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Simplification of Tetrahedral Meshes 

Issac J. Trotts* 
Bernd Hamann 
Kenneth I. Joy 
David F. Wiley 

Center for Image Processing and Integrated Computing 
Department of Computer Science 

University of California, Davis 956164562 

Abstract 

We present a method for the construction of multiple levels of tetra- 
hedral meshes approximating a trivariate function at different levels 
of detail. Starting with an initial, high-resolution triangulation of a 
three-dimensional region, we construct coarser representation levels 
by collapsing tetrahedra. Each triangulation defines a linear spline 
function, where the function values associated with the vertices are 
the spline coefficients. Based on predicted errors, we collapse tetra- 
hedron in the grid that do not cause the maximum error to exceed a 
use-specified threshold. Bounds are stored for individual tetrahedra 
and are updated as the mesh is simplified. We continue the simplifi- 
cation process until a certain error is reached. The result is a hierar- 
chical data description suited for the efficient visualization of large 
data sets at varying levels of detail. 

Keywords: Approximation; hierarchical representation; mesh gen- 
eration; multiresolution method; scattered data; spline; triangula- 
tion; visualization. 
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1 INTRODUCTION 

One of the most critical and fundamental research problems encoun- 
tered in the analysis and visualization of massive data sets is the 
development of methods for storing, approximating, and rendering 
large volumes of data efficiently. The problem is to develop differ- 
ent representations of the data set, each of which can be substituted 
for the complete set depending on the requirements of the analysis 
or the visualization technique. The data set may be represented by a 
few points, or by several million if necessary, with each of the data 
sets capturing the features of the original data. A hierarchical rep- 
resentation (or multiresolution representation) allows the study of 
large-scale features by considering a small subset and the study of 
small-scale features by considering a large subset of a given scien- 
tific data set. 

Most scientific data sets are multivalued, meaning that multiple 
dependent variables - e.g., velocity, pressure, temperature, salin- 
ity, sound speed, chemical or nuclear contamination, or even entire 
“matrices” (tensors) - are associated with each grid point. The grids 
may represent a surface or a volume in space, and the underlying 
grid may belong to various grid types: it may be structured, where, 
in the volumetric case, the grid cell arrangement consists of hexahe- 
dral cells, or it may be unstructured, with a cell arrangement consist- 
ing of tetrahedra, hexahedral cells, or even combinations of various 
types of cells. Extremely large data sets cannot be analyzed or vi- 
sualized in real time unless data reduction/compression methods are 
used, or “features,” extracted from the given data sets in a prepro- 
cessing step, are rendered. 

In this paper, we focus on 3-dimensional tetrahedral meshes, 
These meshes provide the greatest possible degree of flexibility and 
are less restrictive than all other mesh topologies, e.g., Cartesian, 
rectilinear, and curvilinear. Furthermore, each mesh can be con- 
verted into a tetrahedral mesh. Data structures, data traversal, and 
data rendering for tetrahedral meshes are, in most cases, more in- 
volved than for more “structured” representations. Nevertheless, 
when visualizing very large data sets defined over complex three- 
dimensional regions it is more convenient to use tetrahedral meshes 
due to their ability to better adapt to local features. It is also im- 
portant to investigate means for the representation of tetrahedral 
meshes at various levels of detail for efficient rendering and anal- 
ysis. 

Our method for the generation of a hierarchy of tetrahedral 
meshes is based on collapsing individual tetrahedra and removing 
them from the mesh. Considering a particular mesh, we weigh each 
tetrahedron based on a predicted increase in approximation error 
that would result after its collapse. The tetrahedra are ordered by 
these weights and collapsed one-by-one, with changes in the errors 
of the neighboring tetrahedra reflected in the new ordering. 

The construction of multiple levels of tetrahedral meshes is a pre- 
processing step for subsequent data visualization. Speed is not the 
primary concern when constructing the levels; it is more important 
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that the resulting data format be compact and allow for simple and 
efficient access during the visualization process. Error estimates 
should be known for each level as well. 

In Section 2, we review the algorithms related to mesh simplifi- 
cation that apply to our work. In Section 3, we illustrate our tech- 
nique for triangle meshes in the plane. T:he main principles become 
very clear from the discussion of the planar case. In Section 4 we 
describe the neededextensions for tetrahedral meshes. Implementa- 
tion issues are discussedin Section 5 and the results of our algorithm 
are illustrated on a set of complex examples in Section 6. Conclu- 
sions and future work are discussed in SIection 7. 

