
Spiraling Edge: Fast Surface Reconstruction from Partially Organized
Sample Points

Patricia Crossno                                                                                 Edward Angel
Sandia National Laboratories                                                              University of New Mexico

ABSTRACT
Many applications produce three-dimensional points that

must be further processed to generate a surface.  Surface
reconstruction algorithms that start with a set of unorganized
points are extremely time-consuming.  Sometimes, however,
points are generated such that there is additional information
available to the reconstruction algorithm.  We present Spiraling
Edge, a specialized algorithm for surface reconstruction that is
three orders of magnitude faster than algorithms for the general
case.  In addition to sample point locations, our algorithm starts
with normal information and knowledge of each point’s
neighbors.  Our algorithm produces a localized approximation to
the surface by creating a star-shaped triangulation between a point
and a subset of its nearest neighbors.  This surface patch is
extended by locally triangulating each of the points along the edge
of the patch.  As each edge point is triangulated, it is removed
from the edge and new edge points along the patch’s edge are
inserted in its place.  The updated edge spirals out over the surface
until the edge encounters a surface boundary and stops growing in
that direction, or until the edge reduces to a small hole that is
filled by the final triangle.
CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics - Computational Geometry and Object Modeling.
Keywords: Surface reconstruction, advancing front, triangulation.

1 INTRODUCTION
In recent years, the reconstruction of surfaces from sets of

unorganized sample points in R3 has been an active area of
research [1][3][5][6].  The published results of this research focus
on solving the general case where no additional information
beyond the location of the surface points is known. Times
reported for constructing surfaces with twenty thousand points
range between 10 and 20 minutes of CPU time, depending on the
method used [1][3][5][6].   Although the methods developed for
the general case can be used to construct surfaces from sample
points where some organization already exists, the time required
to construct a surface of significant size is unacceptably long.  We
were able to use the normal and neighbor information that we
already had for each point to significantly speedup the process.
We have called this the Spiraling Edge (SE) algorithm.

The SE algorithm was developed to generate a surface from
particle positions after the particles have finished distributing
themselves over an isosurface in a volume data set [2].  In
addition to the particle or point locations, the algorithm uses a
surface normal at each point, a point type designation, and for
each point a list of neighboring points ordered by distance. Given
these inputs, the SE algorithm generates a triangulation that
approximates the surface much more rapidly than previous
general case methods. Our algorithm requires only 2.3 seconds to
reconstruct a surface from a set of over forty thousand points.  In
addition, the SE Algorithm does not assume that the points form a
single connected surface.

2 RELATED WORK
In 1992, Hoppe et al. presented a surface reconstruction

algorithm that starts with a set of unorganized points, and
generates a triangulation that approximates the unknown
underlying surface [5].  The algorithm does not exploit any
outside information about the nature of the surface. Timings on a
20 MIPS workstation for data sets ranging from 1000 to 21,740
points were between 19 and 2,135 seconds.

Edelsbrunner and Mücke published their �VKDSHV work in
1994 [3].  For a point set P�LQ�WKUHH�GLPHQVLRQDO�VSDFH�� �VKDSHV
are a family of shapes that are a generalization of the convex hull.
6HWWLQJ� WKH� YDOXH� RI� � EHWZHHQ� LQILQLW\� DQG� ]HUR� JHQHUDWHV
GLIIHUHQW� VKDSHV�� � :KHQ� � LV� VHW� WR� LQILQLW\�� WKH� �VKDSH� LV� WKH
convex hull of P�� �$V� � GHFUHDVHV�� WKH� �VKDSH� VKULQNV�� FDYLWLHV
DQG� KROHV�PD\� DSSHDU�� 7KH� DOJRULWKP� IRU� FRQVWUXFWLQJ� �VKDSHV
requires finding the three-dimensional Delaunay triangulation of
the point set.  Edelsbrunner and Mücke generalized a two-
dimensional edge-flipping algorithm to three dimensions.  In three
dimensions, the Delaunay triangulation is actually a
tetrahedralization of the convex hull of the points.  The additional
FRQVWUDLQW� RI� WKH� �VKDSH� VSKHUH� WKHQ� UHPRYHV� D� VXEVHW� RI� WKH
tetrahedral faces, or triangles, from the Delaunay triangulation.
The timings of their incremental-flip algorithm on a 50 MHz
MIPS R4000 ranged between 8.97 and 2,096.14 seconds for point
sets ranging in size from 318 to 15,000 points.

