
UC Davis
IDAV Publications

Title
A Spreadsheet Interface for Visualization Exploration

Permalink
https://escholarship.org/uc/item/6qx9t9gc

Authors
Jankun-Kelly, T. J.
Ma, Kwan-Liu

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qx9t9gc
https://escholarship.org
http://www.cdlib.org/

As printed in IEEE Visualization 2000

A Spreadsheet Interface for Visualization Exploration

T.J. Jankun-Kelly and Kwan-Liu Ma
Computer Science Department,
University of California, Davis∗

Abstract

As the size and complexity of data sets continues to increase, the
development of user interfaces and interaction techniques that ex-
pedite the process of exploring that data must receive new attention.
Regardless of the speed of rendering, it is important to coherently
organize the visual process of exploration: this information both
grants insights about the data to a user and can be used by collab-
orators to understand the results. To fulfill these needs, we present
a spreadsheet-like interface to data exploration. The interface dis-
plays a 2-dimensional window into visualization parameter space
which users manipulate as they search for desired results. Through
tabular organization and a clear correspondence between parame-
ters and results, the interface eases the discovery, comparison and
analysis of the underlying data. Users can utilize operators and the
integrated interpreter to further explore and automate the visualiza-
tion process; using a method introduced in this paper, these opera-
tions can be applied to “cells” in different “stacks” of the interface.
Via illustrations using a variety of data sets, we demonstrate the
efficacy of this novel interface.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical user interfaces (GUI); H.5.3 [In-
formation Interfaces and Presentation]: Group and organization
Interfaces—Collaborative computing; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques

Keywords: spreadsheets, user interfaces, knowledge representa-
tion, scientific visualization, visualization systems, volume render-
ing

1 Introduction

Without effective interfaces to represent the process and results of
visualization, a user cannot properly utilize the underlying tech-
niques to extract information from their data. While research in
visualization has been driven by the need to view more realistic
and informative visualizations of very large data sets in a reason-
able amount of time, few efforts have been devoted to storing and
presenting the data exploration process itself. This information can

∗Visualization and Graphics Research Group, Center for Image
Processing and Integrated Computing, Computer Science Department,
University of California, Davis, CA 95616. E-mail: {kelly,
ma}@cs.ucdavis.edu

be shared and reused, enabling users to build upon past work with-
out repeating themselves. Toward this end, this paper describes a
spreadsheet-like interface for data exploration and demonstrates its
functionality through a set of examples.

During the data exploration process, a user attempts to discover
a set of parameter values to create desired visualizations; it is an
interface’s task to make the search and manipulation of these values
as transparent as possible. Our spreadsheet-like interface provides
the following capabilities to assist in this task:

• A tabular structure that encapsulates the visualization.

• Operators upon parameters and results to analyze and manip-
ulate the visualization.

• An interpreter that can control the visualization process at a
lower level.

These features help the user in their work, and make it easier to
share information with collaborators. The table provides more con-
text than manipulation of parameters or results alone. Operators
efficiently create new results from previous values. Finally, the in-
terpreter allows experts to perform complex operations upon the
data that supersede the facilities provided by the UI.

Numeric spreadsheets have been used for some time; the inter-
face has also been applied to other domains. The visual language
community has extensively studied spreadsheets and their applica-
tions; for example, the Forms/3 system [2] has been used to discuss
spreadsheet animation, dynamically expanding grids, and psycho-
logical factors in designing user interfaces [4, 3, 18]. In graph-
ics, the SI system [11] wraps a spreadsheet around a general im-
age processing kernel; users manipulate scripts to generate cell
values. Hasler, et al. [7] also describe a spreadsheet system for
image manipulation in the context of satellite data analysis. Un-
like our spreadsheet, both of these systems focus upon data dis-
play and manipulation rather than exploration. Chi, et al. [5] de-
scribe a set of principles for visualization spreadsheets used by their
SIV system. While we adopt some of their principles, our sys-
tem is designed specifically to ease the visualization exploration
process. Our spreadsheet displays a movable window into visu-
alization space while previous work collapses the entire space into
2D. This windowing of visualization space allows quick data explo-
ration. The spreadsheet can also be used as a representation of the
visualization as a whole; where conventional spreadsheet are driven
by direct user interaction, our spreadsheet can react to changes in
the visualization itself.