2 RELATED WORK 

Three classes of algorithms exist that directly pertain to our work 
and that deal with triangle or tetrahedral meshes: Algorithms that 
simplify the mesh by removing vertices; algorithms that simplify the 
mesh by removing edges; and algorithms that simplify the mesh by 
removing higher-level simplices. 

Schroeder et al. [ 171 and Renze and Oliver [ 161 have developed 
algorithms that simplify a mesh by removing vertices. Vertices 
to be removed are identified through a distance-to-simplex crite- 
rion. Removing a vertex creates a hole in the mesh that ‘must be re- 
triangulated, and several strategies may be used: Schroederet &use 
a recursive loop splitting procedure to generate a triangulation of the 
hole, while Renze and Oliver fill the hole: by using an unconstrained 
Delaunay triangulation algorithm. 

Hoppe [9, lo] and Hoppe and RopoviC [IS] describe a 
progressive-mesh representation of a triangle mesh. This is a 
continuous-resolution representation based on an edge-collapse 
operation. The data reduction problem is formulated in terms of a 
global mesh optimization problem [ 1 I], ordering the edges accord- 
ing to an energy minimization function. Each edge is placed in a 
priority queue by the expected energy cost of its collapse. As edges 
are collapsed, the priorities of the edges in the neighborhood of the 
transformation are recomputed and reinserted into the queue. The 
result is an initial coarse representation of the mesh, and a linear 
list of edge-collapse operations, each of which can be regenerated 
to produce finer representations of the mesh. Other edge-collapse 
algorithms have been described by Xia and Varshney [ 181, who use 
the constructed hierarchy for view-dependent simplification and 
rendering of models, and Garland and Heckbert [3], who utilize 
quadratic error metrics for efficient calculation of the hierarchy. 

Hamann [6,7], and Gieng et al. [4, S] have developed algorithms 
that simplify triangle meshes by removing triangles. These algo- 
rithms order the triangles according to a weight based partially on 
the curvature of a surface approximate, partially on the changes in 
the topology of the mesh due to a triangle collapse, and partially 
due to the predicted error of the collapse operation. Triangles are 
inserted into a priority queue and removed iteratively. Modified tri- 
angles receive new weights and are inserted back into the priority 
queue. By selecting a percentage of triangles to be collapsed it is 
possible to “parallelize” triangle removal. 

Cohen et al. [2] proposed the idea of :I simpltjication envelope of 
a surface. They produce hierarchical representations of an object, 
each of which is guaranteed to be within a user-specified distance 
from the original model. They generalize the concept of offset sur- 
face to a polygonal representation of an envelope that surrounds the 
surface within the specified tolerance. 

Cignoni et al. [I] treat the tetrahedral mesh problem. They use 
a top-down Delaunay-based procedure to define a tetrahedral mesh 
that represents a three-dimensional set of points. The mesh is re- 
fined by selecting a data point whose associated function value is 
poorly approximated by an existing mesh and inserting this point 
into the mesh. The mesh is modified locally to keep the Delaunay 
property intact. 

Figure 1: The stencil of a triangle T. The shaded triangles all share 
a vertex with T; A collapse of the triangle T impacts the triangles 
of the stencil. 

This paper extends the results of Gieng et al. [5] to tetrahedral 
meshes. The general idea is to base the scheme on the predicted de- 
viation from the original scalar field due to a tetrahedron collapse. 
If the deviation can be measured closely, the complicated weights 
of Hoppe [ 1 l] and Gieng et al. [S] should not be necessary. A maxi- 
mum deviation bound is kept for each tetrahedron in the mesh. This 
value, together with the predicted increase in the error if the tetra- 
hedron is collapsed, enables us to determine which tetrahedron to 
collapse and to insure that the maximum deviation over the surface 
remains less than a specified value. As the mesh is simplified the 
maximum deviation is updated for each tetrahedron affected by the 
collapse operation. 

