
UC Davis
IDAV Publications

Title
Simplification of Tetrahedral Meshes

Permalink
https://escholarship.org/uc/item/868157fr

Authors
Trotts, Isaac J.
Hamann, Bernd
Joy, Ken
et al.

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/868157fr
https://escholarship.org/uc/item/868157fr#author
https://escholarship.org
http://www.cdlib.org/

Simplification of Tetrahedral Meshes

Issac J. Trotts*
Bernd Hamann
Kenneth I. Joy
David F. Wiley

Center for Image Processing and Integrated Computing
Department of Computer Science

University of California, Davis 956164562

Abstract

We present a method for the construction of multiple levels of tetra-
hedral meshes approximating a trivariate function at different levels
of detail. Starting with an initial, high-resolution triangulation of a
three-dimensional region, we construct coarser representation levels
by collapsing tetrahedra. Each triangulation defines a linear spline
function, where the function values associated with the vertices are
the spline coefficients. Based on predicted errors, we collapse tetra-
hedron in the grid that do not cause the maximum error to exceed a
use-specified threshold. Bounds are stored for individual tetrahedra
and are updated as the mesh is simplified. We continue the simplifi-
cation process until a certain error is reached. The result is a hierar-
chical data description suited for the efficient visualization of large
data sets at varying levels of detail.

Keywords: Approximation; hierarchical representation; mesh gen-
eration; multiresolution method; scattered data; spline; triangula-
tion; visualization.

* {trotts,hamann,joy,wiley}@cs.ucdavis.edu

O-8 186-9 176-x/98/$10.00 Copyright 1998 IEEE

1 INTRODUCTION

One of the most critical and fundamental research problems encoun-
tered in the analysis and visualization of massive data sets is the
development of methods for storing, approximating, and rendering
large volumes of data efficiently. The problem is to develop differ-
ent representations of the data set, each of which can be substituted
for the complete set depending on the requirements of the analysis
or the visualization technique. The data set may be represented by a
few points, or by several million if necessary, with each of the data
sets capturing the features of the original data. A hierarchical rep-
resentation (or multiresolution representation) allows the study of
large-scale features by considering a small subset and the study of
small-scale features by considering a large subset of a given scien-
tific data set.

Most scientific data sets are multivalued, meaning that multiple
dependent variables - e.g., velocity, pressure, temperature, salin-
ity, sound speed, chemical or nuclear contamination, or even entire
“matrices” (tensors) - are associated with each grid point. The grids
may represent a surface or a volume in space, and the underlying
grid may belong to various grid types: it may be structured, where,
in the volumetric case, the grid cell arrangement consists of hexahe-
dral cells, or it may be unstructured, with a cell arrangement consist-
ing of tetrahedra, hexahedral cells, or even combinations of various
types of cells. Extremely large data sets cannot be analyzed or vi-
sualized in real time unless data reduction/compression methods are
used, or “features,” extracted from the given data sets in a prepro-
cessing step, are rendered.

In this paper, we focus on 3-dimensional tetrahedral meshes,
These meshes provide the greatest possible degree of flexibility and
are less restrictive than all other mesh topologies, e.g., Cartesian,
rectilinear, and curvilinear. Furthermore, each mesh can be con-
verted into a tetrahedral mesh. Data structures, data traversal, and
data rendering for tetrahedral meshes are, in most cases, more in-
volved than for more “structured” representations. Nevertheless,
when visualizing very large data sets defined over complex three-
dimensional regions it is more convenient to use tetrahedral meshes
due to their ability to better adapt to local features. It is also im-
portant to investigate means for the representation of tetrahedral
meshes at various levels of detail for efficient rendering and anal-
ysis.

Our method for the generation of a hierarchy of tetrahedral
meshes is based on collapsing individual tetrahedra and removing
them from the mesh. Considering a particular mesh, we weigh each
tetrahedron based on a predicted increase in approximation error
that would result after its collapse. The tetrahedra are ordered by
these weights and collapsed one-by-one, with changes in the errors
of the neighboring tetrahedra reflected in the new ordering.