2 Data Exploration Techniques

Visualization provides insight, however the process of
visualization—that of data exploration—can be enlightening
as well. Without a means to document the effort spent generating
visualizations, these efforts are lost once the process is complete.
In cases where generating the visualization is computationally
expensive or the correspondence between parameter values and
their results are non-intuitive, capturing the exploration process

As printed in IEEE Visualization 2000

is especially important. Thus, user interfaces to data exploration
should not only create visualizations, but store the history of the
exploration in a manner that allows exchange and manipulation.
We propose that such an interface should meet the following
criteria:

• Allow the user to set and manipulate parameter values to gen-
erate visualizations.

• Display the relationship between and context of different vi-
sualizations.

• Provide a set of parameter and value operators to extract in-
formation and generate new visualizations.

• Encapsulate the history of the exploration process for collab-
oration.

This paper demonstrates that our interface satisfies all of these cri-
teria.

In traditional interfaces, a user iteratively changes parameter val-
ues in order to search for the desired result. This trial and error
process is inefficient and does not provide context that directs a
user toward their goal. Automatic systems that generate parameter
values, such as Kindlmann and Durkin’s transfer function genera-
tion technique for volume visualization [10], can help this process,
but their result is lost once a user modifies the parameter again.
Once an acceptable visualization is obtained, only the final param-
eter settings and image are available to be recorded and shared with
collaborators; all previous results are lost. While perhaps sufficient
for prototypes, these interfaces do not allow sophisticated control
of the exploration.

Several commercial systems use a data-flow interface for visu-
alization [15, 19, 1]. These systems provide a visual programming
environment that allows a user to generate a directed graph repre-
senting the flow of data through the system; the network can be
shared, allowing for more powerful collaboration than simple in-
terfaces. This interface is more suited to generating visualization
results than recording the data exploration process: the history of
the network is not recorded and there are no operations to manipu-
late the network to create new networks.

The Design Galleries system [13] considers data exploration a
process of exploring a multidimensional space of visualization pa-
rameters. The results a user desires exist within this space; it is the
system’s job to aid in the discovery of the parameters that corre-
spond to the images. After a pre-processing rendering stage, the
system provides a 3D representation of the design space; a user
then navigates this space to find their desired images. By replacing
a trial and error approach with a structured navigation of parameter
values, the system allows a more efficient exploration.

The image graph system [12] was designed with visualization
data exploration in mind, and thus satisfies the criteria we pre-
sented. An image graph is a dynamic graph representation of the
visualization process that distinctly displays the relationship be-
tween generated images via glyph edges; the graph is used to ex-
plore the space of visualization parameters. As more visualizations
are added, the graph structures itself so that related images are clus-
tered together; a user can manipulate this structure as they desire.
Operations upon the edges and nodes in the graph can be used to
generate further results. The graph can be shared with collabora-
tors, thus providing a history of the final result with the result itself.
There are some weaknesses with the image graph approach. As
exploration progresses, the graph can become too large to display
effectively. In addition, applying operations to several different re-
lated paths of images is difficult; this is especially true for graphs
displaying different data sets—there are no paths between them in
the graph. These concerns are addressed by our spreadsheet-like
representation.

Figure 1: Visual representation of some parameters displayed by
the spreadsheet. As a user edits the underlying parameter, the icon
of the parameter is updated.

3 Spreadsheet-based Exploration

Like the Design Galleries and image graph systems, we consider
visualization exploration a process of examining a multi-variable
space of parameter values. Eachn-tuple in the space represents
a combination of parameters that produce a visualization. For the
purposes of this discussion, we will describe a spreadsheet interface
specialized for volume rendering, though the ideas can be applied in
other domains. The points in the visualization space are the volume
rendered images specified by the combined parameter values. The
parameters our system currently utilizes are data sets, color maps,
opacity maps, view position, shading coefficients, sample size, and
image size/zoom; when selected as a row or column parameter, they
are displayed as in Figure 1.