Our algorithm is a bottom-up approach that produces a hierarchy 
of tetrahedral meshes, each of which is guaranteed to be within a 
specific error distance from the original mesh. A tetrahedron is se- 
lected for collapse if it leads to a minimal increase in the overall er- 
ror of the approximation, and does not increase the global error be- 
yond a maximal error tolerance. The error calculations are local cal- 
culations, so the algorithm is fairly efficient even on large meshes. 
The algorithm collapses an individual tetrahedron by iteratively col- 
lapsing its edges. This strategy allows us to avoid many of the topo- 
logical considerations of Gieng er al.‘s work. Our algorithm utilizes 
only the original data points, which allows us to represent the result- 
ing hierarchy very compactly. 

3 TRIANGLE COLLAPSE IN THE PLANE 

To understand the collapsing of tetrahedra in a three-dimensional 
mesh, it is useful to first study the collapsing of triangles in 
a planar mesh. Assume we have a collection of data points 
(00, ~1, ~2, . ..v.} in the plane and a set of triangles 
{To,Tl, . . . . Tm} defining a triangulation of the data points. 
We assume that the generated triangulation is fair, i.e., the mesh 
is connected, and each edge in the mesh is shared by at most two 
triangles. Meshes should not be self-intersecting, i.e., no triangle 
of the mesh should have an intersection with the interior of another 
triangle. 

We call a triangle T a vertexneighbor of a vertex v if v is a vertex 
of T, and T is an edge neighbor of an edge e if e is an edge of T. 
Each edge has two edge neighbors, while each vertex may have any 
number of vertex neighbors. The vertex neighbors of a triangle T 
consist of all triangles that share a vertex with T. The edge neigh- 
bors of T are the triangles that share an edge with T. The union of 
the vertex neighbors of a triangle T is called the sfencil of T. The 
stencil contains those triangles that can be modified by collapsing T 
(see Figure 1). 

It is possible to reduce the collapse of a triangle to a sequence 
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Figure 2: A two-edge collapse of a triangle T: (a) the triangle and its associated stencil; (b) the mesh after the collapse of edge el ; (c) the 
mesh after the collapse of both er and e2. 

of edge collapses. Given an edge e, with endpoints VI and 712, we 
collapse the edge by removing the two triangles sharing the edge 
and by collapsing VI to v2 (see Figure 2). This operation stretches 
the triangles that share VI as a common vertex to fill the hole. The 
edge-collapse operation does not commute, i.e., collapsing ~2 to VI 
would produce a different result. 

We collapse a triangle T by successively collapsing two of its 
edges (see Figure 2). In this case, the edge neighbors of T are elim- 
inated from the mesh and the vertex neighbors of two of the vertices 
of T are stretched to include the third vertex of the triangle. There 
are nine ways to collapse a triangle, but the results can modify the 
mesh in only three ways. 

3.1 Error Bounds 

To calculate a bound for the error due to a triangle collapse, we 
assume that the triangle mesh represents a scalar field defined by 
a piecewise-linear spline with individual spline segments s = 
F(u, v, w), where (u, v, w) are the barycentric coordinates of a 
point in the triangle. The spline coefficients are the function values 
at the mesh vertices. 

Each triangle T has an associated a “maximal deviation” CT. 
which represents a bound on the deviation between the linear spline 
segment defined by T and the linear spline of the original triangle 
mesh in the area of T. Original triangles have ET = 0, and this value 
is updated whenever a collapse is performed. 

Suppose we have selected a triangle T for collapse, and let e be 
the edge-. Suppose that VI has t vertex neighbors TI , Tz , ., Tk 
and suppose that Tk-1 and Tk are edge neighbors of e. Then, as vr is 
collapsed to VZ, the triangles TI , TZ , , Tk-2 are stretched to have 
2)~ as a common vertex, and VI is eliminated. This collapse opera- 
tion (see Figure 3) creates a new set of triangles TIC, TF, . . . . TE2, 
which define a new piecewise-linear function Fc. We can calcu- 
late the maximal deviation between the two linear splines over each 
stretched triangle TC by considering the points where TC and the 
original triangles of the stencil of T intersect (see Figure 4). 

