
Fast and Memory Efficient Polygonal Simplification

Peter Lindstrom Greg Turk

Georgia Institute of Technology

Abstract

Conventional wisdom says that in order to produce high-quality
simplified polygonal models, one must retain and use information
about the original model during the simplification process. We
demonstrate that excellent simplified models can be produced with-
out the need to compare against information from the original ge-
ometry while performing local changes to the model. We use edge
collapses to perform simplification, as do a number of other meth-
ods. We select the position of the new vertex so that the original vol-
ume of the model is maintained and we minimize the per-triangle
change in volume of the tetrahedra swept out by those triangles that
are moved. We also maintain surface area near boundaries and min-
imize the per-triangle area changes. Calculating the edge collapse
priorities and the positions of the new vertices requires only the face
connectivity and the the vertex locations in the intermediate model.
This approach is memory efficient, allowing the simplification of
very large polygonal models, and it is also fast. Moreover, sim-
plified models created using this technique compare favorably to a
number of other published simplification methods in terms of mean
geometric error.

1 INTRODUCTION

Automatic model simplification begins with a geometric descrip-
tion of an object and produces a new description that is similar
in appearance to the original and that has many fewer geometric
primitives. Many approaches to simplification have appeared in the
recentliterature, at least in part because this technique has the po-
tential to dramatically speed up many interactive graphics applica-
tions. Such techniques are becoming increasingly important due
to the increasingly large models that are created from medical data
acquisition (CT, MRI, etc.), range scanners, computer vision algo-
rithms, satellite radar, and other sources. Models with more than
one million triangles are becoming commonplace, thus we have
paid particular attention to the performance of our method on large
models.

Some computational problems seem to attract a never-ending
array of proposed solutions. Such problems include sorting, De-
launay triangulation, convex hull, collision detection, hidden sur-
face determination, ray tracing acceleration, and polygonal model
simplification. Inventors of new algorithms seek new techniques
that strike a balance between a number of algorithm characteristics,
some that are domain-specific, and others that are more universal. A
few of the important characteristics of any algorithm include speed,
memory efficiency, robustness, and ease of coding. These basic
considerations were a guide to our own work in polygonal model
simplification.

We use edge collapse as the method for simplifying geometry,
as have a number of previous researchers. This approach selects an
edge and replaces it with a single vertex (Figure 2). This removes
one vertex, three edges, and two faces. The edge collapse opera-
tion is attractive because it allows the new vertex to be placed in
a manner that helps preserve the location and shape of the origi-
nal surface. It is also a more atomic operation than vertex or face
removal, and does not require the invocation of a triangulation al-

gorithm. Two decisions are central to a simplification method that
uses edge collapse: 1) the position of the new vertex created by
the edge collapse, and 2) the ordering of the edges to be collapsed
(the edge priority). We use volume and surface area information to
make both of these decisions.

We constrain the placement of new vertices so that the volume
of a closed model is not altered. If the new vertex is near a bound-
ary of the model, we also preserve the surface area in the region
surrounding the edge that is being collapsed. Often these two con-
straints do not fully determine the position of the new vertex, so we
optimize additional geometric properties. We minimize the volume
swept out by triangles that are moved by the operation, minimize
the area swept out by boundary edges, and finally attempt to pro-
duce well-shaped triangles if the vertex is stillunderconstrained.
Our method unifies these different constraints by describing each
of them as one or more planes in which the new vertex must lie.
When three non-parallel planes are determined, the vertex position
is fully defined. We use per-triangle volume and area differences to
dictate the priority of edge collapses.

The remainder of the paper is organized as follows. First, we re-
view some of the previous work on polygonal simplification. Next,
we describe how we select the new vertex resulting from an edge
collapse and also how related information is used to prioritize the
edge collapses. We then present numerical comparisons between
our approach and other published methods. Finally, we conclude
with directions for future research.

2 PREVIOUS WORK

There have been a large number of recent publications on automatic
model simplification, hence it is not possible to cover all of this
work here. In this section we will concentrate on the particular
forms of geometric information that guides various simplification
methods. Our attention below is focused on those simplification
algorithms that make many small local changes to the geometry of
a model. Not all simplification methods are based on incremental
changes, and exceptions include [6, 11, 19, 22].

