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Abstract gorithm. Two decisions are central to a simplification method that
uses edge collapse: 1) the position of the new vertex created by
Conventional wisdom says that in order to produce highityua  the edge collapse, and 2) the ordering of the edges to be collapsed
simplified polygonal models, one must retain and use information (the edge priority). We use volume and surface area information to
about the original model during the simplification process. We make both of these decisions.
demonstrate that excellent simplified models can be produced with- ~ We constrain the placement of new vertices so that the volume
out the need to compare against information from the original ge- of a closed model is not altered. If the new vertex is near a bound-
ometry while performing local changes to the model. We use edge ary of the model, we also preserve the surface area in the region
collapses to perform simplification, as do a number of other meth- surrounding the edge that is being collapsed. Often these two con-
ods. We select the position of the new vertex so that the original vol- straints do not fully determine the position of the new vertex, so we
ume of the model is maintained and we minimize the per-triangle optimize additional geometric properties. We minimize the volume
change in volume of the tetrahedra swept out by those triangles thatswept out by triangles that are moved by the operation, minimize
are moved. We also maintain surface area near boundaries and minthe area swept out by boundary edges, and finally attempt to pro-
imize the per-triangle area changes. Calculating the edge collapseduce well-shaped triangles if the vertex is stiiderconstrained.
priorities and the positions of the new vertices requires only the face Our method unifies these different constraints by describing each
connectivity and the the vertex locations in the intermediate model. of them as one or more planes in which the new vertex must lie.
This approach is memory efficient, allowing the simplification of When three non-parallel planes are determined, the vertetigros
very large polygonal models, and it is also fast. Moreover, sim- is fully defined. We use per-triangle volume and area differences to
plified models created using this technique compare favorably to a dictate the priority of edge collapses.
number of other published simplification methods in terms of mean  The remainder of the paper is organized as follows. First, we re-
geometric error. view some of the previous work on polygonal simplification. Next,
we describe how we select the new vertex resulting from an edge
collapse and also how related information is used to prioritize the
1 INTRODUCTION edge collapses. We then present numerical comparisons between
our approach and other published methods. Finally, we conclude
Automatic model simplification begins with a geometric descrip- with directions for future research.
tion of an object and produces a new description that is similar
in appearance to the original and that has many fewer geometric
primitives. Many approaches to simplification have appearedinthe 2 PREVIOUS WORK
recentliterature, at least in partdzause this technique has the po-
tential to dramatically speed up many interactive graphics applica- There have been a large number of recent publications on automatic
tions. Such techniques are becoming increasingly important duemodel simplification, hence it is not possible to cover all of this
to the increasingly large models that are created from medical datawork here. In this section we will concentrate on the particular
acquisition (CT, MR, etc.), range scanners, computer vision algo- forms of geometric information that guides various simplification
rithms, satellite radar, and other sources. Models with more than methods. Our attention below is focused on those simplification
one million triangles are becoming comnplace, thus we have  algorithms that make many small local changes to the geometry of
paid particular attention to the performance of our method on large a model. Not all simplification methods are based on incremental
models. changes, and exceptions include [6, 11, 19, 22].

Some computational problems seem to attract a never-ending Some of the earliest simplification algorithms used successive
array of proposed solutions. Such problems include sorting, De- vertex removal as the method for gradually simplifying a model.
launay triangulation, convex hull, tigion detection, hidden sur-  Schroeder and co-workers use the distance from a vertex to the
face determination, ray tracing acceleration, and polygonal model plane most nearly passing through adjacent vertices as their prior-
simplification. Inventors of new algorithms seek new techniques ity measure [20]. No history of the original geometry is kept during
that strike a balance between a number of algorithm characteristics,this process. A more recent variant of this technique includes a
some that are domain-specific, and others that are more universal. Ascalar value at each vertex that encodes the maximum error created
few of the important characteristics of any algorithm include speed, so far in the neighborhood of the vertex [21]. Renze and Oliver
memory efficiency, robustness, and ease of coding. These basicconcentrate on triangulation algorithms in their work, and they use
considerations were a guide to our own work in polygonal model the same distance to plane method as Schroeder [17]. Hamann
simplification. uses a measure of local curvature to decide which vertices to re-

We use edge collapse as the method for simplifying geometry, move, and here again no history of the original surface is used to
as have a number of previous researchers. This approach selects aguide these decisions [10]. More recently, Gieng, Hamann and co-
edge and replaces it with a single vertex (Figure 2). This removes workers successively collapse triangles into vertices, and the new
one vertex, three edges, and two faces. The edge collapse operavertex is placed using a local quadratic approximation to the nearby
tion is attractive because it allows the new vertex to be placed in surface [8].