Let cl, ~2, . . . , c3 be the points where the stretched triangles inter- 
sect the original triangles, and let CO be the eliminated vertex VI (see 
Figure 5). For each of these points, we know that the induced linear 
spline cannot deviate more than 

(FC(ct) - F(G)( + max {CT} 

from the linear spline defined by the original triangles. This means 
that, for each point ci the deviation is bounded by the difference be- 
tween the two linear splines at c; plus the maximum of the errors 
CT for the triangles that contain c; as an edge point or vertex point. 

(b) 

Figure 3: Calculation of the error introduced by collapsing an edge: 
(a) the triangle T and original mesh; (b) the triangulation after the 
collapse of edge e. 
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Figure 4: Calculation of the etror for aI stretched triangle TC. A 
bound on the increase in the deviation from the original triangles TI , 
TZ and TZ is the maximum of the deviations measured at cl, Q, and 
c3. 

Figure 5: Calculation of the error bound: CO is the location of the 
eliminated vertex ~1; the points ci, i =: 1, . . . . k, are the intersec- 
tion points of the stretched triangles and the triangles of the previ- 
ous mesh. A bound on the error for each stretched triangle can be 
calculated by finding the deviations in the linear splines at the c; and 
adding these values to the maximum of the errors over the original 
triangles at these points. 

Therefore, an error bound for the triangle TC can be calculated by 
taking the maximum of this deviation over all points c, that are con- 
tained in the triangle, i.e., 

B(TC) = max { IFC(c;) - F(ci)l + maxcr} . (1) 

We note that one of the stretched triangles will contain the (elimi- 
nated) vertex CO, and in this case the maximum must also include 
the deviation between the two linear splines at this point. Using this 
ap roximation, we can calculate a new error bound for each triangle 
T8. 

We define the “cost” of collapsing triangle T to be 

6T = min [mpxB(Ty)] - 6~. (2) 

where the minimum is taken over all six possible collapse strategies 
for T, and the maximum is taken over the stretched triangles formed 
by collapsing two edges of T. This is the difference between a pre- 
dicted error bound for the region and the current error bound at T. 

3.2 Outline of an Algorithm 

Suppose we are given a set of vertices { ‘~0, ~1, ~2, . . .v,,} in the plane 
and a triangulation defined by the set of triangles {TO, TI , . . . , T,,,}. 

Each triangle T is assigned an error measure ET. initially set to zero. 
The value CT represents a bound on the difference between the linear 
spline defined by T, and the linear spline segment defined by the 
initial mesh. 

For each triangle T in the mesh, calculate a weight 6~ which re- 
flects the “predicted error,” Le., the maximal deviation that would 
result when collapsing the triangle, as defined by equation (2). Place 
the triangles in a priority queue ordered by increasing values of 
cT + 6T. Thus, the first triangle removed from the queue should 
have the least effect on the change in the linear spline after the col- 
lapse operation. 

Next, select a maximum error to for which you wish a mesh to 
be generated and iteratively perform the following steps: 

Remove a triangle T from the queue; 

0 if CT + 6T > ~0, then the triangles in the queue 
represent the simplified mesh; 

0 ifcT+& 5 ea,then 

- collapse the triangle T and remove the edge 
neighbors of T from the queue; 

- reCdCUkde cp and 6Tc for each triangle 
TC that is stretched as a result of the collapse, 
and reposition it in the queue; 

- recalcukde 6T for each triangle T in the 
stencil of a stretched triangle TC. 

The last step is necessary to keep the queue in the correct order. 
Once a triangle is stretched, the cost of collapsing a neighboring tri- 
angle changes. 

4 TETRAHEDRAL MESHES 

We now generalize these principles to simplify a tetrahedral mesh. 
We assume that we have a set of vertices { ~10, 01, ~2, . .vn} in three- 
dimensional space and a set of tetrahedm {TO, TI , . , T,,, } defining 
a “triangulation” of this data set. In a similar way to the planar case, 
we define the vertex neighbors of a point v to be the set of tetrahedra 
that share v as a vertex, and define the edge neighbors of an edge e 
to be the set of tetrahedra in the mesh that share e as an edge. In 
addition, we define the face neighbors of a face f to be the (at most) 
two tetrahedra in the mesh that share the face f. We also define, 
in an analogous fashion, the vertex neighbors, edge neighbors and 
face neighbors of a tetrahedron. A tetrahedron has at most four face 
neighbors, but can have any number of edge and vertex neighbors. 