Some of the earliest simplification algorithms used successive
vertex removal as the method for gradually simplifying a model.
Schroeder and co-workers use the distance from a vertex to the
plane most nearly passing through adjacent vertices as their prior-
ity measure [20]. No history of the original geometry is kept during
this process. A more recent variant of this technique includes a
scalar value at each vertex that encodes the maximum error created
so far in the neighborhood of the vertex [21]. Renze and Oliver
concentrate on triangulation algorithms in their work, and they use
the same distance to plane method as Schroeder [17]. Hamann
uses a measure of local curvature to decide which vertices to re-
move, and here again no history of the original surface is used to
guide these decisions [10]. More recently, Gieng, Hamann and co-
workers successively collapse triangles into vertices, and the new
vertex is placed using a local quadratic approximation to the nearby
surface [8].

Some more recent vertex removal techniques use some form of
history about the original geometry as a way of tracking the er-
ror incurred during simplification. Bajaj and Schikore keep track



of “positive” and “negative” error bounds at each vertex through-
out the iterative removal process [1]. Planar projections of old and
new triangles in a region allow them to compute these error bounds.
Ciampalini and co-workers associate with each triangle a list of ver-
tices from the original model [2]. These vertices are used to main-
tain an error estimate for each triangle during simplification. Cohen
et al. use geometric envelopes built around the original model to
constrain the selection of vertices that may be removed [4].

A number of methods use iterative edge collapse to simplify
models. Hoppe and co-workers use edge collapse together with
edge swap and edge split to create simplified surfaces [12]. They
use a distance measure from a sampled set of points on the orig-
inal model in order to determine new vertex positions. In more
recent work, Hoppe uses only edge collapses to simplify models,
and still uses distance to sampled points as a guide to simplifica-
tion [13]. Ronfard and Rossignac essentially keep at each vertex a
list of planes that are a history of the original surface in the region
surrounding the vertex [18]. This information is used to prioritize
edge collapses and to place the new vertices. Their work was a
jumping off point for Garland and Heckbert, who maintain a 4 by 4
symmetric matrix at each vertex that allows them to track squared
distances to planes of the original model [7]. The position of a
new vertex is found simply by minimizing the quadric error. Ele-
ments of our simplification method are related to such quadric error
measures, and we will return to this point later. Gu´eziec associates
error radii at each vertex during successive edge collapses in order
to bound the simplification error [9]. To our knowledge, his method
is the first approach that explicitly adds a constraint to vertex place-
ment in order to maintain the volume of the original model. Our
method is also volume preserving, but our additional position con-
straints and our edge cost are quite different. (Gu´eziec uses edge
length for edge cost.) Cohen and co-workers use edge collapse op-
erations and a planar projection analysis similar to those of Bajaj
and Schikore to bound the error in a region [5]. They keep track
of this error by associating an axially-aligned box to each triangle.
Conceptually, the original surface is guaranteed to lie within the
union of all such boxes convolved with their associated triangles.

Two trends in simplification have attracted our attention. One is
that more researchers appear to be using edge collapse (or gener-
alizations that allow topology modification) to create local changes
to the geometry. Our work follows the edge collapse paradigm. A
second trend is that more algorithms are maintaining some form of
history about the original surface. Our approach to vertex place-
ment and edge cost determination yields a counter-intuitive result:
we can perform high-quality simplification without retaining any
history about the original model.

3 Notation

Before describing our simplification method, we will briefly intro-
duce some terminology and notation. The topological entity called
a 0-simplex, or avertex, is denoted byv, with its geometric coun-
terpart written as the 3-vectorv. A non-oriented edge ¯e is a set
fve
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The operatordsegives then+1-simplices of which ann-simplex
s is a subset of, e.g.dve denotes the edges that are incident upon
the vertexv. This notation trivially extends to sets, for example
bSc= fbsc : s2 Sg. Thus, the operatorbSc reduces the dimension

of Sby one, whiledSe adds a dimension. See Figure 1 for examples
of these operators.

 v  v  v

a.  v
edges adjacent to v

b.  v
triangles adjacent to v

c.  v
vertices adjacent to v

d.  e
vertices of e

e.  e
edges adjacent to e

f.  e
triangles adjacent to e

 e e  e

Figure 1: The simplex operatorsbsc anddse.

Simplices are classified asboundary, manifold, and non-
manifold. A boundary edge has exactly one incident triangle, a
manifold edge has two, while non-manifold edges have three or
more incident triangles. We write the boundary of a setSas the set
of oriented edges∂S= f~e : e2 S; jdeej= 1g.