a manner that helps preserve the location and shape of the origi- Some more recent vertex removal techniques use some form of
nal surface. It is also a more atomic operation than vertex or face history about the original geometry as a way of tracking the er-
removal, and does not require the invocation of a triangulation al- ror incurred during simplification. Bajaj and Schikore keep track



of “positive” and “negative” error bounds at each vertex through- of Sby one, while[S] adds a dimension. See Figure 1 for examples
out the iterative removal process [1]. Planar projections of old and of these operators.
new triangles in a region allow them to compute these error bounds.
Ciampalini and co-workers associate with each triangle a list of ver- a 0
tices from the original model [2]. These vertices are used to main- P
tain an error estimate for each triangle during simplification. Cohen v
et al. use geometric envelopes built around the original model to
constrain the selection of vertices that may be removed [4]. FY

A number of methods use iterative edge collapse to simplify
models. Hoppe and co-workers use edge collapse together with b, OV
edge swap and edge split to create simplified surfaces [12]. They triangles adjacent to
use a distance measure from a sampled set of points on the orig-
inal model in order to determine new vertex positions. In more ot
recent work, Hoppe uses only edge collapses to simplify models,
and still uses distance to sampled points as a guide to simplifica-
tion [13]. Ronfard and Rossignac essentially keep at each vertex a
list of planes that are a history of the original surface in the region
surrounding the vertex [18]. This information is used to pize
edge collapses and to place the new vertices. Their work was a
jumping off point for Garland and Heckbert, who maintain a 4 by 4 Simplices are classified aboundary manifold and non-
symmetric matrix at each vertex that allows them to track squared yanifold A boundary edge has exactly one incident triangle, a
distances to planes of the original model [7]. The position of a anifold edge has two, while non-manifold edges have three or
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Figure 1: The simplex operatofs| and[s].

new vertex is found simply by minimizing the quadric error. Ele-
ments of our simplification method are related to such quadric error
measures, and we will return to this point later.eZigc associates

error radii at each vertex during successive edge collapses in orde

to bound the simplification error [9]. To our knowledge, his method
is the first approach that explicitly adds a constraint to vertaxes
ment in order to maintain the volume of the original model. Our
method is also volume preserving, but our additional position con-
straints and our edge cost are quite different. €Bec uses edge

I,

more incident triangles. We write the boundary of aSas the set
of oriented edgedS= {&: ec S|[e]| = 1}.

All vectors are assumed to be column vectors, and are written
as small, bold-face letters; matrices are written as capital letters.
Transpositionis used to denote row vectors, @'g The expression
u x v denotes the cross product of two 3-vectors. We use the short-
hand notation (vo vi V2) todenote the % 3 matrix made up
of three column vectors. The functio¥s A, andL denote signed
volume, signed area, and length, respectively.

length for edge cost.) Cohen and co-workers use edge collapse op-

erations and a planar projection analysis similar to those of Bajaj
and Schikore to bound the error in a region [5]. They keep track
of this error by associating an axially-aligned box to each triangle.
Conceptually, the original surface is guaranteed to lie within the
union of all such boxes convolved with their associated triangles.
Two trends in simplification have attracted our attention. One is

that more researchers appear to be using edge collapse (or gene

alizations that allow topology modification) to create local changes
to the geometry. Our work follows the edge collapse paradigm. A

second trend is that more algorithms are maintaining some form of

history about the original surface. Our approach to vertex place-
ment and edge cost determination yields a counter-intuitive result:
we can perform high-quality simplification wibut retaining any
history about the original model.

3 Notation

Before describing our simplification method, we will briefly intro-
duce some terminology and notation. The topologicétgnalled

a 0-simplex, or avertex is denoted by, with its geometric coun-
terpart written as the 3-vecter A non-oriented edge is a set
{v§,vi} = {leJo, le]1}, where[s| denotes the— 1-facesof ann-
simplexs; in this case the vertices of the 1-simplex Oriented
edges are written as ordered padss = (| e]o, [€[1). All higher

4 SIMPLIFICATION ALGORITHM

4.1 Algorithm Overview

rQur simplification method consists of repeatedly selecting the edge
with a minimum cost, collapsing this edge, and then re-evaluating
the cost of edges affected by this edge collapse. Specifically, an
edge collapse operation takes an edge{vo,v1} and substitutes

its two vertices with a new vertex. In this process, the trian-
gles[e] are collapsed to edges, and are discarded. The remaining
edges and triangles incident upefiandvy, i.e. [|e]] — {e} and
[[Le]1] — [e]. respectively, are modified such that all occurrences
of vp andv; are substituted witlv. Figure 2 illustrates the edge
collapse operation.