The construction of multiple levels of tetrahedral meshes is a pre-
processing step for subsequent data visualization. Speed is not the
primary concern when constructing the levels; it is more important

287

that the resulting data format be compact and allow for simple and
efficient access during the visualization process. Error estimates
should be known for each level as well.

In Section 2, we review the algorithms related to mesh simplifi-
cation that apply to our work. In Section 3, we illustrate our tech-
nique for triangle meshes in the plane. T:he main principles become
very clear from the discussion of the planar case. In Section 4 we
describe the neededextensions for tetrahedral meshes. Implementa-
tion issues are discussedin Section 5 and the results of our algorithm
are illustrated on a set of complex examples in Section 6. Conclu-
sions and future work are discussed in SIection 7.

2 RELATED WORK

Three classes of algorithms exist that directly pertain to our work
and that deal with triangle or tetrahedral meshes: Algorithms that
simplify the mesh by removing vertices; algorithms that simplify the
mesh by removing edges; and algorithms that simplify the mesh by
removing higher-level simplices.

Schroeder et al. [171 and Renze and Oliver [161 have developed
algorithms that simplify a mesh by removing vertices. Vertices
to be removed are identified through a distance-to-simplex crite-
rion. Removing a vertex creates a hole in the mesh that ‘must be re-
triangulated, and several strategies may be used: Schroederet &use
a recursive loop splitting procedure to generate a triangulation of the
hole, while Renze and Oliver fill the hole: by using an unconstrained
Delaunay triangulation algorithm.

Hoppe [9, lo] and Hoppe and RopoviC [IS] describe a
progressive-mesh representation of a triangle mesh. This is a
continuous-resolution representation based on an edge-collapse
operation. The data reduction problem is formulated in terms of a
global mesh optimization problem [1 I], ordering the edges accord-
ing to an energy minimization function. Each edge is placed in a
priority queue by the expected energy cost of its collapse. As edges
are collapsed, the priorities of the edges in the neighborhood of the
transformation are recomputed and reinserted into the queue. The
result is an initial coarse representation of the mesh, and a linear
list of edge-collapse operations, each of which can be regenerated
to produce finer representations of the mesh. Other edge-collapse
algorithms have been described by Xia and Varshney [181, who use
the constructed hierarchy for view-dependent simplification and
rendering of models, and Garland and Heckbert [3], who utilize
quadratic error metrics for efficient calculation of the hierarchy.

Hamann [6,7], and Gieng et al. [4, S] have developed algorithms
that simplify triangle meshes by removing triangles. These algo-
rithms order the triangles according to a weight based partially on
the curvature of a surface approximate, partially on the changes in
the topology of the mesh due to a triangle collapse, and partially
due to the predicted error of the collapse operation. Triangles are
inserted into a priority queue and removed iteratively. Modified tri-
angles receive new weights and are inserted back into the priority
queue. By selecting a percentage of triangles to be collapsed it is
possible to “parallelize” triangle removal.

Cohen et al. [2] proposed the idea of :I simpltjication envelope of
a surface. They produce hierarchical representations of an object,
each of which is guaranteed to be within a user-specified distance
from the original model. They generalize the concept of offset sur-
face to a polygonal representation of an envelope that surrounds the
surface within the specified tolerance.

Cignoni et al. [I] treat the tetrahedral mesh problem. They use
a top-down Delaunay-based procedure to define a tetrahedral mesh
that represents a three-dimensional set of points. The mesh is re-
fined by selecting a data point whose associated function value is
poorly approximated by an existing mesh and inserting this point
into the mesh. The mesh is modified locally to keep the Delaunay
property intact.

Figure 1: The stencil of a triangle T. The shaded triangles all share
a vertex with T; A collapse of the triangle T impacts the triangles
of the stencil.

This paper extends the results of Gieng et al. [5] to tetrahedral
meshes. The general idea is to base the scheme on the predicted de-
viation from the original scalar field due to a tetrahedron collapse.
If the deviation can be measured closely, the complicated weights
of Hoppe [1 l] and Gieng et al. [S] should not be necessary. A maxi-
mum deviation bound is kept for each tetrahedron in the mesh. This
value, together with the predicted increase in the error if the tetra-
hedron is collapsed, enables us to determine which tetrahedron to
collapse and to insure that the maximum deviation over the surface
remains less than a specified value. As the mesh is simplified the
maximum deviation is updated for each tetrahedron affected by the
collapse operation.