All vectors are assumed to be column vectors, and are written
as small, bold-face letters; matrices are written as capital letters.
Transposition is used to denote row vectors, e.g.vT. The expression
u�v denotes the cross product of two 3-vectors. We use the short-
hand notation (v0 v1 v2) to denote the 3�3 matrix made up
of three column vectors. The functionsV, A, andL denote signed
volume, signed area, and length, respectively.

4 SIMPLIFICATION ALGORITHM

4.1 Algorithm Overview

Our simplification method consists of repeatedly selecting the edge
with a minimum cost, collapsing this edge, and then re-evaluating
the cost of edges affected by this edge collapse. Specifically, an
edge collapse operation takes an edgee= fv0;v1g and substitutes
its two vertices with a new vertexv. In this process, the trian-
glesdee are collapsed to edges, and are discarded. The remaining
edges and triangles incident uponv0 andv1, i.e. dbece�feg and
ddbecee�dee, respectively, are modified such that all occurrences
of v0 andv1 are substituted withv. Figure 2 illustrates the edge
collapse operation.

The first step in the simplification process is to assign costs to all
edges in the mesh, which are maintained in a priority queue. For
each iteration, the edge with the lowest cost is selected and tested
for candidacy. As we will describe later, an edge is rejected as a
candidate if no solution exists for its replacement vertex. We addi-
tionally impose some topological constraints to preserve the genus
and to avoid introducing non-manifold simplices. If the edge is not
a valid candidate, its cost is set to infinity, and the edge is moved
to the back of the queue. Given a valid edge, the edge collapse is
performed, followed by a re-evaluation of edge costs for all nearby
edges affected by the collapse. As the trianglesddbecee are modi-
fied, all other edgesfejg for whichddbecee\ddbejcee 6= /0 must be
updated, i.e.fejg = dbdvece, with jfejgj = 38 on average. Once
the costs forfejg have been updated, the next iteration begins, and
the process is repeated until a desired number of simplices remain.

The general edge collapse method involves two major steps:
choosing a measure that specifies the cost of collapsing an edge
e, and choosing the position v of the vertexv that replaces the edge.
Many approaches to vertex placement have been proposed, such as
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picking one of the vertices ofe, using the midpoint ofe, or choos-
ing a position that minimizes the distance between the mesh before
and after the edge collapse. This problem can be viewed as an op-
timization problem, that is, given an objective functionc(e;v) that
specifies the cost of replacinge with v, v is chosen such thatc is
minimized. We have chosen a cost functionc that encapsulates vol-
ume and area information about a model. These geometric issues
are described in the following subsections.

4.2 Vertex Placement

In choosing the vertex position v from an edge collapse, we attempt
to minimize the change of several geometric properties such as vol-
ume and area. We require a unified mathematical framework for
such constraints. Our basic approach to findingv is to combine
a number of linear equality constraintsai

Tv = bi , i.e. v is the in-
tersection of three non-parallel planes inℜ3. We have decided to
incorporate more than three such constraints in the event that two or
more of them are linearly dependent, and the constraints are com-
puted and added in a pre-determined order of importance. If two
or more of these planes are nearly parallel, minor perturbations to
the plane coefficients lead to large variations in the solution. Such
perturbations frequently occur due to roundoff errors and limited
numerical precision. To compensate for such problems, we add a
constraint(an;bn) to a set of existing constraints(A;b) only if the
plane normalan does not fall within an angleα of all linear com-
binations of the plane normalsfai : 0< i < ng of the previous con-
straints. Thus, givenn�1 previous constraints (n � 3), we accept
(an;bn) if any of the following conditions hold:

(i) n= 1 anda1 6= 0

(ii) n= 2 and(a1
Ta2)

2 < (ka1kka2kcos(α))2

(iii) n= 3 and((a1�a2)
Ta3)

2 > (ka1�a2kka3ksin(α))2

If the constraint meets these conditions, we say that it isα-
compatible with the list of prior constraints. For all results pre-
sented in this paper,α has been set to 1�. After three compatible
constrains have been found,v is computed as

v = A�1b (1)

That is,an
T is thenth row of A.

Throughout the remainder of this paper, we will assume thate is
the edge to be collapsed,v is the replacement vertex,ftig= ddbecee
are the triangles surrounding an edge,f~eig= ∂dbece are the bound-
ary edges of the changing region, andfvig = bdvec�fvg are the
neighboring vertices to the edge.