A spreadsheet presents a tabular view of its underlying data. In
numerical applications, this is a 2D array and thus the correspon-
dence between data and display is trivial. Visualization space is
higher dimensional and more complicated to display. Our spread-
sheet is a movable, scalable window into space; by manipulating the
visualization parameters, the user changes the position and size of
this window. The spreadsheet displays a planar projection spanned
by two axes of the visualization space; for example, the rows could
represent opacity maps while the columns could display color maps
as in Figure 2. For the non-displayed parameters, the user selects
a set of values to be used as defaults. A cell in the spreadsheet is
identified by combining these defaults with the parameter values
corresponding to the cell’s row and column indices. The spread-
sheet window is translated by changing one of the default values
for a non-displayed parameter; the cells are automatically updated.
For example, Figure 2 illustrates what occurs when the view po-
sition, a non-displayed parameter, is changed—the spreadsheet’s
position in visualization space changes as well. The spreadsheet
window can also be rotated, as Figure 3 demonstrates. Rotation
occurs when two new parameter values are chosen for display af-
ter the user selects new default values for the previously displayed
parameters; the window is rotated about the cell with the selected
default values. In the figure, default values for the color and opacity
map parameters were chosen by selecting the image combining the
parameters. View position and zoom factor were then selected as
the new displayed parameters; the previously selected cell appears
in the updated spreadsheet as well. Thus, the visualization process
becomes a process of maneuvering the spreadsheet window through

2

As printed in IEEE Visualization 2000

Figure 2: Our spreadsheet is a view of two dimensions of a visu-
alization space; in this example, opacity maps are displayed along
rows and color maps along columns. A particular cell is rendered
by combining the non-displayed parameters’ default values with the
parameter values corresponding to the row and column indices. By
changing the default parameters, in this case the view position, the
spreadsheet’s position in visualization space can be moved.

the parameter space.
Previous visualization spreadsheets collapse visualization space

into 2D without constraining what values were used in the spread-
sheet cells. While this may be useful to display final visualization
results side by side, this projection hinders exploration efforts since
the relationship between parameter values and result is not imme-
diately evident.

3.1 Static Capabilities

After starting the spreadsheet, a user selects the initial data set to
visualize; default values are used for the other parameter values.
Using the spreadsheet, the user can select which parameters to dis-
play along the rows and columns, and add, remove and position col-
umn and row values as desired. Only requested cells are rendered,
avoiding the overhead of rendering the entire table. If the selected
row or column parameter is changed, the table is populated with
images corresponding to the new combination of parameters; if one
of the non-displayed default parameter values is changed, the im-
ages are updated as well. The system identifies which parameters
correspond to an image by rendering the row and column labels as
in Figure 1.

Figure 4 demonstrates a spreadsheet-driven visualization; in this
case, the user wished to display separate skin and bone surfaces
for a foot medical data set. First, the user added two opacity maps
which highlight the desired surfaces; the tabular organization of the
spreadsheet allows the two images to be easily compared side-by-
side. After changing the row parameter to display view positions,
the user selected a view to display the front of the foot. This posi-
tion was selected as the new default. Afterwards, the user returned
to modifying color maps; only images utilizing the new view po-
sition were displayed. Two new color maps were added, the first
a false-color map highlighting differences in value on the surface
and the second a color map to display a flesh-like tone for the skin
and white for the bone; the latter color map was selected as the new

Figure 3: The spreadsheet window can also be rotated in visualiza-
tion space. For example, starting from a sheet displaying color and
opacity maps, the user first selects an image with the desired prop-
erties; these two parameters will become the new default values.
By then selecting two new parameters to display, in this case view
position and zoom factor, the window is rotated about the selected
point to display the new values.

default color map. Finally, the final images were generated by dis-
playing and adding a new zoom factor value. If the user wanted,
they could change the default color map or view position to exam-
ine alternate zoomed images.

Tabular organization is one of the advantages the spreadsheet has
over other representations. As demonstrated above, it allows quick
visual comparison of data values. This property is especially useful
in comparing renderings of different data sets; for example, Fig-
ure 5 displays a sequence of data sets representing time steps of a
turbulent flow simulation. Changing or adding a parameter value
in the figure would affect all the data sets at once. The equivalent
task would require several separate operations in an image graph,
for example. In Figure 6, two variables from a multi-variate tur-
bulent jet simulation are displayed along with their sum in the first
three columns; the fourth column displays the sum of four other
flow variables. The user can visually compare the two sums, which
represent different representations of the total flow (see [17] for
more information). Again, the user can further compare the values
by modifying the rendering parameters. The tabular structure also
suggests natural parallelism when applying the operations from the
next section; if a new column is generated by an operation, each of
the new cell values could be distributed to separate processors to be
rendered.

