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Abstract 
We present a novel hardware-accelerated texture advection 
algorithm to visualize the motion of two-dimensional unsteady 
flows. Making use of several proposed extensions to the 
OpenGL-1.2 specification, we demonstrate animations of over 
65,000 particles at 2 frames/sec on an SGI Octane with EMXI 
graphics. High image quality is achieved by careful attention to 
edge effects, noise frequency, and image enhancement. We 
provide a detailed description of the hardware implementation, 
including temporal and spatial coherence techniques, dye 
advection techniques, and feature extraction. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Bitmap and framebuffer operations – Display 
algorithms; I.3.6 [Computer Graphics]: Graphics data structure 
and data types. 

Additional Keywords: unsteady, vector field, pathlines, streak-
line, advection, texture, hardware, OpenGL. 

1. INTRODUCTION 
Traditionally, unsteady flow fields are visualized by time integra-
tion of a collection of pathlines that originate from user-defined 
seed points [12]. Many experimental techniques are based on a 
combination of pathlines, streaklines, and timelines [2]. It is well 
known however, that the resulting structures are strongly 
dependent on the initial seed points. Following this realization, 
an increasing body of work aims to remove the influence of 
initial conditions on the final display. This led to a several 
approaches such as spot noise [6,7,18], LIC [4,14,15], texture 
advection [13], and most recently, equally-spaced streamlines 
[10,16], all developed for steady flows. Some of these 
approaches have recently been extended to the exploration of 
unsteady vector fields [7,8,14]. Most of these techniques are 
based on a dense representation of the flow. While the resulting 
displayed flow fields are more realistic and are to a large degree 
void of computational artifacts, they are very expensive to 
compute. The fastest algorithm developed to date for steady 

flows is fastLIC [15]. Straightforward generalizations of steady 
algorithms are even more expensive to compute since a large 
collection of particles is advected at each time step.  

As the performance of commodity 3D graphics cards continues to 
increase at a rate substantially faster than that dictated by 
Moore’s law (factor 2 every 18 months), an increasing fraction of 
the visual computations will be subsumed by the graphics 
processor, freeing the central processing unit for other tasks. 
Many algorithms currently written in software will be re-
examined to take advantage of the latest hardware features. 
These algorithms will, within a couple of years, perform far 
faster than their older software-based siblings.  

The trend towards increased reliance on hardware is clearly 
demonstrated in the evolution of OpenGL, a graphic standard 
introduced in 1992. Since then, a large number of extensions 
have been proposed, and a subset of them adopted. Among the 
more interesting proposed extensions advanced in 1997 is the 
notion of a pixel texture [1], a form of indirect addressing that 
allows many old algorithms to be recast on per pixel basis that 
were not possible before [9], an enhancement not previously 
possible. 

In this paper, we propose a hardware-accelerated algorithm, 
based on texture advection, to animate a dense set of particles in 
two-dimensional unsteady flows. Based on a texture advection 
scheme, the algorithm is highly accelerated by available hard-
ware features on advanced graphic workstations. Use is made of 
texture maps, hardware frame buffers, pixel textures, and 
blending. Several issues that plague texture advection methods 
are addressed: the treatment of domain boundaries, temporal and 
spatial correlation, and the loss of high frequency information. 
The animations simultaneously display velocity direction, 
velocity magnitude, particle path segments, and the trajectories 
that result from the continuous injection of colored dye into the 
flow. A dense collection of over 256 256× particles can be 
advected at a rate of two frames per second on an SGI Octane 
with EMXI graphics. 

The rest of the paper is organized as follows. Section 2 gives an 
overview of related work. Texture advection is described in 
Section 3. The hardware implementation is detailed in Section 4. 
Several extensions of the algorithms are suggested in Section 5, 
and finally, we draw some conclusions in Section 6.   

2. RELATED WORK 
Several techniques have been proposed to produce dense repre-
sentations of unsteady vector fields. Best known is perhaps 
UFLIC (Unsteady Flow LIC) developed by Shen [14], based on 
the Line Integral Convolution (LIC) technique [4]. The algorithm 
achieves good spatial and temporal correlation although the 
images are difficult to interpret. The paths are blurred in regions 
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of rapid change of direction and are thick where the flow is 
almost uniform.  

The spot noise technique, initially developed for the visualization 
of steady flowfields, has been extended to unsteady flows [7] by 
advecting the spots along pathlines. Control of the frame rate is 
possible by varying the number and size of the spots. 