The first step in the simplification process s to assign costs to all
edges in the mesh, which are maintained in a priority queue. For
each iteration, the edge with the lowest cost is selected and tested
for candidacy. As we will describe later, an edge is rejected as a
candidate if no solution exists for its replacement vertex. We addi-
tionally impose some topological constraints to preserve the genus
and to avoid introducing non-manifold simplices. If the edge is not
a valid candidate, its cost is set to infinity, and the edge is moved
to the back of the queue. Given a valid edge, the edge collapse is
performed, followed by a re-evaluation of edge costs for all nearby

order simplices are assumed to be oriented unless otherwise specedges affected by the collapse. As the trianglege| 1] are modi-

ified, and we use the distinctionands only to resolve ambigu-
ities. A triangle, or 2-simplex, is a set of oriented edges, e.g.
t={&,&,&}={(vh,V}),(V{,\h), (¥, V)}. For convenience, we
sometimes writé = (v, V4, ) to mean{ (v, V), (Vi V), (Vh, V) }.
The operatofs]| gives then+ 1-simplices of which an-simplex
sis a subset of, e.g[v] denotes the edges that are incident upon
the vertexv. This notation trivially extends to sets, for example
S| ={|s| : s€ S}. Thus, the operatdrS| reduces the dimension

fied, all other edgege; } for which [ e] 11N [[|&j]]1] # 0 must be
updated, i.e.{e;} = [|[Vv]]], with |{ej}| = 38 on average. Once
the costs for e; } have been updated, the next iteration begins, and
the process is repeated until a desired number of simplices remain.
The general edge collapse method involves two major steps:
choosing a measure that specifies the cost of collapsing an edge
e, and choosing the pa®n v of the vertexv that replaces the edge.
Many approachesto vertex placement have been proposed, such as



picking one of the vertices df, using the midpoint o€, or choos-

ing a position that minimizes the distance between the mesh before
and after the edge collapse. This problem can be viewed as an op-
timization problem, that is, given an objective functice, v) that
specifies the cost of replacireggwith v, v is chosen such thatis
minimized. We have chosen a cost funct@mihat encapsulates vol-
ume and area information about a model. These geometric issues
are described in the following subsections.

4.2 Vertex Placement

In choosing the vertex p@®n v from an edge collapse, we attempt
to minimize the change of several geometric properties such as vol-
ume and area. We require a unified mathematical framework for

such constraints. Our basic approach to findinig to combine
a number of linear equality constrairgg v = b;, i.e. v is the in-
tersection of three non-parallel planesdd. We have decided to

Figure 2: The edge collapse operation. The manifold edgeol-
lapsed and replaced with a vertexTriangles, andt; are removed

in the process. Example tetrahedral volumes associated with trian-
glesty, t3, andtg are shown.

incorporate more than three such constraints in the event that two or
more of them are linearly dependent, and the constraints are com-

puted and added in a pre-determined order of importance. If tWo ohtimization steps generally handle such cases in a consistent and
or more of these planes are nearly parallel, minor perturbations toj,y,itive manner. First, observe what collapsidoes to volume

the plane coefficients lead to large variations in the solution. Such ¢ the model. When a triangle= (Ve,V; i) is replaced by’ =
perturbations frequently occur due to roundoff errors and limited (v, \4), a volume is swept out l:nyle{sé-é r%oves in a linear path
numerical precision. To compensate for such problems, we add ato7vl7(F%gure 2). This volume is descrilbed by a tetrahedmsa
constraint(an, bn) to a set of existing constraint#, b) only if the (Vv W) I v is “above” the plane of (i.e. outside the model),
plane normak, does not fall within an angla of all linear com- we say that the volume of is positive, and the model expands
binations of the plane normaf; : 0 <i < n} of the previous con-  |ocally att. Conversely, if is “below” the planepyields a negative

straints. Thus, given — 1 previous constraintsi(< 3), we accept  yglyme contribution, and the model shrinks. Thus, to preserve the
(an,bn) if any of the following conditions hold: volume of the model, we set

(i) n=1anda; #0

Ve Vi Vi Vb
(i) n=2and(a;"a)? < (|[aul|l|az]| cos))? - v, & W
SV(wvevive) =35 ) & & & |=0 @
(i) n=3and((a1 x a2)"as)? > (|la1 x a||||as]| sin(a))? ' ' {1 ¥ £ 7
If the constraint meets these conditions, we say that iti-is and solve fov. Equation 2 can be rewritten as
compatible with the list of prior constraints. For all results pre-
sented in this papeg has been set to°1 After three compatible T T
constrains have been foundis computed as Z (Vo X V] V] X V54V X V) V=
I
v=A""b (1) L
— " ZniT v=7y| Vo Viovh 3)
Thatis,ay' is then'" row of A. T T

