

Graphics, Visualization & Usability Center
College of Computing
Georgia Institute of Technology

Implant Sprays: Compression of Progressive
Tetrahedral Mesh Connectivity

Renato Pajarola, Jarek Rossignac and Andrzej Szymczak

Technical Report GIT-GVU-99-16 May 1999

Implant Sprays: Compression of Progressive
Tetrahedral Mesh Connectivity

Renato Pajarola, Jarek Rossignac, Andrzej Szymczak
Graphics, Visualization & Usability Center

Georgia Institute of Technology

8 May 1999 10:30 PM

Abstract

Irregular tetrahedral meshes, which are popular in many engineering and scientific
applications, often contain a large number of vertices. A mesh of V vertices and T tetra-
hedra requires 48·V bits or less to store the vertex coordinates, 4·T·log

2

(V) bits to store
the tetrahedra-vertex incidence relations, also called connectivity information, and k·V
bits to store the k-bit value samples associated with the vertices. Given that T is 5 to 7
times larger than V and that V often exceeds 32

3

, the storage space required for the con-
nectivity is larger than 300·V bits and thus dominates the overall storage cost. Our
“implants spray” compression approach introduced in this paper reduces this cost to
about 30·V bits or less – a 10:1 compression ratio. Furthermore, implant spray supports
the progressive refinement of a crude model through a series of vertex-splits operations.

1. Introduction

A large portion of finite element meshes, and scientific and engineering analysis results are
expressed in terms of sample points distributed through 3D space, associated scalar values, and con-
nectivity information which defines how the sampled scalar values are to be interpolated. The sim-
plest and most commonly used interpolation is based on a decomposition of the 3D space into a
tetrahedral mesh, which may be defined by a tetrahedra-vertices incidence table that takes

 bits for a mesh with

V

 vertices and

T

tetrahedra. In this paper we propose a compres-
sion technique which reduces this storage cost to about 5·

T

bits.

Our compressed format, called

implant sprays

, describes a coarse mesh and a series of implants,
refinement operations. Each implant inserts a new vertex and a series of incident tetrahedra. The

implants

 are simple extensions of the vertex split operation introduced in [HRD

+

93] that are applied
to tetrahedral meshes [SG98]. The implant is defined by the selection of an existing vertex

v

, called
the split-vertex, a displacement vector defining the location of a new vertex, and a cycle of triangle-
faces incident upon the open vertex

v

, called the

skirt

. We describe here an encoding of the selection
of split-vertices that requires less than 3 bits per tetrahedron. Furthermore, we propose an encoding
of the skirt that requires less than 4 bits per tetrahedron. Combined, these two techniques reduce the
connectivity costs per tetrahedron from the initial bits to less than six bits. Even for
modest size meshes, we obtain a compression ratio better than 10:1. These savings are important,
because otherwise the connectivity data dominates the storage costs. Indeed, there are roughly 6
times as many tetrahedra as vertices – this number varies with the structure of the mesh. Even for a
small mesh of 32

3

vertices the uncompressed connectivity cost is 360·

V

 bits (i.e. 4·6·15·

V

). In com-
parison, vertex location may be represented with only 48·

V

 bits using 16-bit integer coordinates in an
optimally chosen coordinate system [Dee95].

The rest of the paper is organized as follows: Section 2 provides an overview of related work on
triangular and tetrahedral meshes, in Section 3 the basic simplification and refinement operations are
described, Section 4 presents detailed explanation of the implant sprays encoding and Section 5 pro-

4T V()2log⋅

4 V()2log⋅

Related work

2

vides an implementation framework, experiments are reported in Section 6, and Section 7 concludes
the paper and gives an outlook over future work.

2. Related work

Recently, a lot of work has been done in short encodings of the connectivity of triangular meshes.
With few exceptions, i.e.