3.2 Dynamic Capabilities: Parameter and Value
Operations

Most spreadsheets define a set of operations that can be applied
to the cells; for example, numerical spreadsheets provide functions
for algebraic manipulation and statistical analysis. In visualization
spreadsheets, operations allow the user to create new results from
previous ones. Our spreadsheet defines two types of operations:
those acting on parameters (row and columns) and those acting on
values (cells). The former typically generates new parameters from
their input while the later analyzes cell values.

There is a set of operators for each parameter type: for exam-
ple, set operations can be applied to color and opacity maps, view

3

As printed in IEEE Visualization 2000

Figure 4: A sequence of spreadsheets displaying the visualization
of a foot data set; blank cells represent non-rendered images. The
goal was to compare skin and bone surfaces. The user first deter-
mined appropriate opacity maps before modifying the view posi-
tion, color map and zoom factor. The spreadsheet was useful in
displaying the images to be compared side-by-side.

Figure 5: A spreadsheet displaying multiple data sets representing
time steps in a vortex simulation. Modifying the displayed color
map would change all the data set images at once, a task that would
be more difficult in other representations.

Figure 6: Another spreadsheet examining multiple data sets; the
data represent distinct variables in a multi-variate turbulent jet sim-
ulation. The entire simulation has 9 variables; the first two columns
are two of the variables. The third column is the sum of the first
two variables over the entire volume; the fourth column is the sum
of four other non-displayed variables. Both sums are supposed to
represent the total flow through the jet.

positions can be interpolated and histograms can be derived from
data sets. To apply a parameter operator, a user first selects a range
of column or row values; these will be used as the operator’s argu-
ments. The user then selects an operator to apply and, if necessary,
customizes its behavior. For example, Figure 7 demonstrates the
union operator applied to opacity and color maps to display two
separate features (positive and negative vorticity of the flow, re-
spectively) of a turbulent flow simulation data set together; the new
maps are automatically added to the table.

Value operators are applied in similar manner to parameter oper-
ators: the operand cells are selected and a operator is chosen from
a list of possible operations. What is unique about value operations
is how the cells are selected. As the spreadsheet data is multidi-
mensional, cells from alternate “stacks” of the spreadsheet can be
selected at the same time. For example, if a user wanted to combine
the opacity and color maps from one image with the view position
and zoom factor of two other images (Figure 8), the user could fol-
low these steps:

1. Change the row and column parameters to display color and
opacity maps.

2. Select the cell with the desired color and opacity maps.

3. Change one of the parameters to display view positions.

4. Select the cell with the desired view position.

5. Change one of the parameters to display zoom factor values.

6. Select the final cell with the desired zoom.

7. Apply the combination operator.

The new cell would then be added to the spreadsheet at the inter-
section of the four selected parameter values. Without cell selection

4

As printed in IEEE Visualization 2000

Figure 7: An example of applying parameter operators, in this case
the union of color and opacity maps. The two original maps repre-
sent negative and positive vorticity, respectively, in a turbulent flow
data set; the final image displays them together.

in separate stacks, value operators could only be applied within a
given display, limiting changes in parameter to the current row or
column parameter only.

3.3 Animation

Unlike static images, animations better display 3-dimensional fea-
tures of data over both spatial and temporal domains; thus, it is im-
portant for our interface to support animation creation. Animations
are generated using the same method used to apply value operators.
First, a range of key frame cells, most often from different stacks, is
selected in the spreadsheet. As more than one parameter can change
between images, the order of interpolation is then selected by the
user. Finally, the user determines how many intermediate steps to
render between each key cell. The system then automatically ren-
ders the animation.