7KHUH�DUH�VHYHUDO�SUREOHPV�ZLWK�XVLQJ� �VKDSHV�WR�GR�VXUIDFH
reconstruction.  In objects with holes, it requires some
H[SHULPHQWDWLRQ�WR� ILQG�DQ� �YDOXH�WKDW�SURGXFHV� WKH� DSSURSULDWH
VXUIDFH�� � ,Q� VRPH� FDVHV�� WKHUH� LV� QR� �YDOXH� WKDW� SURGXFHV� WKH
desired surface.  Either the surface is webbed in areas where there
should not be a surface, or holes are beginning to appear in what
should be a solid surface.  Teichmann and Capps overcame these
OLPLWDWLRQV� RI� WKH� �VKDSHV� DOJRULWKP� LQ� ����� ZLWK� DQLVRWURSLF
density-scaling [6].  However, their algorithm also requires
intensive calculations to compute the three-dimensional Delaunay
triangulation of the point set.

In 1998, Amenta, Bern, and Kamvysselis presented a surface
reconstruction algorithm based on the three-dimensional Voronoi
diagram and Delaunay triangulation [1].  The algorithm inputs
unorganized sample points and outputs a set of triangles, which
they call the crust of the sample points.  The vertices of the crust
triangles are all sample points, so the algorithm interpolates the
sample points instead of approximating them as Hoppe’s
algorithm does.  The crust connects only adjacent sample points
on the surface, assuming that the surface is smooth and
sufficiently sampled.

Amenta, Bern, and Kamvysselis used an SGI Onyx with 512
megabytes of memory to test the running time of their algorithm
against several data sets.  The data sets ranged between 939 and
35,947 points, while the running times went from 2 to 23 minutes.
The amount of time required to do a surface reconstruction is in
the 15-minute range for an example with 20,021 points.  Their
paper states that the running time is dominated by the time needed
to compute the Delaunay triangulation, which they use to generate
the Voronoi vertices of the point set.



3 OVERVIEW
The starting point for the SE algorithm is a set of points

generated by an isosurface algorithm. As part of the process of
obtaining these points, information in addition to their locations
also is generated. For the particle system approach to isosurfaces,
this extra information consists of an estimated normal at each
point, a list of each point’s neighbors, and a type classification for
each point.

A point’s neighbors are found by examining a three-
dimensional sphere of influence around the point. Only those
points whose normals differ from the normal of the central point
by an angle of less than sixty degrees are included the list.  The
size of the sphere of influence is based on the local surface
curvature at that point.  This work has already been done by the
particle system.

Type is based on a point’s position relative to the boundaries
of the volume data set from which the isosurface is taken. Interior
points are not touching the volume boundaries. Boundary points
lie on the volume boundaries. And corner points lie along the
intersections between multiple volume boundaries.  The type
classifications enable the algorithm to generate surface edges
where the data set boundaries cut the surface.  This permits the
creation of open surfaces.

We work locally to create a nearly planar triangulation
between a point and its nearest neighbors.  Using a point as the
center of a ring of its neighbors, such as point 1 in Figure 1, we
ask the following question.  Which neighbors form a ring around
the central point such that the equators of spheres taken through
each pair of adjacent neighbors on the ring and the central point
are empty?

Those neighbors that fail the empty circumsphere test, such
as neighbors 8, 9, 10, 11, 14 and 18, are removed from the ring.
The remaining neighbors are triangulated along with the center
point.  The triangulation consists of placing edges between the
center point and each of the remaining ring of neighbors, as well
as placing edges between each of the adjacent neighbors on the
ring.  This process creates a wheel-like triangulation with the
center point as the pivot and the ring of neighbors along the rim.

5 4

3

2

1

6

7

8
9

10

14 13
12

11

16

15

17

18

Figure 1: Central point with ring of neighboring points.

On a more global scale, our approach is to initialize an edge
ring with a point and its nearest neighbor. After the algorithm
triangulates a ring of points around the first point, it removes the
encircled point from the edge ring and adds the new points used in
the triangulation to the edge ring in its place.  The edge ring
traversal proceeds in counterclockwise order around the normal of
the first point, thus providing an orientation for the triangulation
that is consistent across the surface.  The algorithm then spirals
around the edge ring, triangulating each of the points along the
ring in turn.