Progressive Forest Split Compression

 (PFS) [TGHL98] and

Compressed
Progressive Meshes

 (CPM) [PR99a], most methods only work for single-resolution meshes. Very
successful approaches for triangular mesh encoding are the

Topological Surgery

 method [TR98],

Edgebreaker

 [Ros98] and the triangle mesh compression presented in [TG98]. A comprehensive
overview can also be found in [Ros98] or [TR98b]. These single-resolution mesh compression algo-
rithms are able to encode the connectivity of a triangular mesh with less than 2 bits per triangle. The
multiresolution mesh compression methods PFS and CPM achieve a connectivity encoding of less
than 5 (PFS) or less than 4 bits (CPM) per triangle while providing a progressive triangulation with
several levels of detail of increasing approximation accuracy.

Much less work has been performed on compressing the connectivity of tetrahedral meshes,
even though in the tetrahedral case the incidence information dominates the geometry data, the 3D
coordinates of vertices. Only recently the

Grow & Fold

 method was presented in [SR99] that
encodes the connectivity of tetrahedral meshes with roughly 7 bits per tetrahedron. However, as most
of the triangle mesh compression methods, this approach encodes one single-resolution tetrahedral-
ization. Thus it provides one level of detail only. Progressive multiresolution tetrahedralizations
[SG98, THJW98] have only recently been presented. However, no concise encoding of the refine-
ment operations has been provided. Each refinement operation of the progressive tetrahedralization
in [SG98] needs to specify one vertex that will be split and 5 to 6 incident triangular faces that will
be cut. The split-vertex can be identified using bits in a tetrahedral mesh with

V

 vertices.
The cut-faces can be encoded locally with respect to the split-vertex. Because a vertex in a tetrahe-
dral mesh has about 36 incident faces, the cut-faces can be encoded with roughly
bits. A similar coding scheme can also be applied to the multiresolution tetrahedralization of
[THJW98].

3. Progressive meshes

In [HRD

+

93] the

edge collapse

 operation, and its inverse the

vertex split

, was introduced for triangu-
lar mesh simplification, see also Figure 1 for an example.

Progressive Meshes

 [Hop96] apply a
sequence of edge collapse operations

M

i

→

 M

i

-1

 to a given triangular, high resolution input mesh

M

l

max

 to create a series of simplified meshes

M

l

max

,

M

l

max

-1

, …,

M

i

,

M

i

-1

, …,

M

1

,

M

0

 with decreas-
ing approximation accuracy. The meshes

M

i

 (0 <

i

≤

l

max

) can be reconstructed by performing the
inverse sequence of vertex splits

M

i

-1

→

M

i

 starting with a crude base mesh

M

0

.

V()2log

6 36()2log⋅

Progressive encoding

3

FIGURE 1.

Edge collapse and vertex split for triangle mesh simplification and reconstruction.

The same basic principles of edge collapses and vertex splits can be extended and applied to
more complex meshes such as

simplicial complexes

 [PH97] and

tetrahedral meshes

 [SG98]. In tetra-
hedral meshes, a collapse of an edge eliminates all tetrahedra incident to that edge and reduces the
number of vertices in the mesh by one, see also Figure 2 for a graphical example. Again, a sequence
of edge collapses and its inverse, the vertex splits, define a

progressive tetrahedralization

, as pro-
posed in [Hop96, SG98], as a series of tetrahedral meshes

T

0

, …,

T

l

max

 of increasing precision. In
the remainder of the paper

T

will refer to a tetrahedral mesh if not specified otherwise.

FIGURE 2.

Edge collapse and vertex split for tetrahedral mesh simplification and reconstruction.

4. Progressive encoding

As mentioned above, a progressive tetrahedralization is defined by a crude base mesh

T

0

 and a
sequence of vertex split refinement operations. Given an intermediate mesh

T

i

, an individual refine-
ment operation is fully specified by the identification of the split-vertex and the set of incident cut-
faces, both given in

T

i

. After locating the split-vertex

v

, identifying the cut-faces is a local process on
the neighborhood of

v

 in mesh

T

i

. The following Section 4.1 describes our new method of locally
encoding the set of cut-faces for an individual vertex split operation. Next, the progressive encoding
of the split-vertex locations is described in Section 4.2.