Our algorithm is a bottom-up approach that produces a hierarchy
of tetrahedral meshes, each of which is guaranteed to be within a
specific error distance from the original mesh. A tetrahedron is se-
lected for collapse if it leads to a minimal increase in the overall er-
ror of the approximation, and does not increase the global error be-
yond a maximal error tolerance. The error calculations are local cal-
culations, so the algorithm is fairly efficient even on large meshes.
The algorithm collapses an individual tetrahedron by iteratively col-
lapsing its edges. This strategy allows us to avoid many of the topo-
logical considerations of Gieng er al.‘s work. Our algorithm utilizes
only the original data points, which allows us to represent the result-
ing hierarchy very compactly.

3 TRIANGLE COLLAPSE IN THE PLANE

To understand the collapsing of tetrahedra in a three-dimensional
mesh, it is useful to first study the collapsing of triangles in
a planar mesh. Assume we have a collection of data points
(00, ~1, ~2, . ..v.} in the plane and a set of triangles
{To,Tl, Tm} defining a triangulation of the data points.
We assume that the generated triangulation is fair, i.e., the mesh
is connected, and each edge in the mesh is shared by at most two
triangles. Meshes should not be self-intersecting, i.e., no triangle
of the mesh should have an intersection with the interior of another
triangle.

We call a triangle T a vertexneighbor of a vertex v if v is a vertex
of T, and T is an edge neighbor of an edge e if e is an edge of T.
Each edge has two edge neighbors, while each vertex may have any
number of vertex neighbors. The vertex neighbors of a triangle T
consist of all triangles that share a vertex with T. The edge neigh-
bors of T are the triangles that share an edge with T. The union of
the vertex neighbors of a triangle T is called the sfencil of T. The
stencil contains those triangles that can be modified by collapsing T
(see Figure 1).

It is possible to reduce the collapse of a triangle to a sequence

288

(4 lb)

Figure 2: A two-edge collapse of a triangle T: (a) the triangle and its associated stencil; (b) the mesh after the collapse of edge el ; (c) the
mesh after the collapse of both er and e2.

of edge collapses. Given an edge e, with endpoints VI and 712, we
collapse the edge by removing the two triangles sharing the edge
and by collapsing VI to v2 (see Figure 2). This operation stretches
the triangles that share VI as a common vertex to fill the hole. The
edge-collapse operation does not commute, i.e., collapsing ~2 to VI
would produce a different result.

We collapse a triangle T by successively collapsing two of its
edges (see Figure 2). In this case, the edge neighbors of T are elim-
inated from the mesh and the vertex neighbors of two of the vertices
of T are stretched to include the third vertex of the triangle. There
are nine ways to collapse a triangle, but the results can modify the
mesh in only three ways.

3.1 Error Bounds

To calculate a bound for the error due to a triangle collapse, we
assume that the triangle mesh represents a scalar field defined by
a piecewise-linear spline with individual spline segments s =
F(u, v, w), where (u, v, w) are the barycentric coordinates of a
point in the triangle. The spline coefficients are the function values
at the mesh vertices.

Each triangle T has an associated a “maximal deviation” CT.
which represents a bound on the deviation between the linear spline
segment defined by T and the linear spline of the original triangle
mesh in the area of T. Original triangles have ET = 0, and this value
is updated whenever a collapse is performed.

Suppose we have selected a triangle T for collapse, and let e be
the edge-. Suppose that VI has t vertex neighbors TI , Tz , ., Tk
and suppose that Tk-1 and Tk are edge neighbors of e. Then, as vr is
collapsed to VZ, the triangles TI , TZ , , Tk-2 are stretched to have
2)~ as a common vertex, and VI is eliminated. This collapse opera-
tion (see Figure 3) creates a new set of triangles TIC, TF, TE2,
which define a new piecewise-linear function Fc. We can calcu-
late the maximal deviation between the two linear splines over each
stretched triangle TC by considering the points where TC and the
original triangles of the stencil of T intersect (see Figure 4).