The algorithm assumes that except at points with boundary
type designations the surface is closed and there are no non-
manifold structures. The algorithm also assumes that there is only

one point at any particular location.  The algorithm grows a
surface from a single point until one of two things happens.
Either the surface encounters points that are surface boundaries
and stops growing in that direction or the surface fills until the
edge ring reduces to a small hole that fills itself in.  Consequently,
boundary points require special treatment.

Each time the edge ring becomes empty, a disconnected
surface component has finished triangulation.  If all of the points
have been used, triangulation is complete.  Otherwise, the
algorithm reinitializes the edge ring with a new point and its
nearest neighbor and continues.

Here is a pseudo-code description of the main steps in the SE
algorithm:

Clear All Point’s Status Flags to UNUSED
Repeat until All Points are USED

Initialize Edge Ring
While Edge Ring Not Empty

If Point on Boundary
      Triangulate Boundary Point

Else Triangulate Interior Point

4 INITIALIZATION
The algorithm expects points to be classified as interior,

boundary or corner types. The boundary points are further
subdivided into one (or more) of six different subtypes, positive x,
positive y, positive z, negative x, negative y, and negative z, some
examples of which are shown in Figure 17.  We represent each of
the boundary types by setting a unique bit within the point’s type
field.  Any point that falls into two or more of these subtypes also
sets the corner bit to speed up type checking operations.  Interior
points are those with no bits set.

Each point has a status flag that has three states: UNUSED,
USED, and DONE.  Before triangulation the flags are all cleared
to UNUSED.  Once a point has been used in a triangulation, its
status flag is set to USED, which corresponds to a point being
added to the edge ring.  Because there are circumstances where
the edge ring can include a point more than once (more will be
said about this case later), the status flag also acts as an instance
counter so that any value of the flag greater than 0 signals the
USED state.

When a point is removed from the edge ring, its status flag is
decremented.  If the status flag is equal to 1 prior to a decrement,
representing a single entry in the edge ring, the status flag is set to
DONE instead of being decremented (the value of the DONE flag
is –1).  A DONE status indicates that a point has been entirely
surrounded by a ring of triangles.  Consequently, even if a DONE
point has neighbor links to points that are not DONE, it cannot be
a candidate in their triangulations.  This situation can occur when
neighbor links connect points that do not share a Voronoi face or
edge.

As the flags are being cleared at startup, a pointer is
initialized to the first point. Then each time the edge ring is
reinitialized after a surface section has been completed, this
pointer is updated to point to the current starting point.  In that
way, later searches for a new starting point will not have to
repeatedly examine DONE points.  Once the pointer advances
past the last point, the algorithm knows that all points must be
DONE because it calls this routine only when the edge ring is
empty.

The edge ring is actually a doubly linked ring of elements
containing pointers to the points.  The edges are represented
implicitly by the links between the points in the ring;
consequently the ring needs to have at least two points.  To



initialize the edge ring, the algorithm inserts the first point that it
finds that is not set to DONE, and the point’s nearest neighbor
that is not DONE.  The algorithm begins the edge ring traversal
with the first point.

Sometimes the algorithm encounters points that either do not
have any neighbors or whose neighbors are all DONE.  In the first
case, these points represent such a tiny surface area that only a
single point will fit in that space.  We view these points as noise
and eliminate them.  In the second case, the algorithm has rejected
the point in the triangulations of all its neighbors and it has been
left stranded.  Although we prefer to use all of the points in
representing the surface, the cost of locating the pertinent mesh
region and re-triangulating that section to include the point
outweighs the benefits of including it.  So in both of these cases,
the algorithm marks these points as DONE and it continues the
search for a point to initialize the edge ring.

5 TRAVERSING THE EDGE RING

5 4

3

2

1

6

7

8 9

10

14
13

12

11

16

15

Figure 2: Spiraling triangulation of points on the edge ring.