4.2.1 Volume Preservation

When an edge is collapsed, the local shape of the model is gen-
erally modified. If the replacement vertex is not chosen carefully,
each edge collapse will alter the volume of the model. For example,
if each edge is substituted by its midpoint, repeated edge collapses
of a tessellated sphere will reduce the sphere to an inscribed tetrahe-
dron whose volume is much smaller than the original sphere. Simi-
larly, edge collapses in concave regions result in a volume increase.
Even if the model is not a closed, manifold, orientable surface, we
can think of local surface patches as bounding some volume, and
preserving the volume both locally and globally is desirable as it
tends to preserve both the 3D shape of the model and its 2D projec-
tion.

In this discussion, we will assume thatddbeceewith its edges and
vertices are manifold. In fact, it matters little whether the mesh is
locally manifold or not, or if it has a boundary; the preservation and
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Figure 2: The edge collapse operation. The manifold edgee is col-
lapsed and replaced with a vertexv. Trianglest2 andt7 are removed
in the process. Example tetrahedral volumes associated with trian-
glest2, t3, andt8 are shown.

optimization steps generally handle such cases in a consistent and
intuitive manner. First, observe what collapsinge does to volume
of the model. When a trianglet = (ve
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we say that the volume ofp is positive, and the model expands
locally att. Conversely, ifv is “below” the plane,pyields a negative
volume contribution, and the model shrinks. Thus, to preserve the
volume of the model, we set
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and solve forv. Equation 2 can be rewritten as
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whereni is the outward normal vector of triangleti , with magnitude
twice the area ofti . It is clear that this local preservation of volume
also implies global preservation as we have accounted for all trian-
gles changed by the edge collapse. Equation 3 is a linear equality
that constrains the solutionv to a plane. Note that if the surface is
locally non-orientable, folds over itself, or is otherwise geometri-
cally or topologically degenerate,∑i ni may be zero, in which case
we discard the constraint. Since volume preservation only restricts
v to a plane, we can place additional constraints on its final position.

4.2.2 Boundary Preservation

Analogous to volume preservation, our algorithm preserves the
shape of surface boundaries in models that are not closed. For a
planar boundary, we attempt to preserve the area enclosed by the
boundary, which is the 2D equivalent of preserving the volume in
3D. Rather than using signed changes in volume, boundary preser-
vation involves operations with signed changes in area. Thus, for a
planar boundary, we set
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where each term in the sum is a vector orthogonal to the boundary
plane, with magnitude equal to the change in area associated with
the corresponding edge. The vector direction determines the sign of
the change. Figure 3 illustrates the changes in area for theboundary
∂dbece= f~e0;~e1;~e2g when the edge~e=~e1 is collapsed tov.

e1 = e
e′0e′2

v

e0

e2

$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$

$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$
$$$$$$$

%%%%%%%%%%%
%%%%%%%%%%%
%%%%%%%%%%%
%%%%%%%%%%%
%%%%%%%%%%%
%%%%%%%%%%%ve

0

ve
1

%%
%%
%% boundary area increase

$$
$$
$$

boundary area decrease

zero change in boundary area
%%
%%
%%

$$
$$
$$

Figure 3: Collapsing a boundary edgee. The sum of signed areas
of the hatched triangles is zero. The arc indicates the orientation of
the boundary edgesf~eig.

In general, surface boundaries are not planar, however, and we
are forced to revise the notion of boundary area. A reasonable way
of doing this is to relax the requirement that the terms in Equa-
tion 4 be parallel, and simply express each change in area as having
a direction—instead of a binary sign—in addition to magnitude.
Equation 4 generally has no solution for non-planar boundaries,
however, so we have chosen to minimize the magnitude of the sum
of directed area vectors, noting that the magnitude of the residual
vector is a measure of how faithfully the boundary “area” has been
preserved. Thus, we seek to minimize
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e1�e2. The solution space of this optimization problem is the in-
tersection of two planes, defined by

e1
Te1e3

Tv+e3
Te3 = 0 (5)

(e1�e3)
Tv= 0 (6)

Each of these constraints is added toA (in no particular order) sub-
ject to the compatibility rules mentioned above. Recall that these
two constraints are only used when∂dbece is non-empty.