Note that our algorithms presume the existance of a canonical ordering and numbering of the
vertices of any tetrahedral mesh

T

i

.. Such an ordering can arbitrarily be specified, i.e. sorted by coor-
dinates, or given by a mesh traversal, i.e. depth-first vertex tree traversal.

edge collapse

vertex split

split-vertex

cut-edges

edge collapse

vertex split

split-vertex

cut-faces

Progressive encoding

4

4.1 Cut-faces

The cut-faces around a split-vertex, also called the

skirt

, define how the incidence relations have to
be modified for a vertex split operation. To better understand the coding of the skirt, let us define the
orbital surface of a split-vertex v as the triangular surface consisting of all faces of tetrahedra inci-
dent to v that are not themselves incident faces of v, see also Figure 3. The skirt forms a connected
path, a cycle, on the triangulated orbital surface, see also Figure 4. Note that the number of different
cycles of length k, also called k-cycles, without repetition of edges or nodes, on a triangular planar
graph G with d vertices is much smaller than the number of all subsets of edges of G of size k, also
called k-sets, because the k-cycles are a subset of the k-sets. Therefore, the corresponding method to
the triangular approach in [PR99a] of encoding the skirt as one particular k-set out of all 1 possi-
ble ones, is not optimal in a progressive tetrahedralization.

FIGURE 3. a) The orbital of a split-vertex v consists of all faces of tetrahedra surrounding v that are not
incident to v. b) The cut-faces form a ring of triangles, also called the skirt.

An optimized encoding of the skirt could be achieved by identifying the particular k-cycle of a
vertex split operation out of all possible k-cycles on the orbital surface. Given a canonical numbering
of the vertices, an enumeration of all k-cycles on the orbital surface, the triangular planar graph Gorb
(Figure 4), can be achieved by a recursive backtracking algorithm. For every vertex, starting with the
youngest one, initiate a depth-first vertex traversal of Gorb, again youngest first, for finding paths of
length k. Backtracking occurs when a path is longer than k, a k-path is not a cycle, or a node or edge
of Gorb is used twice in the current path. Moreover, backtracking also occurs when a younger vertex
than the start-vertex is found on the currently explored path because k-cycles are only reported for
their youngest vertex. Note that otherwise the same k-cycle would be reported several times, for each
vertex in the cycle. A correct path is found when it is of length k and the end-vertex is equal to the
start-vertex of the initiated traversal. For this method of encoding the skirt, the number k of cut-faces
has to be known to the decoder in advance.

1. A planar triangulation has roughly three times as many edges as vertices. Corollary, a vertex in a 3D tetrahedralization has roughly
three times as many incident faces as incident edges.

3d
k

skirtorbital surface
split-vertex

cyclea) b)

Progressive encoding

5

FIGURE 4. a) Shows a planar embedding of the triangular graph Gorb of the orbital surface b). The boundary
of the cut-faces, forming a cycle in the planar graph a), is highlighted using thick lines.

Although providing an optimized encoding in terms of space cost (bits), the previously described
approach of encoding the skirt is inefficient in time cost. Because the enumeration of all possible k-
cycles for every split-vertex is quite time consuming we implemented a faster encoding of the skirt.
The path on the graph Gorb which defines the skirt, see Figure 4 a), can be encoded as a walk along
edges of Gorb. The start of the path, a vertex of Gorb, is encoded using bits for a split-ver-
tex of degree d. Since the average degree of split-vertices in a progressive tetrahedralization is more
than 14 – thus also the number of vertices of Gorb – the start vertex encoding requires roughly 4 bits
on average. The skirt can then be specified by a path of length k, forming the k-cycle, as a set of con-
secutive edges on Gorb. Each edge can be specified using less than bits since the
degree of vertices in a planar triangulation is 6 on average. Thus the cut-faces encoded as a walk
along edges of Gorb can be expected to cost about bits.