As an example, consider an animation using the first and last
cells in Figure 8. Between these two images, both the view position
and zoom factor has changed. To generate the animation, the cells
containing the two key frame images would be selected; next, the
user would determine the order of interpolation: view position fol-
lowed by zoom factor or vice versa. The resulting animation would
illustrate the structure of the flow along a path of continuously vary-

Figure 8: Selected cells for a composition operator; in this case, the
user wishes to use the color and opacity maps of the first image, the
view position of the second and the zoom factor of the third. The
fourth image displays the desired visualization.

ing viewpoints.
Animation is also used for another purpose: illustrating the his-

tory of the visualization. This technique uses some ideas from
Igarashi et al’s animation of the relationship between spreadsheet
formulas [9]. In their work, they use arrows which fade into view,
move from the source of formula data to the cells which use that
data, and then fade out. For our history animation, we start from
an empty spreadsheet and “fade-in” subsequent changes until the
entire state is represented. For transitions between stacks, the old
stack fades out as the new stack is displayed. In this manner, the
entire history of the visualization process is communicated.

The history animation is controlled through two means. First,
during the animation, the user can change the speed of the anima-
tion to “fast-forward” through the progress. This fast-forwarding is
useful to gloss over portions of the exploration that are irrelevant to
a user’s presentation. Second, cells can be marked as “important”
before the animation begins; only these cells will be presented dur-
ing the history animation. This capability is especially useful in the
context of collaboration; an animation highlighting the salient fea-
tures of the visualization is more informative than one that displays
test images and final results with equal priority.

3.4 Scripting

Another dynamic capability of the spreadsheet is the use of an in-
terpreter. The interpreter can access any parameter or cell value or
operator and is not limited to the values currently displayed. Non-
selected parameter values can be manipulated and new images ren-
dered. The interpreter grants advanced users low-level control of
the visualization process that the UI abstracts. For example, the
script

for i in range(3):
addParameter("View",

View(xangle=45*i,
yangle=-45*i,
zangle=0))

would generate a series of view positions in an arc about the data
set programmatically.

Our implementation of scripting differs from common macro
languages in numerical spreadsheets or the scripting abilities in the
spreadsheets described by Chi, et al. [5]. In these applications, cells
are referenced by their row and column values. If a cell’s value
changes, all formulas which reference that cell’s row and column
are updated; if other formulas depend on the changed formula, they
are updated as well. In our spreadsheet, the values used for rows
and columns can change dynamically; the parameter a row or col-
umn represents may change at any time. Thus traditional spread-
sheet reference methods do not apply. Currently, a reference to
a cell location is translated into a tuple representing the positions
of that cell’s parameter values in the parameter lists. Thus, if the

5

As printed in IEEE Visualization 2000

Figure 9: An example of referencing a cell. A reference to a cell,
in this case cell(1,2) , is translated into a tuple representing the
positions of the cell’s parameter values in their respective parameter
lists. The translated reference is(1,2,3,1,1,2,1) .

second cell in the first row is selected, the tuple elements for the pa-
rameters currently displayed in the row and column would be one
and two, respectively, with appropriate values for the non-displayed
parameters (see Figure 9). References to rows or columns are trans-
lated to indices into the appropriate parameter lists. For example,
the following script performs the same operations used to create
Figure 7; if the user changes one of the original color or opacity
maps, the derived cell will be automatically updated:

addParameter("Opacity Map",
union(column(1),

column(2)))
addParameter("Color Map",

union(row(1),
row(2)))

render(cell(3, 3))

4 Collaboration

The spreadsheet eases collaboration by allowing the exchange of
more information than a set of images. With only a set of images,
a collaborator has no sense of their order or what parameter values
were used to generate them. Expressed as a spreadsheet, the entire
visualization process can be communicated to other users. First, the
results of the visualization are clearly presented by the spreadsheet.
Second, as discussed, previously, parameters used for each cell are
easily identified. Finally, the history of the process can be commu-
nicated through coloring the cell borders and animating the spread-
sheet. Colored borders present the history information at-a-glance;
“warmer” (lighter) borders represent more recently modified cells
than “cooler” (darker) borders. The animation technique discussed
in Section 3.3 provides a more in-depth look at the history. The
information the spreadsheet displays can be used to understand the
source of the images, or used to derive new results; without it, the
process would have to be repeated for each new user.