4.2.3 Volume Optimization

The remaining constraint methods are all optimization prob-
lems that alone yield single solutions in the unconstrained, non-
degenerate case. Because prior constraints may exist, these meth-
ods involve minimization of some objective functionf (e;v)subject
to zero, one, or two linear equality constraints(A;b). In addition,

these objective functions are all quadratic, and we are faced with
aquadratic programming problem. Fortunately, all objective func-
tions discussed here can be reduced to a certain form for which a
simple method for findingv exists. These functions can all be writ-
ten in the form

f (e;v)=
1
2

vTHv+cTv+
1
2

k (7)

whereH is the symmetric Hessian,Hv + c is the gradient off ,
andk is a constant. Note that Garland and Heckbert use a function
of this form, but their constraints are derived in quite a different
manner than ours [7]. Givenn constraints(A;b), let the columns
of Z be a basis inℜ3, with the firstn equal toAT. The remaining
3�n columns ofZ are made orthogonal to the vectorsai . Then the
additional 3�n constraints are

I (3�n;3)Z
�1(Hv+c) = 0 (8)

whereI (3�n;3) is the 3�n by 3 submatrix formed by removing the
top n rows from the identity matrixI . As above, these additional
constraints are added provided they satisfy the compatibility rules.

As described above, the volume is preserved by setting the sum
of signedtetrahedral volumes to zero, which leaves an entire plane
of candidate vertices. To further constrain the vertex position, we
also attempt to minimize theunsignedvolume of each individual
tetrahedron, which is a measure of the local surface error for each
corresponding triangle inddbecee. To minimize these errors, we
find the minimum of
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After expanding this and doing some algebra, we have
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which is of the same form as Equation 7, and Equation 8 can be
used to find the remaining constraints. Figure 4 illustrates howv is
found as the intersection of three planes, two of which are obtained
from volume optimization.

If the verticesbdbecec are all coplanar, the volume optimization
yields infinitely many solutions as each tetrahedral volume is zero.
In the case when the vertices are nearly coplanar, Equation 9 results
in constraints that are notα-compatible with prior constraints, and
we assume that the surface errors are small enough that optimiza-
tion of other aspects of the mesh are more important, for example
maximizing the aspect ratio of the affected triangles. Additional
optimization is discussed in the next two subsections.

4.2.4 Boundary Optimization

For boundary optimization, we use a 2D analogy to the above men-
tioned volume optimization. That is, we minimize the sum of
squared areas described in Section 4.2.2:

fB(e;v) = L(e)2∑
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ei
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e
v

Figure 4: The optimal vertexv expressed as the intersection of three
planes;(a1;b1) ensures that the volume is preserved, while(a2;b2)

and(a3;b3) correspond to the constraints due to volume optimiza-
tion.

whereL(e)2 is the squared length of the edgee. The reason for in-
cluding this non-negative constant will be explained later. It should
be clear that it has no effect on where the minimum offB occurs.
The above equation reduces to
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where the matrix(v�) is defined as

(v�) =

0
@ 0 �vz vy

vz 0 �vx
�vy vx 0

1
A

and(�v) = (v�)T. As before, Equation 8 is used to further con-
strain v. Figure 5 shows constraints associated with boundary
preservation and optimization.

4.2.5 Triangle Shape Optimization

Under certain circumstances, the constraints discussed previously
are not all compatible and do not yield a single solution, and fur-
ther optimization can be employed. Typically, these cases occur
when the objective functions are constant, e.g. when the vertices
bdbececare all coplanar, or when the verticesb∂dbececare collinear.
In these circumstances, we have decided to optimize the shape of
the trianglesddvee such that equilateral triangles are preferred over
long and skinny ones. Elongated triangles can introduce unwanted
shading discontinuities and may slow down some rendering meth-
ods. As a measure of triangle shape quality, we have chosen the
following expression:

(a2, b2)

(a
3
, b

3
)

e

v

Figure 5: The optimal vertexv for a collapsed boundary edgee.
(a2;b2) is the set of vertices for which the boundary area is pre-
served; boundary optimization yields(a3;b3). The volume preser-
vation constraint(a1;b1), not shown here, is parallel to the plane of
the figure.

fS(e;v) =∑
i

L((v;vi))
2

which is the sum of squared lengths of the edges incident uponv.
By minimizing fS, we maximize the quality of the resulting trian-
gles. Because we know that the surface is locally planar (or nearly
planar) the choice ofv does not (significantly) alter the sum of areas
of the incident triangles after the edge is collapsed. Thus, by mini-
mizing the above edge lengths, we ensure that the area to perimeter
ratios of the resulting triangles are maximized. The objective func-
tion fS can be written as
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It is fairly easy to show thatfS increases with the squared distance
of v to the centroid offvig.