Max and Becker [13] proposed an alternative texture-based algo-
rithm to represent steady and unsteady flow fields. The basic 
idea is to advect a texture along the flow either by advecting the 
vertices of a triangular mesh or by integrating the texture 
coordinates associated with each triangle backward in time. In 
both cases, if the flow has rotational shear, the advected texture 
eventually becomes excessively distorted. To counter this 
distortion, Max periodically reinitializes the texture coordinates 
to their initial values and blends the texture with a second 
advecting texture offset by half a period. When texture coor-
dinates leave (or particles enter) the physical domain, an external 
velocity field is linearly extrapolated from the boundary. Rather 
than encode the direction of the velocity and its magnitude in a 
single frame, they are visualized through time animation. This 
technique attains interactive frame rates by controlling the 
underlying mesh resolution.   

Heidrich et al. [9] described the first hardware-accelerated 
implementation of LIC to depict the directional information of 
2D steady flow fields. A white noise texture is successively 
advected along streamlines, forward and backward, to generate 
N  advected textures. When blended together, these textures 

produce the desired LIC image. Two major contributions of this 
algorithm are the delegation of the numerical integration of 
texture coordinates to the graphics hardware and the use of pixel 
textures to handle indirect addressing on a per-pixel basis. The 
exclusive use of graphics hardware results in a LIC algorithm 
that is several times the speed of fastLIC [15].  

3. TEXTURE ADVECTION 
We are interested in computing the temporal evolution of 
particles in an Eulerian frame of reference. A fluid particle at 
position x  and time t  is tagged by the value of a function 

( , )N tx , encoded as a two-color noise texture. This particle 
describes a trajectory ( , , )t τ[  as a function of τ , called a 
pathline. At each point along the pathline, the velocity of the 
particle is ( ( , , ), )t τ τv [ ; the trajectory satisfies the evolution 
equation 
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From  (1), if a particle passes through the point x  at time t  and 
the point ’x  at time ’t , the coordinates of these points are 
related by 
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Since ( , )N tx  describes an invariant particle property, it is con-
stant along a pathline: 

 ( , ) ( ’, ’)N t N t=x x  (3) 

A Taylor expansion of ( , ’)N tx  about time t  shows that ( , )N tx  
satisfies the advection equation  
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N
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t
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∂
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valid for both steady and unsteady flows if ( , )N tx  is a conti-
nuous function of x . In this work, we consider discontinuous 
functions of the spatial coordinates so that (4) cannot be used.  

To obtain an advected texture at any time t , equation (3) is 
solved at the center x  of each texel of the noise texture by deter-
mining the property value at a previous location ’x  at time ’t . 
This approach is a common starting point for the algorithms of 
Max [13], Heidrich [9] and the one presented in this paper, all 
based on texture advection.  

The two former methods compute an advected texture at time t  
from the initial property texture at time ’ 0t = . Consequently, 
they require either an extrapolation of the vector field outside the 
physical domain [13] or the limitation of the advection to a few 
time steps to minimize artifacts in regions of incoming flow [9]. 
Our algorithm, dependent on a random property function, com-
putes successive textures incrementally and suppresses artifacts 
by generating random property values for particles that enter the 
physical domain. 

As in [9], our method advects textures on a per-pixel basis rather 
than on a coarse triangular mesh [13]. It also extends the 
implementation of Heidrich to track particles in unsteady flows 
over indeterminate time periods. This is made possible by an 
innovative treatment of incoming particles, compensating for the 
nonzero divergence of the flow, and a corrective procedure to 
address the loss of accuracy that results from the discrete nature 
of the algorithm. 

In the following sections, we describe a new algorithm that com-
putes ( , )N tx  based only on OpenGL routines that directly 
access the hardware available on an Indigo 2 SGI with a 
Maximum Impact graphics board or on an SGI Octane with 
EMXI graphics. 

4. HARDWARE IMPLEMENTATION 
Our implementation largely capitalizes on new per-pixel opera-
tions and other recent OpenGL extensions provided by some SGI 
graphics boards. The core of the texture advection process relies 
mainly on two hardware features: 1) additive and subtractive 
blending between framebuffer content and incoming fragments 
from textured polygons or pixel arrays, and 2) an indirection 
operation, called pixel texture, that uses a buffer as a lookup 
table into a texture.  

These hardware operations are further detailed in Section 4.1. 
Section 4.2 summarizes the different steps of the algorithm 
before Sections 4.3 through 4.8 describe them in detail. 