Note that in general the orbital surface could be non-manifold due to edge collapse operations. In
the following section we describe the constraints that prevent non-manifold orbital surfaces.

4.2 Split-vertex

Instead of refining the current mesh Ti by one single vertex split at a time, we perform a series of
vertex splits simultaneously, also called implants sprays, to achieve the next refined level of detail
(LOD) Ti+1. Identifying one isolated split-vertex in Ti would require bits in a mesh with Vi
vertices, which is very costly for large meshes. However, identifying a set of Vi / k independent split-
vertices by a flag, marking all vertices in Ti with one bit only, amounts to a constant of k bits per
split-vertex. The decoding process just needs to visit all vertices in Ti in the same order as the
encoder, and read the respective marking bits from the data stream to identify the set of vertices that
are to be split.

To optimize coding efficiency one would like to maximize the fraction Vi / k of independent ver-
tex splits that form a refinement step Ti → Ti+1. In a planar triangulation k can be guaranteed to be
less than 4 by the vertex coloring theorem, and experiments show an average of about 3 [PR99a] for
independent vertex splits. In a tetrahedral mesh k cannot be bounded easily. Vertex coloring of non-
planar graphs depends on the maximal degree of incident edges on a vertex, which is not bounded in
a tetrahedral mesh. Larger independent sets than induced by the vertex coloring can be constructed,
however, the maximization of k is limited by the simplification process. During the construction of
the progressive mesh, the choice of independent edge collapses in Ti+1 is restricted. To be able to
distinguish the individual vertex splits in Ti without ambiguities, the following three requirements
for edge collapses in Ti+1 are sufficient:

a) b)

skirt-boundarytriangular
graph Gorb

orbital surface

d()2log

6()2log 3=

14()2log 6 6()2log⋅+ 19≈

Vi()2log

Implementation

6

1. The two sets of tetrahedra in Ti+1 intersecting two edges to be collapsed in one implant
sprays simplification batch are disjoint. (Figure 5)

2. For each edge e = (v1, v2) that will be collapsed and a vertex w that is incident to both v1 and
v2, the triple (v1, v2, w) must define a valid face of Ti+1. (Figure 6 a)

3. For each edge e = (v1, v2) that will be collapsed and two vertices w1,w2 such that the trian-
gles (v1, w1, w2) and (v2, w1, w2) are faces of Ti+1, the quadruple (v1, v2, w1, w2) must define
a valid tetrahedron of Ti+1. (Figure 6 b)

FIGURE 5. Independent edge collapses may not have common incident tetrahedra. The figure shows an
analogous case in a 2D triangulation with two selected edge collapses. All faces of the forbidden area must
not be incident to another edge collapses.

FIGURE 6. Examples of non-valid edge collapses, where a) fails test number 2 and b) fails test number 3 of
the constraints mentioned above.

Thus during progressive mesh construction, the simplification process must select sets of edge
collapses of maximal size that form a simplification step Ti+1 → Ti according to the requiremenst
mentioned above. In our current implementation independent edge collapses are selected greedily,
see also Algorithm 2 in Section 5. Our experiments suggest that in practical situations k is in the
range of 12 to 16 for the very restrictive selection of edge collapses mentioned above. A less restric-
tive selection of edge collapses would allow an even larger fraction Vi / k of split-vertices. The aver-
age number of nearly 6 removed tetrahedra per edge collapse results in a split-vertex encoding with
less than 3 bits per tetrahedron.

Additional geometric properties and constraints of edge collapses assure that the simplified tetra-
hedral meshes are good approximations of the initial tetrahedralization. However, these constraints
are not the subject of this paper and the interested reader is referred to [SG98] for further details.