Besides their off-line usage, our spreadsheet interface can be
used on-line as well. Several active views can access the same
visualization in progress. Either the users work individually, syn-
chronizing parameters as desired, or the system maintains a pool
of parameter values that the users share—as new parameter values
are added, all users would see the result. Both situations could be
useful: the former when users are looking for different results and
the latter when an expert is driving the exploration.

Figure 10: The visualization spreadsheet framework.

Another form of collaboration is the use of spreadsheet tem-
plates. Templates are scripts generated by experts that perform au-
tomated manipulation and analysis of the visualization data. For
example, a template could generate optimal color and opacity maps
after analyzing the input data sets, and display the results in the
spreadsheet. Templates can be distributed with data sets to perform
initialization or other functions to assist users understand the data.

5 System Architecture

We have developed an object-oriented framework which imple-
ments the spreadsheet features described in this paper. It consists of
three main components: a view object which handles user interac-
tion and displays the spreadsheet, a model object which renders the
visualization and applies operators, and an interpreter object which
executes scripts to manipulate the spreadsheet’s state. Figure 10
illustrates the system.

The system described in this paper implements a volume visu-
alization spreadsheet using the developed framework; however, the
framework itself can be applied to different types of visualization.
Our current implementation is in Java, using JPython [8], a native
Java implementation of the Python language [16], as its interpreter
engine.

5.1 View Object

The view object displays the spreadsheet, handles user interaction,
and manages the state for the local spreadsheet object. It is impor-
tant that the view manages the spreadsheet state; if the view object
is later embedded in a web-aware applet, it would be inefficient for
it to communicate its state across the network.

5.2 Model Object

The model object implements the visualization server component
of the system. For our volume visualization spreadsheet, it imple-
ments a ray casting algorithm for the rendering. Connected view
objects request an image by passing the model a set of parameter
values; the model caches previously generated images by their pa-
rameter values so requests by different clients for the same image
return immediately. Though our current implementation uses a sim-
ple, serial ray caster, the renderer is another pluggable component
in the system: it can be easily replaced with an object that farms
the rendering out to a cluster of machines, one that adapts the ren-
dering based upon the data set and parameter values or module that
harnesses the real-time capabilities of specialized hardware such as
the VolumePro [14].

The model object also maintains a list of available parameter and
value operators. When new operations are added, only the central

6

As printed in IEEE Visualization 2000

render server must be updated. At the beginning of a visualiza-
tion session, clients can request the list of available operations and
download the code for them locally, thus saving network communi-
cation when the operators are actually applied.

The model is responsible for capturing the visualization as a
whole. Thus, changes to the model propagate to all connected
views. This is important because the model can potentially be mod-
ified by outside applications. For example, the model object can be
used by a separate image graph; new parameters added by the image
graph would be visible to the spreadsheet. Thus, the spreadsheet
provides a representation of the visualization through the model.

5.3 Interpreter Object

The interpreter is also locally stored by each client. It implements
all the scripting functions described previously. The interpreter al-
lows the user to manipulate the spreadsheet’s state in a program-
matic way for tasks that would be difficult or awkward using the UI;
generating the view positions from the script in Section 3.4 would
be difficult using the interface but easy with the script. Using the
interpreter, users can construct programs to assist them in their vi-
sualizations.

6 Conclusions and Future Work

Our spreadsheet interface assists in the visualization process in two
ways. First, the structure of the spreadsheet provides an orga-
nized means of exploring the space of visualization parameters. In
volume visualization, it is not immediately apparent what render-
ing parameters correspond to the displayed image; the spreadsheet
clearly identifies which parameters belong to which images. By un-
derstanding how the result depends on parameter values, a user can
quickly navigate the space of parameters towards the desired image.
Since generating the images can be time consuming, streamlining
the process makes the entire session more efficient. The structure
also eases collaboration as it communicates all the steps used to find
the desired results; this history can be useful in exploring alternate
paths at a later time.

The dynamic capabilities are the second property that assist in
visualization. They speed the search for parameter values by al-
lowing users to generate new parameters by combining a range of
older values; they provide insight by analyzing the explored results.
The structure of the spreadsheet allows operators to be applied to a
wider range of values than in other interface designs. Experts can
work very efficiently by using the interpreter to manipulate visual-
izations directly.