Throughout the remainder of this paper, we will assumesfigt
the edge to be collapsedis the replacementverteft;} = [[|e]]]
are the triangles surrounding an edg&} = 0[ | e|] are the bound-
ary edges of the changing region, ag} = [[v]]| — {v} are the
neighboring vertices to the edge.

wheren; is the outward normal vector of triangie with magnitude
twice the area of;. It is clear that this local preservation of volume
also implies global preservation as we have accounted for all trian-
gles changed by the edge collapse. Equation 3 is a linear equality
that constrains the solutionto a plane. Note that if the surface is
i locally non-orientable, folds over itself, or is otherwise geometri-
4.2.1 Volume Preservation cally or topologically degenerat§; nj may be zero, in which case
When an edge is collapsed, the local shape of the model is gen-We discard the constraint. Sin_c_e volume pre_servati_on _only res_tricts
erally modified. If the replacement vertex is not chosen carefully, vto a plane, we can place additional constraints on its final position.
each edge collapse will alter the volume of the model. For example,
if each edge is sulituted by its mdpoint, repeated edge collapses 4.2.2 Boundary Preservation
of atessellated sphere will reduce the sphere to an inscribed tetrahe- . .
dron whose volume is much smaller than the original sphere. Simi- Arl;la|OQOfUS tch vol%me gre_ser\_/atlona olurtr?lgijorlthm tprtlaser\(/jes':thre
larly, edge collapses in concave regions result in a volume increase.zlaan%er goﬁlrjl[jgf; Wcéu;'ﬁ:rrr"ep? {g gcésg r?/ e t?leaéfegoencc?;see d byothz
Even if the model is not a closed, manifold, orientable surface, we e X . .

: ' L ’ boundary, which is the 2D equivalent of preserving the volume in
can think of local surface patches as bounding some volume, and3D. Rather than using signed changes in volume, boundary preser-

preserving the volume both locally and globally is desirable as it D . e .
; .. vation involves operations with signed changes in area. Thus, for a
tends to preserve both the 3D shape of the model and its 2D projec planar boundary, we set

tion.
In this discussion, we will assume tHa{ e| ] with its edges and
vertices are manifold. In fact, it matters little whether the mesh is

1
8 B — 2 818 8 48 _
locally manifold or not, or if it has a boundary; the preservation and IZA((V’ Vovi)) =1 IZ 2(V XVg +Vp x Vi vy xV)[|=0 (4)



where each term in the sum is a vector orthogonal to the boundarythese objective functions are all quadratic, and we are faced with
plane, with magnitude equal to the change in area associated witha quadratic programming problentortunately, all objective func-

the corresponding edge. The vector direction determines the sign oftions discussed here can be reduced to a certain form for which a
the change. Figure 3 illustrates the changes in area fdrabedary simple method for finding exists. These functions can all be writ-
o[|e|] = {%,81,8} when the edg&= &, is collapsed ta. ten in the form

1 1
fev)= EVTHV—I—CTV—I— Sk @

whereH is the symmetric Hessiamjv + c is the gradient off,
andk is a constant. Note that Garland and Heckbert use a function
of this form, but their constraints are derived in quite a different
manner than ours [7]. Givemconstraint§ A,b), let the columns

of Z be a basis irJ3, with the firstn equal toAT. The remaining
3—ncolumns ofZ are made orthogonal to the vectarsThen the
additional 3—- n constraints are

[l boundary area increase I (3_n73)Z_l(HV +¢)=0 (8)
5 boundary area decrease wherel (3_n 3 is the 3— n by 3 submatrix formed by removing the
EE zero change in boundary area top n rows from the identity matrix. As above, these additional
constraints are added provided they satisfy the compatibility rules.
Figure 3: Collapsing a boundary edgeThe sum of signed areas As described above, the volume is preserved by setting the sum
of the hatched triangles is zero. The arc indicates the orientation of of signedtetrahedral volumes to zero, which leaves an entire plane
the boundary edgel& }. of candidate vertices. To further constrain the vertex position, we