Let cl, ~2, . . . , c3 be the points where the stretched triangles inter-
sect the original triangles, and let CO be the eliminated vertex VI (see
Figure 5). For each of these points, we know that the induced linear
spline cannot deviate more than

(FC(ct) - F(G)(+ max {CT}

from the linear spline defined by the original triangles. This means
that, for each point ci the deviation is bounded by the difference be-
tween the two linear splines at c; plus the maximum of the errors
CT for the triangles that contain c; as an edge point or vertex point.

(b)

Figure 3: Calculation of the error introduced by collapsing an edge:
(a) the triangle T and original mesh; (b) the triangulation after the
collapse of edge e.

289

z

Figure 4: Calculation of the etror for aI stretched triangle TC. A
bound on the increase in the deviation from the original triangles TI ,
TZ and TZ is the maximum of the deviations measured at cl, Q, and
c3.

Figure 5: Calculation of the error bound: CO is the location of the
eliminated vertex ~1; the points ci, i =: 1, k, are the intersec-
tion points of the stretched triangles and the triangles of the previ-
ous mesh. A bound on the error for each stretched triangle can be
calculated by finding the deviations in the linear splines at the c; and
adding these values to the maximum of the errors over the original
triangles at these points.

Therefore, an error bound for the triangle TC can be calculated by
taking the maximum of this deviation over all points c, that are con-
tained in the triangle, i.e.,

B(TC) = max { IFC(c;) - F(ci)l + maxcr} . (1)

We note that one of the stretched triangles will contain the (elimi-
nated) vertex CO, and in this case the maximum must also include
the deviation between the two linear splines at this point. Using this
ap roximation, we can calculate a new error bound for each triangle
T8.

We define the “cost” of collapsing triangle T to be

6T = min [mpxB(Ty)] - 6~. (2)

where the minimum is taken over all six possible collapse strategies
for T, and the maximum is taken over the stretched triangles formed
by collapsing two edges of T. This is the difference between a pre-
dicted error bound for the region and the current error bound at T.

3.2 Outline of an Algorithm

Suppose we are given a set of vertices { ‘~0, ~1, ~2, . . .v,,} in the plane
and a triangulation defined by the set of triangles {TO, TI , . . . , T,,,}.

Each triangle T is assigned an error measure ET. initially set to zero.
The value CT represents a bound on the difference between the linear
spline defined by T, and the linear spline segment defined by the
initial mesh.

For each triangle T in the mesh, calculate a weight 6~ which re-
flects the “predicted error,” Le., the maximal deviation that would
result when collapsing the triangle, as defined by equation (2). Place
the triangles in a priority queue ordered by increasing values of
cT + 6T. Thus, the first triangle removed from the queue should
have the least effect on the change in the linear spline after the col-
lapse operation.

Next, select a maximum error to for which you wish a mesh to
be generated and iteratively perform the following steps:

Remove a triangle T from the queue;

0 if CT + 6T > ~0, then the triangles in the queue
represent the simplified mesh;

0 ifcT+& 5 ea,then

- collapse the triangle T and remove the edge
neighbors of T from the queue;

- reCdCUkde cp and 6Tc for each triangle
TC that is stretched as a result of the collapse,
and reposition it in the queue;

- recalcukde 6T for each triangle T in the
stencil of a stretched triangle TC.

The last step is necessary to keep the queue in the correct order.
Once a triangle is stretched, the cost of collapsing a neighboring tri-
angle changes.

4 TETRAHEDRAL MESHES

We now generalize these principles to simplify a tetrahedral mesh.
We assume that we have a set of vertices { ~10, 01, ~2, . .vn} in three-
dimensional space and a set of tetrahedm {TO, TI , . , T,,, } defining
a “triangulation” of this data set. In a similar way to the planar case,
we define the vertex neighbors of a point v to be the set of tetrahedra
that share v as a vertex, and define the edge neighbors of an edge e
to be the set of tetrahedra in the mesh that share e as an edge. In
addition, we define the face neighbors of a face f to be the (at most)
two tetrahedra in the mesh that share the face f. We also define,
in an analogous fashion, the vertex neighbors, edge neighbors and
face neighbors of a tetrahedron. A tetrahedron has at most four face
neighbors, but can have any number of edge and vertex neighbors.