Using Figure 2, we will step through several iterations of
how the edge ring is manipulated when it consists exclusively of
interior points.  The normals of the points are assumed to be
pointing out of the page.  The edge ring is initially just point 1 and
its nearest neighbor, point 2, with point 1 as the first point to be
triangulated.  After the algorithm triangulates the ring of points
around point 1, it removes point 1 from the edge ring and adds
points 3 through 7 to the edge ring.  The algorithm then advances
to the next point on the edge ring, point 2, and triangulates the
section of point 2’s ring of neighbors that has not yet been
triangulated as part of point 1’s triangulation.  This sub-ring is
shown in darker gray in the figure.  The algorithm replaces point 2
on the edge ring with points 8, 9, and 10.  Advancing to point 3,
the algorithm triangulates point 3 (whose triangulation is shown in
white) and replaces point 3 on the edge ring with point 11.

Continuing in this manner, the algorithm triangulates points
4 and 5, leaving an edge ring consisting of points 6 through 16,
with point 6 as the next point to be triangulated.  Each successive
triangulation step is shown as a different color.  Note that other
than the original ring of triangles around point 1, all of the
succeeding triangulations produce a fan of triangles that begins
and ends with vertices on the edge ring.

6 TRIANGULATING INTERIOR POINTS
The SE algorithm starts with three points: the center or pivot

point, the point that precedes the pivot point on the edge ring
(referred to as the first point), and the point that succeeds the
pivot point on the edge ring (referred to as the last point).  When
the edge ring only consists of two points, as it does initially, the
first and last points are the same.

6.1 Creating the Neighbor Ring
The normalized vector between the pivot point, p, and the

first point is a reference vector where the angle is zero. We refer
to this reference vector as z.  The algorithm sorts each of the
neighboring points by angle order around p.  If two neighboring
points are found to have the same angle, within some epsilon, the
point closest to p is included in the ring and the other point is
eliminated from consideration.

To calculate the angle, the algorithm does the following.
First, it takes the dot product of the vector z and the normalized
vector between the point p and a neighboring point, which we will
call v, to obtain the cosine of the angle between them.  Because
the cosine is symmetric about p, the algorithm needs some way to
differentiate which side of p the cosine lies in.  Hence, we
construct a plane through the pivot point and the first point by
taking the cross product of z and p’s normal, producing the
normal of the plane slicing the ring at 180 degrees.  This vector is
called m.  The dot product of m and v is compared to zero.  If

0�¿ vm ��WKHQ� �LV�VHW�WR�WKH�DUFFRVLQH�RI� z v¿ ��RWKHUZLVH� �LV
set to 2p minus the arccosine of z v¿ .

The algorithm uses the angle between z and the vector
between p and the last point, plast, as the maximum allowable
angle.  When the first and last points are the same, the ending
angle is 2p.  The ending angle prevents including neighboring
points in the ring that would require the triangulation to overlap
regions that are already triangulated.  In Figure 3, points t and p
are linked as neighbors, but because the angle formed by the
vector from p to t and z is greater than the angle between plast
and z, t is not included in the neighbor ring.

p

last

first

edge ring
t

z
neighbor
ring

Figure 3: Using max angle to remove neighbor points from  ring.

p

last

first

edge ring

new
start

start

end

new
end

r

s

z
neighbor
ringq

t

Figure 4: Changing the start and end points of the neighbor ring.

There are situations that arise that require the algorithm to
change the starting and/or ending angle that it established using
first and last.  An example where both must be changed is
presented in Figure 4.  As in the previous discussion, the neighbor
ring for p is initialized to contain only the two points first and
last, which are the two adjacent points on the edge ring.  The
algorithm keeps pointers to the points whose angles represent the
starting and ending angles within the neighbor ring. We call these



pointers start and end and they initially point to first and last.
The algorithm then looks at the two points along the edge ring to
either side of first and last, q and t, respectively, to determine if
the edge ring is convex or concave at those two points.  In this
case both points are concave.

If as the algorithm adds in q, it finds that q is already on the
edge ring, q is adjacent to the point pointed to by start, and the
edge ring is concave at this point.  The algorithm then advances
the start pointer to point to q.  The algorithm keeps z as the
reference vector, but now the beginning angle is greater than zero.
Similarly, the algorithm moves the end pointer when it adds t to
the neighbor ring.  Later, when the algorithm considers adding s
and r to the neighbor ring, they are excluded because they fall
outside the angle limits formed by the new start and end points.  If
s and r had already been included in the neighbor ring, the
algorithm would remove them along with any other points in the
neighbor ring between start and q.