also attempt to minimize thensignedvolume of each individual
In general, surface boundaries are not planar, however, and wet€trahedron, which is a measure of the local surface error for each
are forced to revise the notion of boundary area. A reasonable wayCorresponding triangle ifif|e|]]. To minimize these errors, we
of doing this is to relax the requirement that the terms in Equa- find the minimum of
tion 4 be parallel, and simply express each change in area as having b 02
a direction—instead of a binary sign—in addition to magnitude. fvev)=3V ((wvg Vi V5))
Equation 4 generally has no solution for non-planar boundaries, :
how_ever, so we have chosen_to minimize the m_agnitude of the_sumAﬂer expanding this and doing some algebra, we have
of directed area vectors, noting that the magnitude of the residual
vector is a measure of how faithfully the boundary “area” has been

reserved. Thus, we seek to minimize 1 1
P fu(ev) = EVTH\/V—I— ov v+ Sk
1 Cl Cl Cl C] 2 — i }VT n»n»T v+
Iy 5(vxvg +vg < Vi +vi xv)| = 183 IZ ini
I
1 C ] € |12
= Z||V><IZ(V1—V0)-|-IZ(V1><V0)|| (_Z| Vv |niT>V_|_
I
Svx S e+ exl? )
= = 1 i . . 2
4 | §<Z| Vo Viovh |>] 9)
1 I
= Zlvxertel? . | j
which is of the same form as Equation 7, and Equation 8 can be
d to find the remaining constraints. Figure 4 illustrates Wiswv
whereey; = v§ — v, & = V] x v, andez = yieqj x ¥, & = use , ; . .
e1 x &. The solution space of this optimization problem is the in- ;ound a;s the |nt(t=,_rs¢ct{_on of three planes, two of which are obtained
tersection of two planes, defined by rom volume optimization. o
If the vertices| [ | e|] ]| are all coplanar, the volume optimization
yields infinitely many solutions as each tetrahedral volume is zero.
eTeres v+ esTe3 =0 (5) In the case when the vertices are nearly coplanar, Equation 9 results
T in constraints that are not-compatible with prior constraints, and
(e1xe3)'v=0 (6) we assume that the surface errors are small enough that optimiza-

tion of other aspects of the mesh are more important, for example
maximizing the aspect ratio of the affected triangles. Additional
optimization is discussed in the next two subsections.

Each of these constraints is added\t¢in no particular order) sub-
ject to the compatibility rules mentioned aboveeddll that these
two constraints are only used whef e|] is non-empty.

423 Volume Optimization 4.2.4 Boundary Optimization

Th . . hod " o b For boundary optimization, we use a 2D analogy to the above men-
| e rﬁmalrlung cprrgtra_\mtl metl ods are ha optlmlzatl_ondpro " tioned volume optimization. That is, we minimize the sum of
ems that alone yield single solutions in the unconstrained, non- squared areas described in Section 4.2.2:

degenerate case. Because prior constraints may exist, these meth-
ods involve minimization of some objective functiéte, v) subject _ 2 e a2
to zero, one, or two linear equality constraifés b). In addition, fa(ev)=L(e) ZA((V’VO’Vl))
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Figure 5: The optimal vertex for a collapsed boundary edge
(a2, bp) is the set of vertices for which the boundary area is pre-
served; boundary optimization yieldas, bz). The volume preser-
vation constrainfaz, b1 ), not shown here, is parallel to the plane of
the figure.

Figure 4: The optimal vertexexpressed as the intersection of three

planesjaj,bs1) ensuresthat the volume is preserved, wielg by)

and(ag, bz) correspond to the constraints due to volume optimiza- fs(e,v) = Z L((vvi))?
tion. i

which is the sum of squared lengths of the edges incident upon

By minimizing fs, we maximize the quality of the resulting trian-
gles. Because we know that the surface is locally planar (or nearly
planar) the choice of does not (significantly) alter the sum of areas

of the incident triangles after the edge is collapsed. Thus, by mini-
mizing the above edge lengths, we ensure that the area to perimeter
ratios of the resulting triangles are maximized. The objective func-

whereL(e)? is the squared length of the edgeThe reason for in-
cluding this non-negative constant will be explained later. It should
be clear that it has no effect on where the minimunfgbccurs.
The above equation reduces to

1 1 tion fscan be written as
f = =Vv'H Tv+ 2k S
B(&V) 5V Hevtce v+ ke
L2 |1+ 1+ o1
= > [zv IZ(><31|)(91|><) v+ fs(e,v) = 5V Hsv+cs'v+ Eks
1+ T 1 T
(Z(eliXEZi)T>V+ = 2 EV ZI V4 _ZVi V‘|‘§ ZVi Vi (11)
I I I
]
1 It is fairly easy to show thafs increases with the squared distance
T ;
Sl eie (10) of v to the centroid offv;}.
2 I
where the matriXvx) is defined as 4.3 Edge Costs
0 —v, w Given an optimal vertex position for an edge collapse, we need to
(V)= v OZ _\3; determine the cost of collapsing the edge. The term “optimal” needs
_\Z,y Vi OX to be put in context, however. By defining the edge cost in terms

of the objective functions that were minimized above, the vertex
position is optimal with respect to the incurred cost of collapsing
the edge. We have chosen to write the edge cost as a combination
of the following terms:

and(xv) = (vx)T. As before, Equation 8 is used to further con-
strainv. Figure 5 shows constraints associated with boundary
preservation and optimization.