4.1 Notation 
This section introduces a simplified notation that maps to the 
hardware operations used in this paper. In our algorithm, data is 
drawn from, read to, and copied between a combination of 
buffers and textures. During these operations, incoming data can 
be blended into the destination buffer, colored using per-pixel 
color tables, and color transformed using color matrices. 

Buffers and Textures. The physical variables used are coordi-
nates, velocity, and particle property. They are stored either in a 
2D/3D texture or in a 2D hardware RGB framebuffer. However, 



rather than using an entire visual allocated by the X window 
system for this purpose, the hardware back and front buffers are 
divided into several sub-buffers from which data can be read and 
to which data can be written. In the remainder of the paper, a 
buffer refers to any subset of a hardware framebuffer used as a 
storage area. Buffers and textures are denoted by B  and T  
respectively with subscripts that characterize their function or 
content. All buffers and textures have the resolution of the 
discretized physical domain. 

Blending operations. Blending is a per-pixel operation executed 
when an incoming fragment merges with the corresponding pixel 
in the destination buffer. Additive ( B+ ) and subtractive ( B− ) 
blending of a texture T  into a buffer B  are denoted by 

 ( , )B α β± B T� �    equivalent to    α β← ±B B T� �  (5) 

The first argument of B±  is always a buffer; the second 
argument can be a texture, a pixel texture, or another buffer. 

Pixel texture. Proposed by SGI in 1997 as an extension to 
OpenGL [3], pixel textures have been used to advantage in a 
variety of algorithms ranging from steady-state LIC to a wide 
range of sophisticated lighting models [9]. Pixel textures allow 
the projection of a texture onto the framebuffer through the 
intermediary of a texture coordinate map [3]. Rather than directly 
affecting the color in the framebuffer (see Figure 1, left), the 
color components of the incoming fragment are interpreted as 
texture coordinates. The texel color at these coordinates is then 
sent to the framebuffer (Figure 1, right). Let A  be an array of 
pixels and T  be a texture. The action of a pixel texture opera-
tion, denoted by ( , )P A T , can be viewed as the construction of 
an intermediate array of pixels ( )T A , where the RGB compo-
nents of the pixels in A , acting like texture coordinates ( , , )r s t , 
are replaced by the corresponding texel values of T . The resul-
ting pixel array can be stored or blended with the contents of a 
buffer B . If a pixel array A  is contained in a buffer ’B , the 
composite blending operation is expressed as 

 ( , ( ’, ))B P± B B T  (6) 

Read, draw, and copy. A draw operation, denoted by ( , )D B T , 
copies the contents of a texture T  into a buffer B . In practice, a 
polygon, texture-mapped with T , is drawn into B . A read ope-
ration, denoted by ( , )R T B , takes the contents of a buffer, and 
transfers it to a subset of a texture, called a sub-texture, of equal 

size. In practice, we use the OpenGL extension glCopyTexSub-
ImageEXT() to directly write to texture memory. Finally, a copy 
operation from a buffer 1B  to a buffer 2B  is denoted by 

2 1( , )C B B . Although a part of the proposed SGI extensions to 
OpenGL, the copy operation does not work when the second 
argument is a pixel texture. In practice, the copy operator is 
replaced by the combination glReadPixels() and glDrawPixels() 
at the cost of accessing conventional memory. Both these 
routines work with pixel textures. 

4.2 Algorithm Overview 
The first phase of the algorithm implements a hardware version 
of the advection component described by equations (2) and (3). 
Hardware buffers and textures are used to encode the particle 
coordinates, velocity, and property. Components of each pixel in 
a coordinate buffer, xB , encode texture coordinates in a noise 
texture NT . Initially each pixel in xB  references its own location 
and no movement results when NT  is applied as a pixel texture 

( )N xT B . Adding a contribution of the velocity to every pixel of 

xB  forces some of them to reference a neighboring texel in NT . 
Now, when NT  is applied as a pixel texture, property values are 
displaced, producing an advected version of NT  (Section 4.3). 

Although most texels in the advected texture are assigned with a 
valid property value during the basic advection phase, 
supplementary treatments are necessary to correct and enhance 
the advected texture. Regions of incoming flow are first identi-
fied to simulate new particles entering the physical domain 
(Section 4.4), while the loss of spatial frequency due to the 
nonzero divergence of the flow is compensated for by a random 
injection of noise (Section 4.5). The corrected advected texture is 
then blended with the last blended frame to produce an 
animation frame with an acceptable level of spatio-temporal 
correlation (Section 4.6). Finally, the coordinate buffer xB  is 
reinitialized in preparation for the next iteration. This 
initialization takes into account constraints imposed by the 
discrete nature of the algorithm (Section 4.7). Images are 
enhanced by additional post processing such as masking and dye 
advection (Section 4.8). 