4.3 Edge Costs

Given an optimal vertex position for an edge collapse, we need to
determine the cost of collapsing the edge. The term “optimal” needs
to be put in context, however. By defining the edge cost in terms
of the objective functions that were minimized above, the vertex
position is optimal with respect to the incurred cost of collapsing
the edge. We have chosen to write the edge cost as a combination
of the following terms:

c(e;v) = cV fV(e;v)+cB fB(e;v)

= cV ∑
i

V
�
(v;vti

0;v
ti
1;v

ti
2)
�2
+

cBL(e)2∑
i

A
�
(v;vei

0 ;v
ei
1 )
�2

(12)

That is, the cost is a weighted sum of the terms minimized in the
volume and boundary optimization. The squared length of the edge
e, L(e)2, used in the boundary objective function ensures scale in-
variance and makesfB compatible with fV . We have omitted the
term for triangle shape optimization as it tends to penalize edges
that otherwise have low values forfV and fB. Recall thatfS is used
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in the optimization only whenfV and fB are both close to zero, and
serves as a last resort to constrainingv when all other methods have
failed. For the results presented in this paper,cV = cB = 1, which
has given good results for all the models that we have tried.

4.4 Summary of Vertex Placement

Given an underconstrained solution for the vertexv that preserves
both volume and boundary area, we choosev such thatc in Equa-
tion 12 is minimized. Notice thatc can be written in the form of
Equation 7. This allows us to minimize the volume and bound-
ary objective functions simultaneously, i.e. following volume and
boundary preservation, we minimize

c(e;v) =
1
2

vT(cVHV +cBHB)v+

(cVcV +cBcB)
Tv+

1
2
(cVkV +cBkB) (13)

If the solution is stillunderconstrained, we employ triangle shape
optimization. Thus, to findv, constraints are added as follows:

method constraints equation
1. volume preservation � 1 3
2. boundary preservation � 2 5, 6
3. volume/boundary optimization � 3 8, 13
4. triangle shape optimization � 3 8, 11

The constraints presented in this section rely on the use of
quadratic objective functions. These squared terms were introduced
to eliminate square roots and to allow an efficient optimization pro-
cedure. However, one drawback of this approach is that it is sensi-
tive to modifications of the mesh connectivity that don' t affect the
geometry, e.g. splitting a triangle in two affects the sums of squared
areas and volumes associated with the triangle. Such cases can be
detected and eliminated as a pre-processing step.

In rare cases, the solution tov remains underconstrained, at
which point some additional criterion could be used to determine
v. We have simply chosen to reject such edges as edge collapse
candidates.

5 RESULTS

5.1 Geometric Comparison Tool

In order to assess the quality of our simplification method, we cre-
ated a number of simplified models and we have compared them to
simplified models created using other published simplification tech-
niques. We could have attempted to implement these algorithms
from their published descriptions, but in doing so we might have
introduced bias by not tuning the parameters of the other meth-
ods with enough care. Instead, we chose to compare our method
to results taken from implementations by the authors of the meth-
ods. Doing so is not free from bias either because some simplifica-
tion methods are not publically available, often due to commercial
or intellectual property right restrictions, thus some techniques in-
evitably will not be represented in comparisons such as ours. We
feel, however, that simplification techniques have become mature
enough as a sub-area within computer graphics that researchers
should at least make an attempt to assess the quality of their results.

We have chosen to use theMetro geometric comparison tool
in order to measure differences between an original model and a
simplified version of that polygonal model [3]. Metro accepts two

polygonal models—an original and a simplified model—and com-
putes the maximum and mean geometric errors of the simplified
model with respect to the original. This is done by point sampling
the simplified model uniformly, using Phong interpolation to esti-
mate the surface normal at each sample, and intersecting the line
defined by the point sample and its normal with the original model.
Both the maximum and mean distance between the point samples
and their corresponding intersections with the original are recorded.