ov fv(ev)+cafp(e V)
o TV (Vv )7+

4.2.5 Triangle Shape Optimization c(ev)

Under certain circumstances, the constraints discussed previously
are not all compatible and do not yield a single solution, and fur-
ther optimization can be employed. Typically, these cases occur 2 8 82

when Fé)he objective functions are constant, e.g. when the vertices CaL(€) IZA((V’VO Vi) (12)
[[[e]]] are all coplanar, or when the verticigs | e|] | are collinear.

In these circumstances, we have decided to optimize the shape ofThat is, the cost is a weighted sum of the terms minimized in the
the triangleq [v]] such that equilateral triangles are preferred over volume and boundary optimization. The squared length of the edge
long and skinny ones. Elongated triangles can introduce unwantede, L(e)?, used in the boundary objective function ensures scale in-
shading discontinuities and may slow down some rendering meth- variance and makefs compatible withfy. We have omitted the
ods. As a measure of triangle shape quality, we have chosen theterm for triangle shape optimization as it tends to penalize edges
following expression: that otherwise have low values féy and fg. Recall thatfsis used



in the optimization only wheth, andfg are both close to zero,and  polygonal models—an original and a simplified model—and com-
serves as a last resort to constraininghen all other methods have  putes the maximum and mean geometric errors of the simplified
failed. For the results presented in this papgr= cg = 1, which model with respect to the original. This is done by point sampling
has given good results for all the models that we have tried. the simplified model uniformly, using Phong interpolation to esti-
mate the surface normal at each sample, and intersecting the line
defined by the point sample and its normal with the original model.
Both the maximum and mean distance between the point samples
Given an underconstrained solution for the venekat preserves and their corresponding intersections with the_ original are recorded.
both volume and boundary area, we choeseich that in Equa- ‘We selected Metro for several reasons. First, we did not author
tion 12 is minimized. Notice that can be written in the form of this tool, and it is our hope that this eliminates one potential source
Equation 7. This allows us to minimize the volume and bound- ©f bias on our part. ‘Second, Metro uses a point sampled distance

ary objective functions simultaneously, i.e. following volume and Measure that is quite different from the volume-based calculations
boundary preservation, we minimize that drive our simplification technique. Thus it is less likely that

we have tuned our algorithm to Metro's distance measure. Third, it

is publically available so that others may perform evaluations that
T can be matched with those presented here. Finally, we have some

cev) = 3V (ovHv+ceHp)v+ degree of confidence in Metro because the values that it returns for

4.4 Summary of Vertex Placement

( P )TV—I— various models are a good match to our own visual impressions of
1(’\/0\/ B-B the qualities of the different models.
E(C\/kv + Cgkg) (13)

5.2 Comparisons

If the solution is stillunderconstrained, we employ triangle shape

optimization. Thus, to find, constraints are added as follows: We used two test models in our comparisons. One of these mod-

els is the Stanford Bunny, which is often used as a test object for
simplification. It is also a good candidate object because it contains

method _ constraints - equation several regions with boundaries on its underside. The second object
1. volume preservation <1 3 is a model of the bones in a human hand that was constructed for
2. boundary preservation <2 5,6 stereolithography (Plate 4a). The bones are joined by cylinders so
3. volume/boundary optimization <3 8,13 that the model will be a single connected object after the physical
4. triangle shape optimization <3 8,11 model is created using stereolithography. At 650,000 triangles, this

model allows us to see the performance of the simplification meth-

The constraints presented in this section rely on the use of ods over a wide range of detail levels. For both of these models
quadratic objective functions. These squared terms were introducedwe produced simplified versions at eight different levels of detail,
to eliminate square roots and to allow an efficient optimization pro- roughly halving the number of edges at each level. For each simpli-
cedure. However, one drawback of this approach is that it is sensi-fication method, we attempted to produce simplified models with
tive to modifications of the mesh connectivity that don't affect the the same number of edges, which takes into account both the num-
geometry, e.g. splitting a triangle in two affects the sums of squared ber of vertices and triangles. Two versions of a model with surface
areas and volumes associated with the triangle. Such cases can beoundaries that have the same number of triangles may have rather
detected and eliminated as a pre-processing step. large differences in the number of vertices, and vice versa. Keeping

In rare cases, the solution 0 remains underconstrained, at E ~V 4T the same for all methods ensures a more fair comparison.
which point some additional criterion could be used to determine  We simplified both models using six different algorithms, includ-
v. We have simply chosen to reject such edges as edge collapséng our own:
candidates.