5. Implementation

The main problem of an actual implementation is the construction of the sequence of increasingly
simplified meshes Tlmax, …, T0, or levels of detail (LODs), such that each set of edge collapses Ci
that forms one simplification step Ti → Ti-1 can unambiguously be encoded using the techniques

edge collapse

forbidden area

v1

v2

w

v1
v2

w1

w2

a) b)

Implementation

7

described in the previous section. The simplification and encoding procedure EncodeOneStep() is
iteratively called by the main encoding loop of Algorithm 1 for the current tetrahedral mesh starting
with the best LOD Tlmax. After arriving at a sufficiently simplified and small mesh T0, a simple sin-
gle-resolution encoding can be used for this base mesh. The encoding of the crude mesh T0 followed
by popping the codes from the stack obtained by the EncodeOneStep() procedure calls builds the
input data stream for the decoding procedure.

PROCEDURE Encode (mesh: Tetrahedralization);
VAR code: Stack; data: OutputStream;
BEGIN

code.initStack();
WHILE mesh not simplified enough DO

mesh := EncodeOneStep(mesh, code) (* encode simplification steps *)
END;
data.output(mesh.simpleEncoding()); (* encode base mesh T0 *)
WHILE code.notEmpty() DO

data.output(code.pop())
END

END Encode;

ALGORITHM 1. Pseudocode for the main simplification and encoding algorithm.

The procedure EncodeOneStep(), performs one simplification step Ti → Ti-1 at a time and pro-
vides the respective encoding of the vertex splits on a stack. The first foreach-loop in Algorithm 2
over all edges of a mesh Ti can be ordered according to an increasing simplification error of edge
collapses as used in [SG98]. Validation of edge collapses is performed by the validCollapse() proce-
dure according to the constraints described in the previous section. Next, the method mesh.collap-
seEdges() performs the actual simplifications, and stores the vertex split information for every edge
collapse with its respective vertex. The following foreach-loop traverses the vertices of the simplified
mesh Ti-1 in the inverse order of the decoding process, and marks all vertices with one bit. For the
marked split-vertices the associated cut-faces code is given as well. All codes are pushed on a code
stack such that popping the codes from that stack provides the correct sequence for the decoding pro-
cess and its traversal of vertices.

PROCEDURE EncodeOneStep (mesh: Tetrahedralization; VAR code: Stack)
: Tetrahedralization;

VAR v: Vertex; e: Edge; ecol: EdgeSet;
BEGIN

ecol = EmptySet;
FOREACH e IN mesh.edges()

IF validCollapse(e, mesh, ecol) THEN
ecol.insert(e)

ENDIF
END;
mesh.collapseEdges(ecol);
FOREACH v IN mesh.inversedVertexTraversal()

IF v.isCollapsedEdge() THEN
code.pushBit(1);
code.pushCode(v.cutFacesCode())

ELSE
code.pushBit(0)

ENDIF
END;
RETURN mesh

END EncodeOneStep;

ALGORITHM 2. Pseudocode for one step of simplification and encoding of vertex splits.

Results

8

Decompression involves first decoding the crude mesh T0 according to the chosen single-resolu-
tion encoding method, and then traversing the vertices of the current LOD and simultaneously read-
ing marking bits and vertex split information from the input data stream to create the implants sprays
refinement updates. In Algorithm 3 the method mesh.simpleDecoding() performs the task of reading
and constructing the base LOD T0. The following while- and nested foreach-loops repeatedly
traverse the vertices of the current mesh. While traversing the vertices of Ti, the marking bits indi-
cate the occurrences of vertex split refinement operations.If a marking bit signifies a split-vertex the
respective vertex split information, the encoding of the cut-faces, is read from the input data stream
by the readCutFacesCode() method in Algorithm 3. The individual vertex splits can emmediately be
performed to refine the current mesh. However, note that the so newly created vertices should not
affect the current vertex traversal order of Ti, and that these new vertices should only be included in
the vertex traversal of the next LOD Ti+1.

PROCEDURE Decode (data: InputStream): Tetrahedralization;
VAR mesh: Tetrahedralization;
BEGIN

mesh.simpleDecoding(data); (* decode base mesh T0 *)
WHILE data.notEndOfStream() DO

FOREACH v IN mesh.vertexTraversal() (* decode refinement steps *)
IF data.inputBit() = 1 THEN

v.readCutFacesCode(data);
mesh.splitVertex(v);

ENDIF
END

END;
RETURN mesh

END Decode;

ALGORITHM 3. Pseudocode for the main decoding algorithm.