We selected Metro for several reasons. First, we did not author
this tool, and it is our hope that this eliminates one potential source
of bias on our part. Second, Metro uses a point sampled distance
measure that is quite different from the volume-based calculations
that drive our simplification technique. Thus it is less likely that
we have tuned our algorithm to Metro's distance measure. Third, it
is publically available so that others may perform evaluations that
can be matched with those presented here. Finally, we have some
degree of confidence in Metro because the values that it returns for
various models are a good match to our own visual impressions of
the qualities of the different models.

5.2 Comparisons

We used two test models in our comparisons. One of these mod-
els is the Stanford Bunny, which is often used as a test object for
simplification. It is also a good candidate object because it contains
several regions with boundaries on its underside. The second object
is a model of the bones in a human hand that was constructed for
stereolithography (Plate 4a). The bones are joined by cylinders so
that the model will be a single connected object after the physical
model is created using stereolithography. At 650,000 triangles, this
model allows us to see the performance of the simplification meth-
ods over a wide range of detail levels. For both of these models
we produced simplified versions at eight different levels of detail,
roughly halving the number of edges at each level. For each simpli-
fication method, we attempted to produce simplified models with
the same number of edges, which takes into account both the num-
ber of vertices and triangles. Two versions of a model with surface
boundaries that have the same number of triangles may have rather
large differences in the number of vertices, and vice versa. Keeping
E�V+T the same for all methods ensures a more fair comparison.

We simplified both models using six different algorithms, includ-
ing our own:

(1) Mesh Optimization [12]

(2) Progressive Meshes [13]

(3) Simplification Envelopes [4]

(4) JADE (vertex decimation) [2]

(5) QSlim (quadric error) [7]

(6) Memoryless (our method)

Methods 3 and 4 use vertex removal and the remaining four use
edge collapse. All the methods besides our own use some form of
geometric history to guide simplification, hence we use the name
“Memoryless” for our method.

Figures 6 and 7 show the performances of the different algo-
rithms on the bunny and hand models. As can be seen, QSlim is the
fastest of the methods, followed by our method. All models were
simplified on a four-processor, 195 MHz R10000 Silicon Graphics
Onyx2 machine with 1 GB of main memory.1

1The Progressive Mesh models were generated on a one-processor, 195
MHz R10000 Silicon Graphics Octane. For our purposes, these machines
are comparable in performance.
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Figures 8 and 10 show the mean geometric deviations between
the original and the simplified models. The scale of the logarithmic
y-axis is 1,000 times the ratio of the error and the bounding box
diagonal. It can be seen from these graphs that the models with
the best mean geometric errors were produced by our method and
by Mesh Optimization. These two algorithms give nearly identical
mean geometric errors. (Recall, however, that our method is orders
of magnitude faster than Mesh Optimization.) There is remarkable
consistency in the data points of these graphs. Each algorithm gives
a nearly straight line in log(edge count) versus log(mean error).
Also, the relative behaviors of the different methods are the same
for both models across all levels of detail. The consistency of these
results gives us confidence in the reliability of these Metro mea-
surements.

Figures 9 and 11 show the maximum geometric deviations be-
tween the original and simplified models. There appears to be little
consistency in the maximum errors shown in these graphs. We can
think of two possible causes for this. One is that the relationship
between number of edges in a model and the maximum error a par-
ticular algorithm gives is not consistent across models and levels of
detail. Another possibility is that Metro's measurement of maxi-
mum error is inaccurate.

Plates 1a through 1f show the bunny models created by the six
different simplification techniques. Each model has approximately
2,000 edges. All of these models appear to be reasonable low-
resolution versions of the original model (Plate 3a). We have found
that people tend to focus their attention on facial features of the
bunny such as the eyes and nose, and a chance polygon at such
places can dramatically alter the casual observer's impression of
these models. We note that for these and other models, the two
vertex removal methods (Plates 1c and 1d) seem to produce more
sliver triangles than the other methods. This is probably due to the
restriction of never being able to move vertex positions.

Plates 2a through 2f show the underside of the same bunny mod-
els shown in Plate 1. Plate 3b shows the original model's underside.
Mesh optimization (Plate 2a) appears to have distorted the bound-
ary positions. Both JADE and QSlim (Plates 2d and 2e) used a large
number of rather thin triangles in order to maintain the boundaries,
although it is possible that parameter tuning could change this. Pro-
gressive meshes, envelopes, and our memoryless technique yield
similar results on the boundaries.
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Figure 6: Simplification time for bunny model.
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Figure 7: Simplification time for hand model.