We collapse a tetrahedron T by successively collapsing three of 
its edges. One can collapse to any of a tetrahedron’s four vertices, 
and there are ten ways to collapse individual edges to achieve one 
of the four final states. A collapse removes the edge neighbors of T, 
and the vertex neighbors of three of the vertices of T are stretched 
to include the fourth vertex, the vertex to which we collapse. 

We insure that the collapse operation does not produce intersect- 
ing tetrahedra by comparing the sign on the volume of the original 
and stretched tetrahedm. If by collapsing an edge of the tetrahedron 
T, the sign of the volume of a stretched tetrahedron TC flips, we 
label the edge as “not-collapsible.” 

4.1 Error Bounds 

To estimate the error, we assume that the tetrahedral mesh repre- 
sents a linear spline defined by individual spline segments s = 
F(u, v, w, 1), where (a, v, w, t) are the barycentric coordinates of a 
point inside a tetrahedron. The spline coefficients of F are the func- 
tion values at the mesh vertices. 



Each tetrahedron T will have associated a “maximal deviation” 
ET, which will represent a bound on the deviation between the lin- 
ear spline segment defined by T and the linear spline of the origi- 
nal tetrahedral mesh in the area of T. An original tetrahedron T has 
CT = 0, and this value is updated whenever a collapse is performed. 

If FC is the piecewise linear function induced by a collapse op- 
eration we can bound the errOr over a stretched tetrahedron TC sim- 
ilarly to equation (l), i.e., 

B(T’) = mpx { IFC(c;) - F(Ci)l + max {CT}} (3) 

where the c, are the intersection points of the edges of the stretched 
tetrahedron TC with the faces of the tetrahedra in the previous mesh 
(and possibly one of the eliminated vertices of the collapsed tetra- 
hedron) and the maximum is taken over all tetrahedra that contain 
c; as an edge point or a vertex. We define the cost of collapsing a 
tetrahedron T as 

&- = min [mpxB(Ty)] - ET, 

where the minimum is taken over all possible collapse strategies for 
the tetrahedron T, and the maximum is taken over the tetrahedra 
stretched by collapsing three edges of T. This value is the differ- 
ence between a predicted error bound for the region and the error 
bound at T. 

4.2 Boundary Preservation 

The boundary surface of a tetrahedral mesh is given by the set of all 
faces belonging to exactly one tetrahedron. It is desirable to pre- 
serve this boundary surface as much as possible. Some data sets 
have rectangular boxes as their boundaries while most are much 
more complex. Given a tetrahedron T, selected for collapse, we 
check the following: 

l If T has a single vertex v on the boundary, the three edges that 
contain v can only be collapsed to v. The other three edges of 
T can be collapsed in either direction. 

l If T has a two vertices VI and 2)~ on the boundary, then the four 
edges of the tetrahedron containing v1 and 7~2 can only be col- 
lapsed to these points. The other two edges of the tetrahedron, 
which includes ~11 v2, can be collapsed in either direction. 

l If T has three vertices VI, v2 and v3 on the boundary, then the 
three edges containing the fourth point and one of ~1, v2 or 0s 
can only be collapsed to the boundary points. The three edges 
on the boundary can be collapsed in either direction. 

l if T has a four vertices on the boundary, there are several cases 
to consider: 

- T is at the comer of mesh. In this case T has only one 
face neighbor. These tetrahedra can only be collapsed to 
the comer. 

- T is on a boundary edge. In this case T has two face 
neighbors. If VI and 2)~ are on the edge, then the four 
edges containing v1 and 2)~ can only be collapsed to the 
edge. The edge VI v2 can be collapsed in either direc- 
tion. 

- T has one vertex on an boundary edge. In this caseT has 
three face neighbors. If v1 is the vertex on the boundary 
edge, then the three edges incident to VI can only be col- 
lapsed to ~1. 

Each of these cases restricts the number of possible edge collapse 
operations on T. In some cases, only one or two edges of T may 
be collapsible, and T may be collapsed to a face or an edge respec- 
tively. In general, if T has an edge with a vertex D on the boundary, 
then the edge must be collapsed to v. If we collapse to the other ver- 
tex, the boundary would be compromised. Figure 6 illustrates this 
for the two-dimensional case. 

In general these rules allow the simplification algorithm to work 
with data sets having convex polyhedral boundaries. 