The marking of vertex splits is already shown in above algorithms, the cut-faces encoding
depends heavily on the data structure used for maintaining a tetrahedral mesh and is described in
Section 4.

6. Results

We have implemented the simplification and encoding algorithms mentioned above in a prototype
system. Even though the encoding of enumerated cycles performed well in terms of coding costs, the
current implementation was unreasonably slow. Therefore, we have only included results for encod-
ing the cut-faces as walks on a planar triangular mesh. Note that the results presented here do not
include an encoding of the base mesh T0.

Table 1 presents results for a real world data set, the turbine, and a Delaunay tetrahedralization
[EM94] of a random point set. For the turbine data set an average of k = 5.77 tetrahedra were
removed with every edge collapse in 49 simplification steps, whereas the random tetrahedralization
reported 6.25 tetrahedra per edge collapse in 54 LODs. Overall, the connectivity of the tetrahedral

Conclusion and future work

9

meshes was encoded with less than 6 bits per tetrahedron which includes a large number of different
LODs that are progressively available during decompression time.

Figure 7 shows the turbine volume data set that was used in our experiments. The volume data
consists of solid turbine blades (Figure 7 a) and a large number of sampled data points in between the
blades. All vertices of the surface of the turbine blades (Figure 7 b) and the data points are repre-
sented in one large tetrahedral mesh (Figure 7 c). For the very common approach of storing the tur-
bine mesh as a set of indexed tetrahedra, the connectivity cost requires 13MB in ASCII and still
4.7MB using a simple binary encoding. The Grow & Fold method [SR99] cuts this cost down to
492KB for a single-resolution representation, whereas the method presented in this paper only
requires 87KB for representing the base mesh T0

1 and 291KB for the 49 refinement steps.

FIGURE 7. Pictures a) and b) only show the solid turbine blades parts of the tetrahedralized volume data set
in c) which was used in our experiments. Note that the rim where the blades are mounted on is not shown in
images a) and b). (Data set courtesy of AVS Inc.)

7. Conclusion and future work

The presented implant sprays method presented in this paper is a simplification, storage and trans-
mission technique for tetrahedral meshes. Implant sprays provides a progressive tetrahedralization,
starting from a crude base model, at significantly lower storage or transmission costs than previously
known methods. It even improves connectivity encoding on the best known single-resolution tetrahe-
dral mesh compression method [Symzcak]. The low coding cost is achieved by grouping vertex
splits into batches, called the implant sprays, and by a concise encoding of the skirt, the cut-faces of
a split-vertex.

1. i.e. using the grow and fold single-resolution encoding

data set LODs vertices
TTTT lmax

vertices
TTTT0

tetrahedra
TTTT lmax

tetrahedra
TTTT0

edge
collapses

start
vertex

loop split-
vertex

total bits bits per
tetrahedron

turbine 49 106795 24550 576576 101619 82245 4.14 14.5 10.35 2384643 5.020755

random 54 10000 928 66487 9799 9072 4.19 15.69 16.2 327386 5.775230

TABLE 1. Encoding results for the turbine data set and a random tetrahedralization. The start vertices have
been encoded with roughly 4 bits, and the cut-faces using about 15 bits for every edge collapse. The
marking of all vertices in each LOD resulted in an amortized cost of 10.35 bits per edge collapse for

specifying the corresponding split-vertex.

a) b) c)

Acknowledgments

10

Combining the implant sprays simplification procedure with an edge collapse error measure for
tetrahedral meshes [SG98] provides an efficient mesh encoding of a progressive multiresolution tet-
rahedralization. Compressed multiresolution tetrahedral meshes can be used for cooperative scien-
tific visualization, fast exploration of volumetric data sets, or provide LODs

Future work includes efforts to reduce the edge collapse selection constraints to increase the ver-
tex split rate, thus lowering the split-vertex coding costs, while still guaranteeing locally unambigu-
ous mesh updates. Furthermore, we will also investigate faster k-cycle enumeration and coding
techniques to improve on the cut-faces encoding. However, the optimization in connectivity cost is
far less important than inventing an efficient coordinate geometry compression method for tetrahe-
dral meshes.