We will often refer to the different steps of the algorithm. They 
are numbered and summarized in Table 1 and Figure 2 (see color 
plate). Table 1 gathers the complete set of operations written 
using the notation described in Section 4.1, while Figure 2 
represents all hardware resources as a list of buffers and textures 
along with the operations that link them together. 

4.3 Basic Advection 
In this section, we discuss the hardware implementation of the 
advection component of the algorithm described by equations (2) 
and (3). As proposed in [9], the red and blue components of 
buffers and textures encode both velocity and coordinate data. 
We store a time series of 2D vector fields, which cover the entire 
physical domain, in two 3D velocity textures whose third dimen-
sion represents time. The velocity components are normalized by 
the infinity norm over all the field slices. To accommodate the 
fact that texture values can only be positive, the velocity field is 
split into its negative and positive components ( )+ −= −v v v  and 
stored in two separate 3D textures, −v

T  and +v
T . Furthermore, 

since the entire 3D vector field, ( , , )x y t , is often too large to 
completely reside in texture memory, only two time slices of the 
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Figure 1. Pixel Texture. (left) Color triplets are trans-
ferred directly to the framebuffer. (right) When a pixel 
texture is applied, color triplets are used to address its 
texels, whose values are sent to the framebuffer. 



velocity texture are stored at any given time. They are updated 
whenever the current time is outside the range encompassed by 
these slices. 

The texel coordinates of NT  are initially stored in the texture 

0xT  according to 
0
( , ) ( 0.5, 0.5) /i j i j N= + +xT  where N  is the 

texture size. Each texel of 
0xT  references the center of the 

corresponding texel in NT . 

Coordinate update. Texture coordinates at time ’t t h= −  are 
computed from a first order discretization of (2): 

 ’ [ ( , ) ( , )]h t t+ −= − −x x v x v x  (7) 

Two buffers, xB  and ’xB , are used for this operation. xB , 
which initially contains the initial texture coordinates stored in 

0xT , is blended with texels from the velocity textures, and the 
result is stored in ’xB  (steps 1-3 in table 1 and Figure 2). 

Since each velocity component is the range [0.,1.] , h  is related 
to the maximum possible displacement p  (in pixels) of a parti-
cle between two consecutive positions by /h p N= . To achieve 
a sufficient degree of spatio-temporal correlation during an 
animation sequence h  must be sufficiently small. We find that 

[0.5,3]p ∈  yields good results. 

Noise update. The second part of the advection process (step 4) 
computes ( ’, )N tx  using the pixel texture ’( , )NP xB T . In prin-
ciple, any texture can be used for the advection. However, we 
use a noise texture for its lack of spatial correlation. This pro-
perty is a necessary requirement for the treatment of particles 
entering the physical domain (Section 4.4), noise injection 
(Section 4.5), and noise blending (Section 4.6). 

With the x  buffer reinitialized between successive iterations, 
first four steps implement a basic texture advection. However, 
several issues must be addressed to correct and enhance the 
advected textures. They are explained in the following sections. 

4.4 Edge Correction 
A common problem with texture advection techniques is the 
inadequate treatment of particles that originate from outside the 
physical domain [13]. A proper treatment of edge effects requires 
that these particles be identified and new property values 
assigned to them without introducing extraneous visual artifacts. 
We capitalize on the OpenGL property that states that before 
storage into a buffer (or into a texture), floating point color 
values are clamped to the range [0,1] . Whatever the particle 
referenced outside the domain, its coordinates reference an edge 
texel. As an illustration, Figure 3 (a,b) shows the black and 
white striations, which result from the clamp operation, on a 
circular flow defined by ( , ) ( , )u v y x= − . In this example, a 
particle at ( , )x y  originates from  
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x x hy
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All particles with constant ’x  and ’ 1y >  acquire the value of the 
noise texture at ( ’,1)x . These particles lie on a straight line with 
positive slope h , clearly seen in Figure 3 (a,b).   