We collapse a tetrahedron T by successively collapsing three of
its edges. One can collapse to any of a tetrahedron’s four vertices,
and there are ten ways to collapse individual edges to achieve one
of the four final states. A collapse removes the edge neighbors of T,
and the vertex neighbors of three of the vertices of T are stretched
to include the fourth vertex, the vertex to which we collapse.

We insure that the collapse operation does not produce intersect-
ing tetrahedra by comparing the sign on the volume of the original
and stretched tetrahedm. If by collapsing an edge of the tetrahedron
T, the sign of the volume of a stretched tetrahedron TC flips, we
label the edge as “not-collapsible.”

4.1 Error Bounds

To estimate the error, we assume that the tetrahedral mesh repre-
sents a linear spline defined by individual spline segments s =
F(u, v, w, 1), where (a, v, w, t) are the barycentric coordinates of a
point inside a tetrahedron. The spline coefficients of F are the func-
tion values at the mesh vertices.

Each tetrahedron T will have associated a “maximal deviation”
ET, which will represent a bound on the deviation between the lin-
ear spline segment defined by T and the linear spline of the origi-
nal tetrahedral mesh in the area of T. An original tetrahedron T has
CT = 0, and this value is updated whenever a collapse is performed.

If FC is the piecewise linear function induced by a collapse op-
eration we can bound the errOr over a stretched tetrahedron TC sim-
ilarly to equation (l), i.e.,

B(T’) = mpx { IFC(c;) - F(Ci)l + max {CT}} (3)

where the c, are the intersection points of the edges of the stretched
tetrahedron TC with the faces of the tetrahedra in the previous mesh
(and possibly one of the eliminated vertices of the collapsed tetra-
hedron) and the maximum is taken over all tetrahedra that contain
c; as an edge point or a vertex. We define the cost of collapsing a
tetrahedron T as

&- = min [mpxB(Ty)] - ET,

where the minimum is taken over all possible collapse strategies for
the tetrahedron T, and the maximum is taken over the tetrahedra
stretched by collapsing three edges of T. This value is the differ-
ence between a predicted error bound for the region and the error
bound at T.

4.2 Boundary Preservation

The boundary surface of a tetrahedral mesh is given by the set of all
faces belonging to exactly one tetrahedron. It is desirable to pre-
serve this boundary surface as much as possible. Some data sets
have rectangular boxes as their boundaries while most are much
more complex. Given a tetrahedron T, selected for collapse, we
check the following:

l If T has a single vertex v on the boundary, the three edges that
contain v can only be collapsed to v. The other three edges of
T can be collapsed in either direction.

l If T has a two vertices VI and 2)~ on the boundary, then the four
edges of the tetrahedron containing v1 and 7~2 can only be col-
lapsed to these points. The other two edges of the tetrahedron,
which includes ~11 v2, can be collapsed in either direction.

l If T has three vertices VI, v2 and v3 on the boundary, then the
three edges containing the fourth point and one of ~1, v2 or 0s
can only be collapsed to the boundary points. The three edges
on the boundary can be collapsed in either direction.

l if T has a four vertices on the boundary, there are several cases
to consider:

- T is at the comer of mesh. In this case T has only one
face neighbor. These tetrahedra can only be collapsed to
the comer.

- T is on a boundary edge. In this case T has two face
neighbors. If VI and 2)~ are on the edge, then the four
edges containing v1 and 2)~ can only be collapsed to the
edge. The edge VI v2 can be collapsed in either direc-
tion.

- T has one vertex on an boundary edge. In this caseT has
three face neighbors. If v1 is the vertex on the boundary
edge, then the three edges incident to VI can only be col-
lapsed to ~1.

Each of these cases restricts the number of possible edge collapse
operations on T. In some cases, only one or two edges of T may
be collapsible, and T may be collapsed to a face or an edge respec-
tively. In general, if T has an edge with a vertex D on the boundary,
then the edge must be collapsed to v. If we collapse to the other ver-
tex, the boundary would be compromised. Figure 6 illustrates this
for the two-dimensional case.

In general these rules allow the simplification algorithm to work
with data sets having convex polyhedral boundaries.