This work raises some interesting questions regarding visualiza-
tion interfaces. Though the interface was designed for exploration
purposes, it can be argued that it also provides a useful representa-
tion of the visualization as a whole. Regardless of the actual inter-
face used, our spreadsheet can encapsulate the visualization’s his-
tory. Thus, one can imagine an application where the user directly
manipulates the visualization in a separate area; as new parame-
ter values are tried, their results would be automatically added to
the spreadsheet. Similarly, instead of editing just the column and
row values, the user might also manipulate the objects in the cells;
again, new parameters and results would automatically be added to
the spreadsheet. Both deserve further study.

6.1 Future Work

There are still some outstanding research areas in our spreadsheet
design. Graphics researchers are already familiar with the difficul-
ties involved in navigating a 3D environment with a 2D interface;
the spreadsheet complicates matters as it represents a multidimen-
sional space. Our current interface provides means for setting the

row and column parameters; it does not provide any method for lo-
cating a previously generated image. Consequently, it would also
be beneficial to display navigational landmarks that help a user lo-
cate themselves in visualization space. One idea is to use an image
graph for navigation purposes, as it can display summary informa-
tion at a glance; the system would dynamically translate between
the two representations. Some preliminary work in this area is pos-
itive.

Another open problem for our spreadsheet design is off-line stor-
age. A simple, specialized format that stores which parameters
were explored and what images were rendered is sufficient for a
simple application. Yet, as central databases of visualization data
become more prevalent, the interface between the spreadsheet’s
data and these repositories becomes important. Meta-data such as
the order of the generated visualizations should be stored in some
manner as well; different visualization domains have their own
meta-data as well. One solution would be an XML [6] specifica-
tion for storing the spreadsheet data; this would enable the data to
be exchanged with different applications. The view could automat-
ically convert its state into XML and communicate it to the model;
in this case, the model could be a proxy between the spreadsheet
application and a central data repository which understood XML.

In the future, we would like to apply the spreadsheet framework
to a variety of visualization domains, such as vector visualization.
In addition, we would like to perform a formal user study to mea-
sure and compare the effectiveness of current interfaces. These
studies could be used to create additional interfaces to address cur-
rent weaknesses and may lead to the development of a formal spec-
ification for interfaces to visualization.

Acknowledgments

This work was supported by the National Science Foundation under
contracts 9983641 (CAREER Awards) and ACI 9982251 (LSSDSV
program), the Office of Naval Research under contract N00014-97-
1-0222, the Army Research Office under contract ARO 36598-MA-
RIP, NASA Ames Research Center through an NRA award under
contract NAG2-1216, Lawrence Livermore National Laboratory
under ASCI ASAP Level-2 Memorandum Agreement B347878 and
under Memorandum Agreement B503159, and the North Atlantic
Treaty Organization (NATO) under contract CRG.971628 awarded
to the University of California, Davis. We also acknowledge the
support of Chevron, General Atomics, and SGI. Special thanks go
to Ayodeji Demuren, Philip Smith, Robert Wilson, and the Visi-
ble Human Project for the test data sets. Suggestions made by the
reviewers and members of UC Davis Visualization and Graphics
Group helped improve the final manuscript.

References

[1] Greg Abram and Lloyd A. Treinish. An extended data-flow
architecture for data analysis and visualization.Computer
Graphics, 29(2):17–21, May 1995.

[2] Margaret Burnett and Allen Amber. Interactive visual data ab-
straction in a declarative visual programming language.Jour-
nal of Visual Languages and Computing, 5(1):29–60, March
1994.

[3] Margaret Burnett, Andrei Sheretov, and Gregg Rothermel.
Scaling up a ”what you see is what you test” methodology
to spreadsheet grids. InProceedings of IEEE Symposium on
Visual Languages 1999. IEEE, September 1999.

[4] Paul Carlson, Margaret Burnett, and Jonathan Cadiz. A seam-
less integration of algorithm animation into a declarative vi-

7

As printed in IEEE Visualization 2000

sual programming language. InProceedings Advanced Visual
Interfaces (AVI’96), May 1996.

[5] Ed H. Chi, John Riedl, Phillip Barry, and Joseph Konstan.
Principles for information visualization spreadsheets.IEEE
Computer Graphics & Applications, 18(4):30–38, July - Au-
gust 1998.