For clarity of exposition, let BS  be the set of pixels in ’xB  that 
reference a point on the boundary. We seek to replace pixels in 

BS  by a new random noise. This is achieved by the composition 
of two images 1I  and 2I  through an additive blend. The first 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Algorithm for a single time step. The numbers 
indicate the operation number in the algorithm, which 
matches the line number in table 1. Pixel texture operations 
are shown as circles. 

 

 

 

 

 

 

 

 

Figure 3. (a),(b)  noise texture advected by a circular flow 
( , ) ( , )u v y x= − . (c) regions from particles exterior to the 
domain at the previous step are black 1( )I . (d) new noise is 
injected into the edge region; complement region is black 

2( )I . (e) composite of 1I and 2I . 
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 Initialize coordinates 
0xT ; ( , )D

0x xB T  
 Initialize noise NT  with black border 

 0t =  

 while max( )t t<  

  -------------------------- Basic Advection 

1  ’( , )C x xB B  

2  ’( , . ( , [ ]))B h P t+
−

x x v
B B T  

3  ’( , . ( , [ ]))B h P t−
+

x x v
B B T  

4  ’( , ( , ))N NC P xB B T  

  -------------------------- Edge Correction 

5  ’( , ( , ))M MC P xB B T  

6  
0

( , )MB+
xB T  

7  ( , ( , ))R
N M NB P+ B B T  

  -------------------------- Noise Injection 

8  %( , )XOR
N NB B T  

  -------------------- Store Corrected Noise 

  Draw black border around NB  

9  ( , )N NR T B  

  --------------------------- Noise Blending 

10  ( , )C NBα B T  

  ------------------------ Fractional update 

11  ( , )D
0x xB T  

12  ’( , )C ∆x xB B  

13  
0’( , ( , ))B P−

∆x x xB B T  

14  ( , )B+
∆x xB B  

15  
0’( , ( , ))C P∆x x xB B T  

16  ’( , )B−
∆x xB B  

17  ( , )B−
∆x xB B  

 t t h= +  

Table 1. Hardware algorithm for one time step 

 

image, 1I , is black if BS∈x  and is given by NT  elsewhere. The 
second image, 2I , has new noise in BS , and is black elsewhere. 
Adding the two images produces a noise texture with new values 
only on BS . There are no visible artifacts at the juncture between 
the images since we use a spatially uncorrelated noise. Next, we 
describe the construction of these two images. 

As seen above, the spurious streaks at the edges of the domain 
take on the color of some boundary texel. We capitalize on this 
property by placing a one texel wide black border along the 
perimeter of NT  (initially and between steps 8 and 9). Conse-
quently, the output of step 4 is a noise buffer that contains 1I . 
The second image is constructed with the help of a white mask 
texture MT whose border texels are black. The pixel texture ope-
ration ’( , )MP xB T results in an intermediate black and white 
image whose black texels lie in BS . This texture is then copied 
into a mask buffer MB (step 5). The next two steps draw noise 
from R

NT  into BS . Step 6 adds the initial coordinate texture 
0xT  

to the mask buffer. Color clamping insures that the white pixels 
of MB  remain white. However, the black pixels in MB acquire 
the color components associated with 

0xT . R
NT  is a 3D texture 

with two layers in the third dimension. The bottom layer has 
random noise; the top layer is black at coordinate (1,1,1). Thus, 
where the mask buffer is white, the color of ( , )R

M NP B T  is black. 
At black texels, the mask buffer has the original coordinate 
values and the pixel texture returns a random noise. Finally, in 
step 7, the image 2I output by the pixel texture is added to 1I , 
stored in the noise buffer generated in step 4. To insure that the 
new noise generated in step 7 has no temporal correlation 

0xT is 
randomly translated at each iteration. This is accomplished using 
a texture transformation matrix. 

4.5 Noise Injection 
In regions of positive flow divergence, adjacent pixels in ’xB  
that reference the same texel location in NT  after the backward 
integration step share the same color. Therefore, the overall 
frequency of the successive noise textures decreases. Figure 4 
clearly demonstrates this decrease for a source flow after several 
time steps. To maintain a constant noise frequency, a small 
amount of new noise is injected into NB  at every iteration (step 
8). Through experimentation, we found that randomly inverting 
the color of two to three percent of the noise texels at each time 
step is enough to maintain a high frequency noise that is approxi-
mately constant without a significant loss of temporal correlation. 

In practice, an invariant black texture with a 2-3 percent random 
distribution of white texels, %

NT , is XORed into NB  with an 
OpenGL blending mode. The injection process affects a different 
set of texels at each time step by applying a random texture 
translation matrix to %

NT . The content of the noise buffer is read 
back into the noise texture NT  in step 9. 