4.3 Algorithms for Mesh Simplification

Two different algorithmic strategies can be used to simplify
the mesh. The first, similar to that presented in Section 3.2,
utilizes a priority queue and the error prediction mechanism.
The second algorithm makes a pass through the complete tetra-
hedral structure and attempts collapse operations, evaluating
each collapse against the error threshold. Each algorithm works
with a set of vertices { VO, VI, 212, . ..vn}. and a set of tetrahedra
{TO, TI , Tm} forming a triangulation of the vertices. Each
tetrahedron T in the mesh, carries an “accumulated error” ET,

initially zero.
The first strategy is based upon a priority queue, where for each

tetrahedron T, we calculate a weight 6~ which reflects the predicted
error increase resulting from collapsing the tetrahedron as defined
by equation (4). We place the tetrahedra in the priority queue or-
dered by increasing CT + ST.

Select a maximum error EO used to terminate the collapse algo-
rithm, and iteratively perform the following steps:

.Remove a tetrahedron T from the queue;

l if ET + ST > ~0, then the set of tetrahedra in the
queue represent the simplified mesh.

l ifcT$&<EO,

- collapse the tetrahedron T and eliminate the
face neighbors of T from the priority queue;

- recalculate ETC and 8Tc for each tetrahe-
dron TC modified by the collapse operation;

- recalculate 6T for each tetrahedron T in the
stencil of a tetrahedron TC stretched by the
collapse operation.

Three algorithms can be implemented that use the collapse opera-
tion to generate sets of meshes MO, Ml, M, at different levels
of detail approximating the original mesh.

(1)

(2)

Choose a sequenceof error bounds 60 < ~1 < . . . < en. Select
tetrahedra from the queue, collapse the tetrahedra, and reinsert
the stretched tetrahedra into the queue until the tetrahedron T
at the front of the queue satisfies CT + 6~ > ~0. The set of
tetrahedra in the priority queue define the mesh MO.

Using the mesh MO, collapse the tetrahedra in the queue until
the tetrahedron T at the front of the queue satisfies CT + 6T >
61. The set of tetrahedra in the queue defines the mesh MI.

The algorithm continues in this way until mesh M, is gener-
ated.

This strategy generates a sequence of
meshes MO, MI, M, with specified
error bounds EO,<X, en respectively.

Choose a specified number (or percentage) of the original tetra-
hedra to be collapsed at each step. The intermediate meshes are
defined by those tetmhedra remaining in the queue after each
step. Here, the error for each intermediate mesh can be re-
ported.

291

VI

(4 (b)

Figure 6: Collapsing edges on the bound.ary: (a) an edge is collapsed to a boundary vertex; (b) the boundary is destroyed when the collapse
goes the other way.

(3) Similarly to Gieng et al. [5], remove a set of tetrahedra from the
queue and collapse them in parallel. The only restriction is that
the stencils of the tetrahedra to be collapsed must not intersect.
The resulting sequence of meshes can be used for “smooth”
transitions between mesh levels.

The second strategy is based upon a sweep through the grid, ex-
amining each tetrahedron individually.

Choose a sequence of error toleranoes 60 < c1 < . . . <
cn. For each E*,

l Make a sweep through the grid, examining each
tetrahedron T.

l Attempt to collapse each edge Iof the selected tetra-
hedron until either (1) one of these collapses in-
duces an error threshold below ei, or (2) all six
edges of T have been tried.

l A successful collapse modifies several tetrahedra,
which are “stretched” versions of their counter-
parts before the collapse. For each modified tetra-
hedron Tc, calculate the error change 6T, and add
this t0 ETC.

l Continue until the simplified mesh cannot be col-
lapsed further without increasing the error above
ci.

The first strategy selects that tetrahedron that will cause the min-
imal increase in the error at each step. The second strategy utilizes a
“greedy” method that selects an arbitrary tetrahedron and attempts
to collapse it. If the collapse results in a mesh below the error bound,
it is accepted and the process continues. This results in a less struc-
tured algorithm, but avoids many of the complex 6T calculations for
tetrahedra that are removed in the collapsing process.