Because the connectivity cost of a tetrahedral mesh is less than 6 bits per tetrahedron using
implant sprays, it is no longer the dominant cost factor. In contrast, uncompressed floating point
coordinates now take up most of the storage space with at least 96 bits per vertex, or 18 bits per tetra-
hedron. However, the progressive encoding of the topological mesh connectivity allows for efficient
coordinate compression as it is already exploited in triangular meshes. Based on the local mesh con-
nectivity and geometry around a split-vertex, the displacement vector can be encoded using predic-
tive error compression techniques [Kou95].

Acknowledgments

This work was supported by the Swiss NF grant Nr. 81EZ-54524 and US NSF grant Nr. 9721358.
We would like to thank Oliver Staadt for providing the turbine data set.

References

[Dee95] Michael Deering. Geometry compression. In Proceedings SIGGRAPH 95, pages 13–20. ACM SIGGRAPH,
1995.

[EM94] H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13(1):43–
72, 1994.

[GHJ+98] Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman and Issac J. Trotts. Constructing Hierar-
chies for Triangle Meshes. IEEE Transactions on Visualization and Computer Graphics, 4(2):145–161, April-
June 1998.

[HRD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh optimization. In
Proceedings SIGGRAPH 93, pages 19–26. ACM SIGGRAPH, 1993.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings SIGGRAPH 96, pages 99–108. ACM SIGGRAPH, 1996.

[Kou95] Weidong Kou. Digital Image Compression: Algorithms and Standards. Kluwer Academic Publishers, Norwell,
Massachusetts, 1995.

[PR99a] Renato Pajarola and Jarek Rossignac. Compressed progressive meshes. Technical Report GIT-GVU-99-05,
GVU Center, Georgia Institute of Technology, 1999.

[PH97] Jovan Popovic and Hugues Hoppe. Progressive simplicial complexes. In Proceedings SIGGRAPH 97, pages 217–
224. ACM SIGGRAPH, 1997.

[Ros98] Jarek Rossignac. Edgebreaker: Compressing the incidence graph of triangle meshes. Technical Report GIT-
GVU-98-17, http://www.cc.gatech.edu/gvu/reports/1998, GVU Center, Georgia Institute of Technology, Atlanta,
GA, 1998. (to appear in IEEE Transactions on Visualization and Computer Graphics)

[SG98] Oliver G. Staadt and Markus H. Gross. Progressive tetrahedralizations. In Proceedings Visualization 98, pages
397–402. IEEE, Computer Society Press, Los Alamitos, California, 1998.

References

11

[TGHL98] Gabriel Taubin, André Guéziec, William Horn and Francis Lazarus. Progressive forest split compression. In
Proceedings SIGGRAPH 98, pages 123–132. ACM SIGGRAPH, 1998.

[TR98] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[TR98b] Gabriel Taubin and Jarek Rossignac. 3D geometric compression. In Siggraph 98 Course Notes 21. ACM SIG-
GRAPH, 1998.

[TG98] Costa Touma and Craig Gotsman. Triangle Mesh Compression. In Proceedings Graphics Interface 98, pages 26–
34, 1998.

[THJW98] Issac J. Trotts, Bernd Hamann, Kenneth I. Joy and David F. Wiley. Simplification of tetrahedral meshes. In
Proceedings Visualization 98, pages 287–295. IEEE, Computer Society Press, Los Alamitos, California, 1998.

[SR99] Andrzej Szymczak and Jarek Rossignac. Grow & Fold: Compression of tetrahedral meshes. to appear in Solid
Modeling, 1999.