In sorting the ring of neighbor points, we have made the
assumption that they are in a nearly planar region.  However, this
assumption is not always true.  We use the convex labeling of the
start and end points to eliminate points from the neighbor ring
which have passed the angle test, but which have been sorted
incorrectly due to the three-dimensional distortions in a highly
curved region.

p

edge ringendneighbor
ring

start
21

4
3

Figure 5: Convexity test needed to resolve angle sort failure.

An example where the angle sort fails is shown in Figure 5.
The neighbor ring is shown as a dotted line that overlaps the edge
ring between 1 and 2, and 3 and 4.  The neighbor ring incorrectly
includes point 2, which has been drawn slightly above point 1 for
emphasis, but which is really level with p and point 1 and further
back into the page.  Point 3 is also further back into the page,
while point 4 is closer to the viewer.  The convexity test
eliminates point 2 from the neighbor ring because point 2 is the
next point on the edge list after the point pointed to by start (point
1) and 1 is convex.

p

elast
efirst

e

plast

pfirst

edge
ring

q

Figure 6: Overlap due to failure of angle test to exclude point e.

The convexity test only applies to points in the edge ring that
are adjacent to the points pointed to by start or end since beyond
this points on the edge ring could be on the other side of a hole
being filled and could be legitimately included.  On the other
hand, there is the possibility of overlapping triangles caused by
the inclusion of points on the edge ring that are in a configuration
such as that in Figure 6.  For point p, point e passes the angle test
for the range of angles between pfirst and plast.  However, if e is
included in p’s neighbor ring, the resulting triangulation will
overlap the region already triangulated.  Consequently, points

with a USED status are given an additional check before being
added to the neighbor ring.

In the example shown in Figure 6, the edge point e is treated
as the pivot point and the angles formed by the preceding and
succeeding points on the edge list (elast and efirst) are calculated.
Then the angle of p with respect to these beginning and ending
angles for e is found.  If p could be included in e’s hypothetical
neighbor ring, then e is included in p’s neighbor ring.  In this
case, p could not be included, so e is eliminated from
consideration for p’s neighbor ring.

6.2 Filling Holes
Once all of the neighboring points have been evaluated for

inclusion in the neighbor ring, the algorithm must evaluate the
points it has chosen for possible removal. Since a hole could have
been created by self-intersection of the edge ring during
triangulation of an earlier pivot point, the algorithm checks for the
special case of filling a hole formed by p, first, and last. Once the
algorithm has used the tests already described to exclude
unwanted edge ring neighbors from the neighbor ring, there are
two possible types of neighbors remaining.  These are UNUSED
points inside the hole and UNUSED points outside the hole.

p

last

first

q
r

edge
ULQJ

neighbor
ULQJ

Figure 7: Eliminating neighbors outside the hole.

An example of this configuration is shown in Figure 7 where
the neighbor ring consists of first, r, q, and last.  The goal is to
keep r and remove q.  The algorithm constructs a plane by taking
the cross product of the vector between first and last and the
average normal of p, first and last.  Only those points that are on
the same side of the plane as p are kept in the neighbor ring.  The
other points, such as q, are removed from the neighbor ring.

Note that the algorithm will not recognize a hole formed by
more than three points.  If the example in Figure 7 contained an
additional point on the edge list forming the hole, point q would
be kept in the neighbor ring and produce an overlap in the
triangulation.  Although checks for larger holes could be made, it
would be a case of diminishing returns.  Since the distance
between p and any of its neighbors is limited, the likelihood of p
being linked to points on the other side of a triangulated strip
decreases with the size of hole.  However, there are still
circumstances where overlaps occur.

6.3 Removing Neighbors from the Ring
The algorithm now evaluates each point in the neighbor ring

for possible removal.  The algorithm calculates the center of the
circumcircle passing through the pivot point and the points on
either side of the point being evaluated using a technique
described in Graphics Gems IV [4].  Figure 8 presents an example
evaluating point q for removal from the neighbor ring.  A
circumcircle is formed using points p, s, and t.  The algorithm
treats the circumcircle as though it were at the equator of a
corresponding circumsphere.  The center of the circumcircle can
be used as the center of the circumsphere.  The algorithm finds the
distance d in three-dimensions between the center and q, and



compares this to the radius of the circumcircle r.  If q falls inside
the circumsphere or its removal would create an angle difference
between the vectors from p to s and p to t of more than 120
degrees, q must be kept. Otherwise, q is removed from the
neighbor ring.  In this case, q is removed and the evaluation
moves on to point s.  We arrived at 120 degrees as the cut off
angle by experimentation.

p
r

neighbor
ring

edge ring

s

t
q

d

center

circumcircle

Figure 8: Evaluating neighbor ring points for removal.