4.3 Algorithms for Mesh Simplification 

Two different algorithmic strategies can be used to simplify 
the mesh. The first, similar to that presented in Section 3.2, 
utilizes a priority queue and the error prediction mechanism. 
The second algorithm makes a pass through the complete tetra- 
hedral structure and attempts collapse operations, evaluating 
each collapse against the error threshold. Each algorithm works 
with a set of vertices { VO, VI, 212, . ..vn}. and a set of tetrahedra 
{TO, TI , . . . . Tm} forming a triangulation of the vertices. Each 
tetrahedron T in the mesh, carries an “accumulated error” ET, 

initially zero. 
The first strategy is based upon a priority queue, where for each 

tetrahedron T, we calculate a weight 6~ which reflects the predicted 
error increase resulting from collapsing the tetrahedron as defined 
by equation (4). We place the tetrahedra in the priority queue or- 
dered by increasing CT + ST. 

Select a maximum error EO used to terminate the collapse algo- 
rithm, and iteratively perform the following steps: 

.Remove a tetrahedron T from the queue; 

l if ET + ST > ~0, then the set of tetrahedra in the 
queue represent the simplified mesh. 

l ifcT$&<EO, 

- collapse the tetrahedron T and eliminate the 
face neighbors of T from the priority queue; 

- recalculate ETC and 8Tc for each tetrahe- 
dron TC modified by the collapse operation; 

- recalculate 6T for each tetrahedron T in the 
stencil of a tetrahedron TC stretched by the 
collapse operation. 

Three algorithms can be implemented that use the collapse opera- 
tion to generate sets of meshes MO, Ml, . . . . M, at different levels 
of detail approximating the original mesh. 

(1) 

(2) 

Choose a sequenceof error bounds 60 < ~1 < . . . < en. Select 
tetrahedra from the queue, collapse the tetrahedra, and reinsert 
the stretched tetrahedra into the queue until the tetrahedron T 
at the front of the queue satisfies CT + 6~ > ~0. The set of 
tetrahedra in the priority queue define the mesh MO. 

Using the mesh MO, collapse the tetrahedra in the queue until 
the tetrahedron T at the front of the queue satisfies CT + 6T > 
61. The set of tetrahedra in the queue defines the mesh MI. 

The algorithm continues in this way until mesh M, is gener- 
ated. 

This strategy generates a sequence of 
meshes MO, MI, . . . . M, with specified 
error bounds EO,<X, . . . . en respectively. 

Choose a specified number (or percentage) of the original tetra- 
hedra to be collapsed at each step. The intermediate meshes are 
defined by those tetmhedra remaining in the queue after each 
step. Here, the error for each intermediate mesh can be re- 
ported. 
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Figure 6: Collapsing edges on the bound.ary: (a) an edge is collapsed to a boundary vertex; (b) the boundary is destroyed when the collapse 
goes the other way. 

(3) Similarly to Gieng et al. [5], remove a set of tetrahedra from the 
queue and collapse them in parallel. The only restriction is that 
the stencils of the tetrahedra to be collapsed must not intersect. 
The resulting sequence of meshes can be used for “smooth” 
transitions between mesh levels. 

The second strategy is based upon a sweep through the grid, ex- 
amining each tetrahedron individually. 

Choose a sequence of error toleranoes 60 < c1 < . . . < 
cn. For each E*, 

l Make a sweep through the grid, examining each 
tetrahedron T. 

l Attempt to collapse each edge Iof the selected tetra- 
hedron until either (1) one of these collapses in- 
duces an error threshold below ei, or (2) all six 
edges of T have been tried. 

l A successful collapse modifies several tetrahedra, 
which are “stretched” versions of their counter- 
parts before the collapse. For each modified tetra- 
hedron Tc, calculate the error change 6T, and add 
this t0 ETC. 

l Continue until the simplified mesh cannot be col- 
lapsed further without increasing the error above 
ci. 

The first strategy selects that tetrahedron that will cause the min- 
imal increase in the error at each step. The second strategy utilizes a 
“greedy” method that selects an arbitrary tetrahedron and attempts 
to collapse it. If the collapse results in a mesh below the error bound, 
it is accepted and the process continues. This results in a less struc- 
tured algorithm, but avoids many of the complex 6T calculations for 
tetrahedra that are removed in the collapsing process. 