[6] World Wide Web Consortium. Extensible Markup Lan-
guage (XML) 1.0. Technical report, February 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[7] A. F. Hasler, K. Palaniappan, and M. Manyin. A high per-
formance interactive image spreadsheet (IISS).Computers in
Physics, 8:325–342, May - June 1994.

[8] Jim Hugunin. Python and Java: The best of both worlds.
In Proceedings of the 6th International Python Confer-
ence. CNRI, 1997. http://www.python.org/workshops/1997-
10/proceedings/hugunin.html.

[9] Takeo Igarashi, Jock D. Mackinlay, Bay-Wei Chang, and
Polle T. Zellweger. Fluid visualization of spreadsheet struc-
tures. InProceedings of IEEE Symposium on Visual Lan-
guages 1998. IEEE, September 1998.

[10] Gordon Kindlmann and James W. Durkin. Semi-automatic
generation of transfer functions for direct volume rendering.
In IEEE Symposium on Volume Visualization, pages 79–86.
IEEE, ACM SIGGRAPH, 1998.

[11] Marc Levoy. Spreadsheets for images.Proceedings of SIG-
GRAPH 94, pages 139–146, July 1994.

[12] Kwan-Liu Ma. Image graphs - a novel approach to visual data
exploration. IEEE Visualization ’99, pages 81–88, October
1999.

[13] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gib-
son, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml,
K. Ryall, J. Seims, and S. Shieber. Design galleries: A gen-
eral approach to setting parameters for computer graphics and
animation. InProceedings of SIGGRAPH97, pages 389–400.
ACM SIGGRAPH, August 1997.

[14] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The VolumePro real-time ray-casting
system. In Alyn Rockwood, editor,Proceedings of SIG-
GRAPH99, pages 251–260, N.Y., August 8–13 1999. ACM
SIGGRAPH, ACM Press.

[15] Craig Upson, Thomas A. Faulhaber, Jr., David Kamins, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz, and
Andries van Dam. The Application Visualization System: a
computational environment for scientific visualization.IEEE
Computer Graphics and Applications, 9(4):30–42, July 1989.

[16] Guido van Rossum.Python Language Reference Manual,
July 1999. http://www.python.org/doc/ref/ref.html.

[17] Robert V. Wilson and Ayodeji O. Demuren. On the origin of
streamwise vorticity in complex turbulent jets. InProceed-
ings of ASME Fluids Engineering Division Summer Meeting
(FEDSM98). ASME, 1998.

[18] Sherry Yang, Margaret M. Burnett, Elyon DeKoven, and
Mosh́e Zloff. Representation design benchmarks: A design-
time aid for vpl naviable static representation.Journal of Vi-
sual Languages and Computing, 8(5/6):563–599, October -
December 1997.

[19] Mark Young, Danielle Argiro, and Steven Kubica. Can-
tata: Visual programming environment for the Khoros system.
Computer Graphics, 29(2):22–24, May 1995.

8

As printed in IEEE Visualization 2000

Figure 4: A sequence of spreadsheets displaying the visualization
of a foot data set; blank cells represent non-rendered images. The
goal was to compare skin and bone surfaces. The user first deter-
mined appropriate opacity maps before modifying the view posi-
tion, color map and zoom factor. The spreadsheet was useful in
displaying the images to be compared side-by-side.

Figure 5: A spreadsheet displaying multiple data sets representing
time steps in a vortex simulation. Modifying the displayed color
map would change all the data set images at once, a task that would
be more difficult in other representations.

Figure 6: Another spreadsheet examining multiple data sets; the
data represent distinct variables in a multi-variate turbulent jet sim-
ulation. The entire simulation has 9 variables; the first two columns
are two of the variables. The third column is the sum of the first
two variables over the entire volume; the fourth column is the sum
of four other non-displayed variables. Both sums are supposed to
represent the total flow through the jet.

Figure 7: An example of applying parameter operators, in this case
the union of color and opacity maps. The two original maps repre-
sent negative and positive vorticity, respectively, in a turbulent flow
data set; the final image displays them together.

Figure 8: Selected cells for a composition operator; in this case, the
user wishes to use the color and opacity maps of the first image, the
view position of the second and the zoom factor of the third. The
fourth image displays the desired visualization.

9