6.4 Triangulating the Ring

edge
ring

neighbor
ring

last

first

p �!����
degrees

overlapping
triangle

Figure 9: Testing for an overlapping triangle versus a hole.

Once the entire neighbor ring has been evaluated, one final
check must be made before triangulating the remaining points.  As
is shown in Figure 9, if the neighbor ring consists of only two
points and the angle they form around the pivot point is greater
than 180 degrees, the resulting triangle will overlap existing
triangles.  In this case, the neighbor ring will be discarded and the
pivot point will advance to the next point on the edge ring.
Eventually, p will be triangulated indirectly by triangulating the
points adjacent to it on the edge ring.  The occurrence of this
configuration indicates that p is insufficiently linked to its
neighbors.  This situation can arise when the neighboring points
lie just outside the search range for p.  If the angle between first
and last is less than 180 degrees, a two-point neighbor ring
represents a hole that is being filled and triangulation may
proceed.

p

neighbor
ring

edge
ring

t

last

first

s

r

Figure 10: Creating a triangle using p, first, and t.

Triangulation consists of traversing the neighbor ring from
first to last using two adjacent points on the neighbor ring at a
time.  The edges are created in a counterclockwise direction with
respect to the surface normal.  In the example in Figure 10, the
surface normal is pointing out of the page.  Edges are drawn from

p to first, first to t, and t to p, in that order.  Arrows demonstrate
the order of the vertices in the triangle.  After the triangle is added
to the output list the triangulation advances to t and s, then s and
r, and finally r and last.  Once a triangle is added to the output list
it may not be removed.

6.5 Updating the Edge Ring
Once the triangulation is complete, the pivot point is

removed from this section of the edge ring.  If the pivot point only
appeared in the edge ring once (indicated by a status of 1, since
the status doubles as an instance counter), the point’s status is set
to DONE.  Otherwise, the status of the pivot point is decremented.

p

last

first

active
edge ring

start

end

neighbor
ring

stacked
edge ring

s

t

Figure 11: Points removed from edge ring while triangulating p.

If first and last are no longer the start and end points in the
neighbor ring, then all of the points before start and after end in
the neighbor ring that are duplicated in the edge ring need to be
removed from this section of the edge ring.  If this place is the
only one where a duplicated point appears in the edge ring, as in
the example of last in Figure 11, then the point’s status field is set
to DONE.  Notice last is now surrounded by the triangulated
surface, so it cannot be used again.  Otherwise, as in the case of
first in Figure 11, the duplicated point’s status is decremented.

Once the duplicates have been removed from the edge ring,
the remainder of the points in the neighbor ring, excluding the
points pointed to by start and end, are inserted in
counterclockwise order into the edge ring.  In Figure 11, the
remainder of the neighbor ring consists of the two points s and t.
As each of these points is inserted into the edge ring, it is marked
as USED.

If a point is encountered that is already USED, the first other
instance of the point in the edge ring is located.  Depending on the
location of the other instance, one of two things will happen.  If
the other instance is in the active edge ring, the edge ring is split
into two rings and one of the rings is pushed onto a stack. In
Figure 11, during an earlier point in the triangulation first was
used for a second time by a point above first and the ring was
split.

Figure 12: Rejoining the edge ring.

If the other instance is not found in the active edge ring, the
stack of edge rings is searched in top down order so that the most
recently split edge ring will be found first.  Once the other
instance of the edge ring point is found in a stacked edge ring, the
two edge rings are joined into a single edge ring with the shared



edge ring point appearing twice in the same ring.  The
triangulation of the ring in the hydrogen data set, see Figure 21,
produced this situation as the edge ring was rejoined when the
triangulation finished the ring structure, as is shown in Figure 12.

Once the edge ring is finished being updated, the new point
is the point that had been the end particle in the neighbor ring.