Using the second strategy also enables a simplified test for 
boundary preservation. Consider a vertex ‘u that is removed by col- 
lapsing an edge. If v is on the boundary then if the resulting tetra- 
hedra, modified by the collapse, does not contain v, the boundary 
has been compromised. Therefore, if v is not contained within the 
modified tetrahedra, then the collapse is re,jected. 

5 IMPLEMENTATION ISSUES 

We have implemented this algorithm using a simple data structure 
for tetrahedral meshes. We store a list of vertices and a list of tetra- 
hedra. Each tetrahedron contains links that reference the four ver- 
tices of the tetrahedron and the four face neighbors. Calculating the 
vertex neighbors and edge neighbors of a tetrahedron is straightfor- 
ward using this data structure. 

Each tetrahedron T carries an error estimate CT and a predicted 
deviation 6~. The value 6~ is determined by finding the sequence 
of edge collapses in T that generates the minimum error increase. 
We store this sequenceof collapses in the tetrahedron data structure. 
When the tetrahedron is to be collapsed, we neednot recalculate this 
sequence. 

Our algorithm is based on an “edge collapse” paradigm and can 
be implemented using only edge-collapse strategies. However, we 
felt that the overhead of implementing and maintaining an edge data 
structure would be overwhelming for the large data sets that we use. 

6 RESULTS 

Results of our work are shown in Figures 7- 15. We utilize voxelized 
data sets, where each voxel of the original data set is initially split 
into six tetrahedra (see [ 141). We utilized the “greedy algorithm of 
Section 4.3 in each case, and specified a maximum error for each 
approximating mesh. 

Our first example, shown in Figures 7-9, collapses tetrahedra 
until a specified error tolerance is reached. Figure 7 illustrates 
a piecewise-linear scalar field over a unit cube containing 41,154 
tetrahedra, shown in Figure 8. The function is defined by 

f(z, Y, z) = 

l 

0 ifz<O; 
z ifO<1:<1; 
1 ifz>l. 

Simplifying the mesh with any small user-specified error threshold 
yields the mesh shown in Figure 9, which contains 25 tetrahedra and 
still represents the scalar field exactly. (We note that 15 tetrahedra 
would be optimal.) One would expect that the simplification scheme 
works well with simple piecewise-linear functions - and it does. 

Our second example is an MRI scan of a human skull and is rep- 
resented by an array of 64x64~109 density values. Splitting each 
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voxel into 6 tetrahedra, yields approximately 2,700,000 tetrahedra
for the original mesh. Figure 10 shows an isosurface generated for
the original data set. Figure 11 shows an isosurface for a simplified
mesh containing approximately 910,000 tetrahedra, and Figure 12
shows the same isosurface on a simplified mesh containing approx-
imately 209,000 tetrahedra - roughly 8% of the original size.

The third example is a section of a brain taken from a Macaque
monkey. Figure 13 shows a ray-traced image of the brain using the
original data set. This contains approximately 1.3 million tetrahe-
dra. Figure 14 shows a simplified brain data set with approximately
700,000 tetrahedra. This image is almost identical to that shown in
Figure 13. Figure 15 shows the image of a simplified brain data set
with approximately 158,000 tetrahedra - approximately 12% of the
size of the original. Despite some “feathering” in the lower-left cor-
ner of this image, the image is quite good.’

‘We note that a 32x32x32 data set with each voxel split into 6 tetrahedra
would contain 196,608 tetrahedra.

7 CONCLUSIONS

We have presented a method for the simplification of tetrahedral
meshes approximating a trivariate function. The simplification of
the mesh is based upon a tetrahedral collapse algorithm and local
error calculations that insure that the mesh remains within a user-
specified tolerance of the original. Several methods can be applied
to generate various mesh hierarchies to be used in level-of-detail ap-
plications. We have found this a useful tool to treat massive three-
dimensional data sets defined by arbitrary grid structures.

We plan to generalize our approach to allow more flexible place-
ment of vertices when collapsing tetrahedra and to compute the lin-
ear spline coefficients in an optimal way for each triangulation level
(see [8]). Furthermore, we intend to extend and apply our algorithm
to vector fields and time-varying fields.
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