(1) Mesh Optimization [12]

5 RESULTS (2) Progressive Meshes [13]

5.1 Geometric Comparison Tool (3) Simplification Envelopes [4]

In order to assess the quality of our simplification huet, we cre- (4) JADE (vertex decimation) [2]

ated a number of simplified models and we have compared them to : .

simplified models created using other published simplification tech- (5) QSlim (quadric error) [7]

niques. We could have attempted to implement these algotithms () Memoryless (our method)

from their published descriptions, but in doing so we might have

introduced bias by not tuning the parameters of the other meth-  \ethods 3 and 4 use vertex removal and the remaining four use

ods with enough care. Instead, we chose to compare our methodedge collapse. All the methods besides our own use some form of

to results taken from |mp|ementat|0ns by the authors of the meth- geometric h|story to guide Simp"fica’[ion’ hence we use the name

ods. Doing so is not free from bias either because some simplifica- “Memoryless” for our method.

tion methods are not publically available, often due to commercial  Figures 6 and 7 show the performances of the different algo-

or intellectual property right restrictions, thus some techniques in- rithms on the bunny and hand models. As can be seen, QSlim is the

evitably will not be represented in comparisons such as ours. We fastest of the methods, followed by our method. All models were

feel, hOWeVer, that Simplification techniques have become maturesimp”fied on a four_processor’ 195 MHz R10000csn Graphics

enough as a sub-area within computer graphics that researcherg)nyxz machine with 1 GB of main memo#y.

should at least make an attempt to assess thigyjattheir results.
We have chosen to use thdetro geometric comparison tool 1The Progressive Mesh models were generated on a one-processor, 195

in order to measure differences between an original model and aMHz R10000 Sicon Graphics Octane. For our purposes, these machines

simplified version of that polygonal model [3]. Metro accepts two are comparable in performance.




—X— Mesh Optimization

Figures 8 and 10 show the mean geometric deviations between [~/ """
the original and the simplified models. The scale of the logarithmic |—e—uee
y-axis is 1,000 times the ratio of the error and the bounding box |2 om0 .
diagonal. It can be seen from these graphs that the models with| [ — 4 b1~
the best mean geometric errors were produced by our method and
by Mesh Optimization. These two algorithms give nearly identical
mean geometric errors. (Recall, however, that our method is orders
of magnitude faster than Mesh Optimization.) There is remarkable
consistency in the data points of these graphs. Each algorithm gives
a nearly straight line in lo@dge count versus logmean erroy.
Also, the relative behaviors of the different methods are the same
for both models across all levels of detail. The consistency of these
results gives us confidence in the reliability of these Metro mea-
surements.

10,000 +

simplification time (s)

1,000 1—

Figures 9 and 11 show the maximum geometric deviations be- 100 1,000 10,000 100,000 1,000,000
tween the original and simplified models. There appears to be little model size (edges)
consistency in the maximum errors shown in these graphs. We can
think of two possible causes for this. One is that the relationship ) o
between number of edges in a model and the maximum error a par- Figure 7: Simplification time for hand model.
ticular algorithm gives is not consistent across models and levels of

detail. Another possibility is that Metro's measurement of maxi- .
mum error is inaccurate. 5.3 Additional Results

Plates 1a through 1f show the bunny models created by the six Plates 4 through 6 show additional results from our algorithm.
different simplification techniques. Each model has approximately Plate 4b is a 4,266 triangle version of the hand model created using
2,000 edges. All of these models appear to be reasonable low-our method. Plates 5a and 5b are of a turbine blade. This turbine
resolution versions of the original model (Plate 3a). We have found Plade model consists of 1.8 million triangles, and contains very
that people tend to focus their attention on facial features of the fine interior detail. Simplifying this model is challenging due to
bunny such as the eyes and nose, and a chance polygon at sucls sheer size and its topological complexity, with a large number
places can dramatically alter the casual observer's impression ofof tiny holes and a very noisy surface. This model also has many
these models. We note that for these and other models, the twosSharp edges, and so provides a different challenge than the rounded
vertex removal methods (Plates 1c and 1d) seem to produce morefeatures of the bunny and hand models. The model in Plate 5b is
sliver triangles than the other methods. This is probably due to the @ 13,332 triangle version of this model that was created using our
restriction of never being able to move vertex positions. algorithm in an hour and fifteen minutes. The only other algorithm

that we were able to use to simplify this model was QSlim, which

Plates 2a through 2f show the underside of the same bunny mod-required nearly ten hours due to disk thrashing from lack of mem-
els shown in Plate 1. Plate 3b shows the original model's underside ory on the 1 GB machine.