7 TRIANGULATING BOUNDARIES
Boundary points present a problem with respect to the

neighbor ring approach presented above.  As can be seen in
Figure 13, the neighbor ring for point p will consist of two
disjoint sections on either side of p.  Even if the algorithm
triangulates p in parts, it cannot remove p from the edge ring.  If
the algorithm does remove p, the removal would either fragment
the edge ring or cause nonadjacent points to be adjacent in the
edge ring (and hence to be viewed as neighbors by the algorithm
which leads to overlapping triangles).

edge
ring

surface boundaryboundary particle

p
last

first

t

s

Figure 13: Edge ring intersects surface boundary at p.

Our solution has two parts.  First, we avoid using boundary
points as pivot points with only a few exceptions.  These
exceptions include the beginning of a new edge ring where both
points are boundary points, and when the algorithm is
triangulating the areas around surface boundary corners.
Otherwise, the algorithm simply advances to the next point in the
edge ring.  In the example in Figure 13, the algorithm can
triangulate the edge to the right of p using last as the pivot point.
As the algorithm circles around the edge ring back towards p, it
can triangulate the edge area to the left of p using first as the
pivot point.  Secondly, the algorithm leaves all the boundary
points in the edge ring until it makes a complete circuit of the
edge ring without any new triangles being added.  Then the
algorithm marks the boundary points as DONE and frees the edge
ring so that it can start a new disconnected surface component.

7.1 Edge Ring Is Two Boundary Points
When a new edge ring consists of only two boundary points,

the algorithm must use a boundary point as a pivot point.  If we
were to use our neighbor ring approach without modification, the
algorithm would create either a zero area triangle or a triangle
outside the surface when it connects the two boundary points on
either side of the pivot point.  An example of this is shown in
Figure 14, where p and first are the only two points on the edge
ring.

surface
boundary

incorrect
triangle

p

s = first = last

q

Figure 14: Unmodified neighbor ring produces incorrect triangle.

However, if the algorithm adds q to the edge ring and uses it
in place of first, keeping the other boundary point as last, then the
neighbor ring approach can be used without modification.  So
prior to calling the neighbor ring routine, the algorithm searches
p’s neighbors for a third point that is UNUSED and has a
boundary edge in common with p.  Although interior neighbors
would also avoid the error, the algorithm might select an interior
point that would be culled from the triangulation, whereas the
boundary point would not be culled.  By not requiring the new
point to have a type identical to p, the algorithm keeps from
eliminating corner points.

p

s=lastq=first p s=first

q=last

Figure 15: Inserting the third point in the edge ring.

Once the algorithm has found the third point, q, it must
decide whether to insert q before or after p in the edge ring.  The
placement of the third point in the edge ring determines whether
the third point is used as first or last in the neighbor ring, as is
shown in Figure 15.  In the example in Figure 14, the algorithm
needs to insert q after p so that the range of allowable angles will
include points inside the volume boundary.  The decision depends
on which boundary is involved and where the third point is
located along the boundary relative to p.

cross
product

s

p

N

 positive x
 boundary

volume
domain

Y

X

Z

 negative x
 boundary

p type is positive x

Figure 16: Deciding whether to insert the third point before or
after p in the edge ring.

The algorithm takes the cross product of the normal at p and
a vector between p and the second point in the edge ring.  The
algorithm then compares the direction of the resulting vector with
the type of p.  The third point is inserted before p in the edge ring
if one of two conditions exists.  Either p lies on a negative
boundary and the corresponding component of the cross product
vector is negative, or p lies on a positive boundary and the
corresponding component of the cross product vector is positive.
Otherwise, the third point is inserted after p in the edge ring.
Figure 16 illustrates the use of the cross product for the
configuration previously given in Figure 14.

7.2 Volume Boundary Corners
The other exception to the policy of not using boundary

points as pivots, is when the edge ring has adjacent points whose
types indicate a transition from one volume boundary to another.
In Figure 17, the points in the edge ring transition from the
positive x boundary to the positive y boundary at point t.  Point p
is of type positive x, q is a positive y point, and point t is both of
these types, so it is also a corner type.  Even if point t were not in



the edge ring, the transition in types between p and q would
indicate the transition between volume boundaries.