Using the second strategy also enables a simplified test for
boundary preservation. Consider a vertex ‘u that is removed by col-
lapsing an edge. If v is on the boundary then if the resulting tetra-
hedra, modified by the collapse, does not contain v, the boundary
has been compromised. Therefore, if v is not contained within the
modified tetrahedra, then the collapse is re,jected.

5 IMPLEMENTATION ISSUES

We have implemented this algorithm using a simple data structure
for tetrahedral meshes. We store a list of vertices and a list of tetra-
hedra. Each tetrahedron contains links that reference the four ver-
tices of the tetrahedron and the four face neighbors. Calculating the
vertex neighbors and edge neighbors of a tetrahedron is straightfor-
ward using this data structure.

Each tetrahedron T carries an error estimate CT and a predicted
deviation 6~. The value 6~ is determined by finding the sequence
of edge collapses in T that generates the minimum error increase.
We store this sequenceof collapses in the tetrahedron data structure.
When the tetrahedron is to be collapsed, we neednot recalculate this
sequence.

Our algorithm is based on an “edge collapse” paradigm and can
be implemented using only edge-collapse strategies. However, we
felt that the overhead of implementing and maintaining an edge data
structure would be overwhelming for the large data sets that we use.

6 RESULTS

Results of our work are shown in Figures 7- 15. We utilize voxelized
data sets, where each voxel of the original data set is initially split
into six tetrahedra (see [141). We utilized the “greedy algorithm of
Section 4.3 in each case, and specified a maximum error for each
approximating mesh.

Our first example, shown in Figures 7-9, collapses tetrahedra
until a specified error tolerance is reached. Figure 7 illustrates
a piecewise-linear scalar field over a unit cube containing 41,154
tetrahedra, shown in Figure 8. The function is defined by

f(z, Y, z) =

l

0 ifz<O;
z ifO<1:<1;
1 ifz>l.

Simplifying the mesh with any small user-specified error threshold
yields the mesh shown in Figure 9, which contains 25 tetrahedra and
still represents the scalar field exactly. (We note that 15 tetrahedra
would be optimal.) One would expect that the simplification scheme
works well with simple piecewise-linear functions - and it does.

Our second example is an MRI scan of a human skull and is rep-
resented by an array of 64x64~109 density values. Splitting each

292

293

voxel into 6 tetrahedra, yields approximately 2,700,000 tetrahedra
for the original mesh. Figure 10 shows an isosurface generated for
the original data set. Figure 11 shows an isosurface for a simplified
mesh containing approximately 910,000 tetrahedra, and Figure 12
shows the same isosurface on a simplified mesh containing approx-
imately 209,000 tetrahedra - roughly 8% of the original size.

The third example is a section of a brain taken from a Macaque
monkey. Figure 13 shows a ray-traced image of the brain using the
original data set. This contains approximately 1.3 million tetrahe-
dra. Figure 14 shows a simplified brain data set with approximately
700,000 tetrahedra. This image is almost identical to that shown in
Figure 13. Figure 15 shows the image of a simplified brain data set
with approximately 158,000 tetrahedra - approximately 12% of the
size of the original. Despite some “feathering” in the lower-left cor-
ner of this image, the image is quite good.’

‘We note that a 32x32x32 data set with each voxel split into 6 tetrahedra
would contain 196,608 tetrahedra.

7 CONCLUSIONS

We have presented a method for the simplification of tetrahedral
meshes approximating a trivariate function. The simplification of
the mesh is based upon a tetrahedral collapse algorithm and local
error calculations that insure that the mesh remains within a user-
specified tolerance of the original. Several methods can be applied
to generate various mesh hierarchies to be used in level-of-detail ap-
plications. We have found this a useful tool to treat massive three-
dimensional data sets defined by arbitrary grid structures.

We plan to generalize our approach to allow more flexible place-
ment of vertices when collapsing tetrahedra and to compute the lin-
ear spline coefficients in an optimal way for each triangulation level
(see [8]). Furthermore, we intend to extend and apply our algorithm
to vector fields and time-varying fields.

8 ACKNOWLEDGMENTS

This work was supported by the National Science Foundation un-
der contract ASC 9624034, the Office of Naval Research under con-
tract N00014-97-1-0222, the NASA Ames Research Center under
the NRA2-36832(TLL) program, the Army Research Office under
contract AR036598-MA-RIP, and Lawrence Livermore National
Laboratory under contract W-7405-ENG-48 (B335358). We would
like to thank the members of the Visualization Group at the Center
for Image Processing and Integrated Computing (CIPIC) at the Uni-
versity of California, Davis, for their support.

