wlrying data sets from CFD simulations. The space savings

canamountto mole than 80%, while the i_osurface extraction per-

formance remains nearly optimal. In addition, using the temporal
hierarchical index tree, the amount of I/O for accessing the search

indices at different time steps can be great y reduced.

Future work includes devising an out-of-core algorithm for creat-

ing and accessing the temporal hierarchical index tree. The method
we described in section 3.3 is a coarse out-of-core model since a

whole node is fetched into main memory at a time. In fact, it is also

desirable to devise a finer grind out-of-con', algorithm for accessing

the temporal hierarchical index tree so thtt only the subset of the
nodes' lattice needed for the current isovalue is brought into main

memory at a time. In addition, we would like to investigate a com-

bination of the space- and value-partition Idgorithms. Furthermore,
developing time-varying methods for surf_ce-propagation schemes

is also an interesting research subject.

Acknowledgments

This work was supported in part by NASA contract NAS2-14303.
We would like to thank Ken Gee, Neal Chaderjian, and Dennis

Jespersen for providing their data sets. Special thanks to Randy
Kaemmerer and David Ellsworth for their meticulous proofread-

ing of this manuscript and valuable sug,_estions. We also thank
"I]m Sandstrom and other members in the Data Analysis Group at

NASA Ames Research Center for their helpful comments and tech-

nical support.

References

[1] W.E. Lorensen and H. E. Cline. Marc hing cubes: A high reso-
lution 3d surface construction algorit am. Computer Graphics,

21(4): 163-169, July 1987.

[2] J. Wilhelm and A. Van Gelder. Oct-ees for faster isosurface

generation. ACM Transactions on Graphics, 11(3):201-227,

July 1992.

[3] Y. Livnat, H.-W. Shen, and C.R. Johnson. A near optimal
isosurface extraction algorithm using the span space. IEEE

Transactions on Visualization and £omputer Graphics, 2(1),

March 19%.

[4] tt.-W. Shen, C.D. Hansen, Y. Livnat. and C.R. Johnson. Iso-

surfacing in span space with utmosl efficiency (ISSUF,). In

Proceedings of Visualization "96, pages 287-294. IEEE Com-

puter Society Press, Los Alamitos, (A, 1996.

[5] T. Itoh and K. Koyamada. Automatic isosurface propagation

using an extrema graph and sorted boundary cell lists. IEEE

Transactions on Visualization and (. omputer Graphics, 1(4),
Dec. 1995.

[6] T. Itoh, Y. Yamaguchi, and K. Koy_mmda. Volume thinning

for automatic isosurface propagation In Proceedings of Visu-

alization '96, pages 303-310. IEEE (_omputer Society Press,

Los Alamitos, CA, 1996.

[7] C.I,. Bajaj, V. Pascucci, and D.R. Schikore. Fast isocontour-

ing for improved interactivity. In 1996 Symposium for Volume

Visualization, pages 39-46. IEEE t?omputer Society Press,
l,os Alamitos, CA, Oct. 1996.

[8] M. van Kmveld, R. van Oostrum, C I.. Bajaj, DR. Schikore,
and V. Pascucci. Contour trees ,and small seed sets for iso-

surface travcrsal. In Proceedings of ,'3th ACM Synlposium on

Comp. Geom., pages 212-219, 1997

Figure 8: Color Plate - Isosurfaces of density fields in the F-18,
Delta Wing, and Post data sets. The surfaces are colored by velocity

magnitudes, with red being a high magnitude and blue being a low

magnitude.

[9] P. Cignoni, P. Marino, E. Montani, E. Puppo, and

R. Scopigno. Speeding up isosurface extraction using inter-
val trees. IEEE Transactions on Visualization and Computer

Graphics, 3(2), June 1997.

[10] M Giles and R. Haimes. Advanced interactive visualization
for CFD. Computing Systems in Engineering, 1(1):51-62,
1990.

[11] R.S. Gallagher. Span filter. An optimization scheme for vol-
ume visualization of large finite element models. In Proceed-

ings ofl/isualization '91, pages 68-75.1EEE Computer Soci-

ety Press, Los Alamitos, CA, 1991.

[12] tl..W. Shen and C.R. Johnson. Sweeping simplices: A fast
isosurface extraction algorithm for unstructured grids. In Pro-

ce,-'dings of Visualization '95, pages 143-151. IEEE Com-

puter Society Press, Los Alanfitos, CA, 1995.