Mesh optimization (Plate 2a) appears to have distorted the bound- Plate 6a is a model of a range scanned dragon with 870,000 tri-
ary positions. Both JADE and QSlim (Plates 2d and 2e) used a largeangles. The result of simplifying this model using our algorithm
number of rather thin triangles in order to maintain the boundaries, is shown in Plate 6b. Notice that when simplified to 10,922 trian-
although it is possible that parameter tuning could change this. Pro-gles, the model still retains the scaly texture ontioely as well as
gressive meshes, envelopes, and our memoryless technique yieldeatures such as the teeth and the fins on its back.
similar results on the boundaries. There is no one “best” algorithm for simplifying models. Each
of the methods used above has a niche for which it is well suited,
depending on speed and memory requirements, the types of mod-
X Hesh Optimizaton els being used, and the geometric and visual requirements of the

—+—Progressive Meshes - = = - - = - - -4 - - - - - - - - - - - - -—l--—--—-—-—-—--—-—-—-—-

e eeepes |~~~ CCTITITIITIIIIIIIIIIIIIIIIIE application. We believe that the memoryless method that we have
—o—anoe Y, presented in this paper should be particularly useful for applications
e s Sttt S—X—— XE—X—X— D that require the simplification of large models or those that require a

low mean geometric error. Mean geometric error is a good indicator
of visual fidelity to the original model. Thus we believe that mod-
els created using our method are suitable for applications where the
overall visual impression is important, such as vehicle simulators,
building walkthroughs, and educational software. Applications re-
quiring absolute guarantees on error bounds, however, should in-
stead use a method that provides absolute distance bounds. We
plan to make our code available on the Web so that others can use it
for their applications or may incorporate aspects of our method in
other simplification systems.

1,000 =

simplification time (s)

100 1,000 10,000 100,000

model size (edges) 6 FUTURE WORK

There are several possibilities future directions for this work. A
Figure 6: Simplification time for bunny model. straightforward extension to our method would be to allow any two

vertices to be merged, whether or not they share a common edge.

This would allow topology changes as demonstrated in [7, 16].



Our decision procedures for edge collapse could also be used in [16] Porovic, J. and HPPE H.. Progressive Simplicial Complexes. Proceedings
combination with other frameworks for simplification. If, for ex-

ample, maximum error is a high priority, then our edge collapse
operation could be merged with any of a number of approachesthat
track maximum error. This could produce a method that would re-
tain the mean error behavior of our method but also would bound [18]
the maximum error. As another example, our method would be a
memory efficient way to create the edge collapse history used in [1g;

a view-dependent simplification framework [14, 15]. Finally, we

have demonstrated that volume preservation and per-triangle vol-
ume optimization is an effective measure of deviation from a sur-

face. It is likely that a 8l more accurate measure of volume devi-
ation could be performed if each triangle or vertex carried with it
additional information.
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1b. Progressive Meshes

la. Mesh Optimization

1d. JADE

1c. Simplification Envelopes

1f. Memoryless Simplification

le. QSlim
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2b. Progressive Meshes 2c. Simplification Envelopes

2a. Mesh Optimization

686E = 2,003T = 1,314)

(v=

686E = 2,027T = 1,338)

(v=

701E = 2,046T = 1,342)

(v=

687E =2,027T = 1,337)

v

2f. Memoryless Simplification

711E = 2,027T = 1,313)

2e. QSlim
(V=

691E = 1,983T = 1,289)

2d. JADE
(V=

3b. Base of bunny model with surface boundaries

3a. Original bunny model

104,288T = 69,451)

(V = 34,834E
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4b. Memoryless Simplification

4a. Original hand model

2,123E = 6,399T = 4,266)

_(V=2123E=6,399T=4,266)  _____

327,323 = 981,999T = 654,666)

_ (V=327,32%F = 981,999T = 654,666) _ _

5b. Memoryless Simplification

5a. Original turbine blade model

6,926E = 19,998T = 13,332)

_(V=6,926E=19998T = 13,332) _ ___

N~

=1

882,954 = 2,648,082

_ (V=882,954 = 2,648,08:

6b. Memoryless Simplification

6a. Original dragon model

16,383T = 10,922)

5,353E =

(V=

435,545 = 1,306,959 = 871,306)

(V=
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