There are three cases requiring special treatment: p is
entering a corner, p is exiting a corner, and p is on the corner.
Examples of these are shown in Figure 18, Figure 19, and Figure
20, respectively.  In each case, due to the configuration of
boundary and corner points, the point r would never be included
in the triangulation due to the lack of neighboring interior points.
Therefore, the algorithm cannot advance to the next point in the
edge ring without first triangulating using p as the pivot point.
The algorithm uses the same approach as before, inserting another
UNUSED boundary point into the edge ring either before or after
p, then triangulating using the regular neighbor ring approach.  In
all of these cases, the UNUSED point inserted into the edge ring
is r.

s

p

q

 positive y
 boundary

volume
domain

Y

X

Z

 negative x
 boundary

 positive x
 boundary

t

Figure 17: Edge ring transitions between X and Y boundaries.

p
p entering
corner

r s

q

t
negative x & negative y
& corner type

negative x type

negative y type

edge ring

neighbor links

Figure 18: The pivot point is entering a corner.

p

p exiting
corner

s

q
r

 positive y type

 positive y & positive
 z & corner type

 positive x & positive
 z & corner type

 positive x & positive
 y & corner type

edge ring

neighbor links

Figure 19: The pivot point is exiting a corner.

r

p is on a
corner

s

q
p

 positive y type

 positive y & positive
 z & corner type

 positive x & positive
 z &  corner type

 positive x & positive
 y & corner type

edge ring

neighbor links

Figure 20: The pivot point is on a corner.

8 RESULTS AND FUTURE WORK
We generated point sets using a particle system that

isosurfaced various volume data sets.  The timings for the SE
algorithm to generate triangulations of these point sets are
presented in Table 1.  The hardware platform was an SGI High
Impact Indigo2 running IRIX 6.3 on an R4400 with 192
megabytes of memory.  The number of points input and the
number of triangles generated provide a measure of the problem
size in each case.  Renderings of the triangulated point sets are
shown in Figures 21-25.

Point Sets # Points # Triangles Time (secs)
Lobster 42906 83893 2.30

Electron Cloud 3755 7046 .15
Blast Wave 1393 2662 .07
Hydrogen 1516 3020 .08

Hyperboloid 215 366 .01

Table 1: Timings for SE algorithm on various point sets.

In future work, we would like to evaluate the additional time
needed to synthesize various inputs that the SE algorithm
currently requires.  For instance, Hoppe generates normal
information as part of his algorithm and computes the k-nearest
neighbors for each point.   Could we find alternate ways to create
these inputs that would maintain our speed advantage?  Also, once
we have the normal and nearest neighbor information, can we
determine which points are interior and which points are
boundary points without doing expensive operations like a
Delaunay triangulation?  It would be useful to develop techniques
to fill in whichever pieces are missing in the input and to quantify
the costs of using them.

9 ACKNOWLEDGEMENTS
The DOE Mathematics, Information, and Computer Science

Office funded this research.  The work was performed at Sandia
National Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract DE-
AC04-94AL85000.

10 REFERENCES
[1] Amenta, N., M. Bern, and M. Kamvysselis.  A New

Voronoi-Based Surface Reconstruction Algorithm.  In
SIGGRAPH 98 Conference Proceedings, Annual Conference
Series, pages 415-421. Addison Wesley, July 1998.

[2] Crossno, P. and E. Angel.  Isosurface Extraction Using
Particle Systems.  In Proceedings of Visualization ’97, pages
495-498.  IEEE, October 1997.

[3] Edelsbrunner, H. and E. Mucke.  Three-Dimensional Alpha
Shapes.  ACM Transactions on Graphics, 13 (1): 43-72,
January, 1994.

[4] Hill, F.  The Pleasures of “Perp Dot” Products.  Graphics
Gems IV, pages 138-148.  AP Professional, Boston, 1994.

[5] Hoppe, H., T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle.  Surface Reconstruction from Unorganized Points.
In Computer Graphics (SIGGRAPH 92 Conference
Proceedings), 26 (2): 71-78. Addison Wesley, July 1992.

[6] Teichmann, M. and M. Capps.  Surface Reconstruction with
Anisotropic Density-Scaled Alpha Shapes.  In Proceedings
of Visualization ’98, pages 67-72.  IEEE, October 1998.



Figure 21: Hydrogen point set.

Figure 22: Lobster point set.

Figure 23: Hyperboloid point set.

Figure 24: Blast wave point set.

Figure 25: Electron cloud point set.