References

294

[3] GARLAND, M., AND HECKBERT, P. S. Surface simplifica-
tion using quadric error metrics. In SIGGRAPH 97 Conference
Proceedings(Aug. 1997), T. Whitted, Ed., Annual Conference
Series, ACM SIGGRAPH, Addison Wesley, pp. 209-216.

[4] GIENG, T. S., HAMANN, B., JOY, K. I., SCHUSSMAN,
G. L., AND TROTTS, I. J. Smooth hierarchical surface tri-
angulations. In Proceedings of Visualization 97 (Oct. 1997),
H. Hagen and R. Yagel, Bds., IEEE Computer Society Press,
Los Alamitos, California, pp. 379-386.

[18] XIA, J. C., AND VARSHNEY, A. Dynamic view-dependent
simplification for polygonal models. In Proceedings of IEEE
Ksualization ‘96 (Oct. 1996), IEEE Computer Society Press,
Los Alamitos, California, pp. 327-334.

[5] GIENG, T. S., HAMANN, B., JOY, K. I., SCHUSSMAN,
G. L., AND TROTTS, I. J. Constructing hierarchies for tri-
angle meshes. IEEE Transactions on Ksualization and Com-
puter Graphics 4,2 (1998), (to appear).

[6] HAM ANN, B . A data reduction scheme for triangulated sur-
faces. ComputerAided Geometric Design II (1994), 197-214.

[7] HAMANN, B., AND CHEN, J.-L. Data point selection for
piecewise linear curve approximation. Computer-Aided Ge-
ometric Design 1 I, 3 (June 1994), 289-301.

181 HAMANN, B., AND JORDAN, B. Triangulations from re-
peated bisection. In Mathematical Methods for Curves
and Surjkces II, M. Drehlen, T. Lyche, and L. Schumacker,
Eds. Vanderbilt University Press, Nashville, Tennessee, 1998,
pp. 229-236.

[9] HOPPE, H. Progressive meshes. In SZGGRAPH 96 Con-
ference Proceedings (Aug. 1996) H. Rushmeier, Ed., An-
nual Conference Series, ACM SIGGRAPH, Addison Wesley,
pp, 99-l 08.

[lo] HOPPE, H. View-dependent refinement of progressive
meshes. In SIGGRAPH 97 Conference Proceedings (Aug.
1997), T. Whitted, Ed., Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 189-198.

1111 HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,
AND STUETZLE, W. Mesh optimization. In ComputerGraph-
its (SIGGRAPH ‘93 Proceedings) (Aug. 1993), J. T. Kajiya,
Ed., vol. 27, pp. 19-26.

[121 KAUFMAN, A. E. Volume visualization. ACM Computing
Surveys 28,l (Mar. 1996) 165-167.

[I31 KLEIN, R., LIEBICH, G., AND STRASSER, W. Mesh reduc-
tion with error control. In Proceedings of IEEE &ualization
‘96 (Oct. 1996), IEEE Computer Society Press, Los Alamitos,
California, pp. 3 1 l-3 18.

[I41 NIELSON, G., MOLLER, H., AND HAGEN, H., Eds. Sci-
entific Visualization: Overviews, Methodologies, and Tech-
niques. Academic Press, 1997.

[15] POPOVI~, J., AND HOPPE, H. Progressive simplicial com-
plexes. In SIGGJ?APH 97 Conference Proceedings (Aug.
1997), T. Whitted, Ed., Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 217-224.

[16] RENZE, K. J., AND OLIVER, J. H. Generalizedunstmctured
decimation. IEEE Computer Graphics & Applications 16, 6
(Nov. 1996), 24-32.

1171 SCHROEDER, W. J., ZARGE, J. A., ANDLORENSEN, W. E.
Decimation of triangle meshes. In Computer Graphics (SIG-
GRAPH ‘92 Proceedings) (July 1992), E. E. Catmull, Ed.,
vol. 26, pp. 65-70.

295