5.3 Additional Results

Plates 4 through 6 show additional results from our algorithm.
Plate 4b is a 4,266 triangle version of the hand model created using
our method. Plates 5a and 5b are of a turbine blade. This turbine
blade model consists of 1.8 million triangles, and contains very
fine interior detail. Simplifying this model is challenging due to
its sheer size and its topological complexity, with a large number
of tiny holes and a very noisy surface. This model also has many
sharp edges, and so provides a different challenge than the rounded
features of the bunny and hand models. The model in Plate 5b is
a 13,332 triangle version of this model that was created using our
algorithm in an hour and fifteen minutes. The only other algorithm
that we were able to use to simplify this model was QSlim, which
required nearly ten hours due to disk thrashing from lack of mem-
ory on the 1 GB machine.

Plate 6a is a model of a range scanned dragon with 870,000 tri-
angles. The result of simplifying this model using our algorithm
is shown in Plate 6b. Notice that when simplified to 10,922 trian-
gles, the model still retains the scaly texture on thebody as well as
features such as the teeth and the fins on its back.

There is no one “best” algorithm for simplifying models. Each
of the methods used above has a niche for which it is well suited,
depending on speed and memory requirements, the types of mod-
els being used, and the geometric and visual requirements of the
application. We believe that the memoryless method that we have
presented in this paper should be particularly useful for applications
that require the simplification of large models or those that require a
low mean geometric error. Mean geometric error is a good indicator
of visual fidelity to the original model. Thus we believe that mod-
els created using our method are suitable for applications where the
overall visual impression is important, such as vehicle simulators,
building walkthroughs, and educational software. Applications re-
quiring absolute guarantees on error bounds, however, should in-
stead use a method that provides absolute distance bounds. We
plan to make our code available on the Web so that others can use it
for their applications or may incorporate aspects of our method in
other simplification systems.

6 FUTURE WORK

There are several possibilities future directions for this work. A
straightforward extension to our method would be to allow any two
vertices to be merged, whether or not they share a common edge.
This would allow topology changes as demonstrated in [7, 16].
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Our decision procedures for edge collapse could also be used in
combination with other frameworks for simplification. If, for ex-
ample, maximum error is a high priority, then our edge collapse
operation could be merged with any of a number of approaches that
track maximum error. This could produce a method that would re-
tain the mean error behavior of our method but also would bound
the maximum error. As another example, our method would be a
memory efficient way to create the edge collapse history used in
a view-dependent simplification framework [14, 15]. Finally, we
have demonstrated that volume preservation and per-triangle vol-
ume optimization is an effective measure of deviation from a sur-
face. It is likely that a still more accurate measure of volume devi-
ation could be performed if each triangle or vertex carried with it
additional information.
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Figure 8:  Mean geometric error for bunny model Figure 9:  Maximum geometric error for bunny model

Figure 10:  Mean geometric error for hand model Figure 11:  Maximum geometric error for hand model
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1a.  Mesh Optimization 1b.  Progressive Meshes

1c.  Simplification Envelopes 1d.  JADE

1e.  QSlim 1f.  Memoryless Simplification
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2a. Mesh Optimization
(V = 701 E = 2,046 T = 1,342)

2b. Progressive Meshes
(V = 686 E = 2,027 T = 1,338)

2c. Simplification Envelopes
(V = 686 E = 2,003 T = 1,314)

2d. JADE
(V = 691 E = 1,983 T = 1,289)

2e. QSlim
(V = 711 E = 2,027 T = 1,313)

2f. Memoryless Simplification
(V = 687 E = 2,027 T = 1,337)

3a. Original bunny model
(V = 34,834 E = 104,288 T = 69,451)

3b. Base of bunny model with surface boundaries
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4a. Original hand model
(V = 327,323 E = 981,999 T = 654,666)

4b. Memoryless Simplification
(V = 2,123 E = 6,399 T = 4,266)

5a. Original turbine blade model
(V = 882,954 E = 2,648,082 T = 1,765,388)

5b. Memoryless Simplification
(V = 6,926 E = 19,998 T = 13,332)

6a. Original dragon model
(V = 435,545 E = 1,306,959 T = 871,306)

6b. Memoryless Simplification
(V = 5,353 E = 16,383 T = 10,922)
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