[13] Y.-J. (_iang and C.T Silva. I/O optimal isosufface extrac-

tion. In Proceedings of Visualization '97, pages 293-300.

IEEE Computer Society Press, Los Alamitos, CA, 1997.

[14] Y.-J. Chiang, C.T Silva, and W.J. Schroeder. Interactive out-
of-core isosurface extraction. In Proceedings of Visualization

'98. IEEE Computer Society Press, Los Alamitos, CA, 1998.

[15] A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiresolution

vkteo. In Proceedings of ACM SIGGRAPH ' 96, pages 281-

290, 1996.

[16] K. Gee, S. Munnan, and L. Schiff. Computation of F-18 tail

buffet. Journal of Aircraft, 33(6), Dec. 1996.

[17] D. Jespersen and C. Levit. Numerical simulation of flow past

a t lpered cylinder. RNR Technical Report RNR-90-021, Octo-
bec 1990.

[18] N. (_aderjian and I,. Schiff. Navier-Stokes ,analysis of a delta
wing in static _md dynamic roll. AIAA-95-1868, 1995.

F-18
TimeStep 11000 13000 15000

Isovatue 0.99 0.93 0.99 0.93 0.99 0.93
of Triangles 272,163 80,970 257,394 71,689 257,644 73,750

MCs 22.43 21.61 22.38 21.58 22.38 21.59

Int. Tlee 4.23 1.2 l 4.0 1.08 4.0 1.11

ISSUE 4.18 1.18 3.96 1.05 3.96 1.09

Temporal Hierarchical Index Tree
10 x 10 5.63 1.50 5.47 1.51 5.23 1.28

40 x 40 4.76 1.42 4.53 1.33 4.46 1.21

80 x _0 4.49 1.34 4.27 1.22 4.25 1.18

Table 6: The performance of isosurface extraction (in seconds) for the F- 18 data set.

Delta Wing

"time Step 760 780 800
Isovalue 0.96 0.89 0.96 0.89 0.96 0.89

of Triangles 50,962 17,288 52,728 16,760 47,842 17,990
MCs 7.86 7.72 7.87 7.72 7.85 7.73

Int. 'Free 0.63 0.21 0.65 0.20 0.59 0.22
IS,']UE 0.61 0.20 0.63 0.19 0.57 0.21

Tem _oral Hierarchical Index Tree

10 "< 10 1.39 0.35 0.14 0.36 0.13 0.36

40 x 40 0.82 0.27 0.84 0.28 0.75 0.30

80 "< 80 0.70 0.25 0.73 0.25 0.66 0.27

Table 7: The perf9mlance of isosurface extraction (in seconds) for the Delta Wing data set.

Post

Time Step 12100 12300 12500
Isovalue 1.00 0.98 1.00 0.98 1.00 0.98

of Triangles 18,932 11,168 20,476 11,480 20,158 11,064
MCs 1.52 1.48 1.52 1.48 1.52 1.48

Int. Free 0.22 0.13 0.24 0.13 0.23 0.13

IS;_UE 0.22 0.12 0.24 0.13 0.23 0.12

Temporal Hierarchical Index Tree
10 "< 10 0.26 0.16 0.39 0.20 0.39 0.20

40 :< 40 0.25 0.14 0.29 0.16 0.27 0.15

80 :< 80 0.24 0.14 0.26 0.14 0.26 0.14

Table 8: The performance of isosurface extraction (in seconds) for the Post data set.

Lattice Resolution 10 x 10 40 × 40 80 x 80

F-18 Time Ste _ 13000

Isovalue 0.99 0.93 0.99 0.93 0.99 0.93

Non-;,socell Visited 62,551 20,193 22,972 12,031 11,973 7,186

Percentage 3.7% 1.2% 1.4% 0.7% 0.7% 0.4%

Delta V_qng Time Step 780
Isovalue 0.96 0.89 0.96 0.89 0.96 0.89

Non-isocell Visited 48,26l 9,738 11,289 4,586 4,531 2,918

Percentage 7.3% 1.5% 1.7% 0.7% 0.7% 0.4%

Posl Time Step 12300

Isovalue 1.00 0.98 1.00 0.98 1.00 0.98

Non-isocell Visited 10,062 4,266 3,138 1,429 1,558 595

Percentage 8.2% 3.5% 2.6% 1.2% 1.3% 0.5%

Table 9: Number of non- sosufface cells that were visited with lattice subdivisions of different resolutions.