4.6 Noise Blending  
We introduce an acceptable level of spatial and temporal 
correlation into each frame by applying a one-sided exponential 
filter to the sequence of frames. This effect is implemented with 
standard alpha blending (step 10): 

(1 )C C Nα α= − +B B T  

The use of noise textures implies that the only spatial correlation 
after filtering is along a pathline segment. Besides smoothing the 
animation, the blending process adds directional information to 
static frames, a feature not present in [13] for example. A two-
color black and white noise maximizes the contrast of the final 
blended image. Good visual results are obtained with 0.1α = . 
The image in CB  can be saved as a final animation frame or be 
used for further image enhancements (Section 4.8). 

         

Figure 4. Noise texture advected by a source (the worst 
case scenario) with constant divergence: ( , ) ( , )u v x y= . 
Notice the gaps of increasing size that result from the 
constant divergence of the particle paths. 



4.7 Coordinate Reinitialization 
During the texture advection phase, the coordinate buffer ’xB  
was updated to reference the location of incoming particle 
properties and a new noise texture was computed from the 
advection of the current noise texture. The coordinate buffers 
must now be reinitialized in preparation for the next iteration, 
taking into account certain constraints imposed by the discrete 
nature of the algorithm. 

The displacement of the particle property between successive 
frames must be small enough to maintain a good spatio-temporal 
correlation. However, if the displacement of a particle is such 
that both old and new positions lie within the same pixel, the 
updated noise texel remains unchanged. Even worse, once the 
coordinates are reinitialized to their initial values (stored in 

0xT ) 
in step 11, any subpixel displacement (also called fractional 
displacement) is lost and cannot be recovered: the motion of the 
particle property is suppressed (step 5).  

The above discussion suggests that the fractional displacements 
of particles be accumulated, and the noise texture be updated, 
once the accumulated displacement exceeds the width pw  of a 
pixel. The distance from 0x  to ’x  is the sum of an integer dis-
placement vector 

 1
0 0( ’ ) (int)[( ’ ) ]pw−− = −n x x x x , (8) 

whose components are each an integral number of pixel widths, 
and a fractional displacement vector 

 0 0 0( ’ ) ( ’ ) ( ’ ) pw− = − − −[ [ [ [ Q [ [ , 

whose components each have a magnitude less than pw . If the 
fractional displacements were neglected (omit steps 12-17), xB  
would receive 0x  in step 11. The goal of the additional steps 12 
through 17 is to extract 0( ’ )−[ [  from ’xB  and store 

0 0( ’ )+ −x [ [  into xB  in preparation for the next iteration. 

Figure 5 shows the effect of the proposed correction on a circular 
flow. The basic advection algorithm (left) leaves points of low 
velocity fixed in space as evidenced by the lack of blending in 
the central regions. In addition, dye injected into the flow slowly 
drifts to the center as inaccuracies accumulate in time. The 
corrected version is seen on the right. 

4.8 Image Enhancement 
We propose two techniques to augment the information content 
of the animations. First, the brightness of regions of low velocity 

is reduced to better identify strong currents in the flow. Second, 
colored dye is introduced into the flow to visualize streaklines.  

4.8.1 Velocity Mask 
Figure 6 shows a single frame of wind patterns over Europe [17]. 
High and low velocity regions are discerned thanks to the spatial 
correlation of the velocity field. However, the high frequency 
noise associated with regions of low velocity detracts the user 
from regions of interest related to higher-speed currents. To 
increase the contrast between these regions, we subtract the 
linear function 1f = −v v  from CB  and store the result in the 
final display buffer ’CB . For this purpose, we store fv  in the 
blue component of the negative velocity texture during the initia-
lization phase. At each iteration, the corresponding time slice of 

−v
T  is mapped into a temporary buffer vB . The blue component 
of vB  is duplicated into the red and green components through 
the intermediary of a color matrix and subtracted from ’CB . 
These operations are expressed as ’( , )C CC B B , ( , )D −v v

B T , and 

’( , )CB−
vB B . The velocity mask is applied between steps 10 and 

11. A larger class of functions can be constructed with color 
maps to implement more general feature enhancements or feature 
extractions.  

4.8.2 Dye Advection 
Experimentalists have long tracked tracer particles, dye, and 
smoke to help understand the structure of unsteady flows [2]. In 
our implementation of dye advection, the advected texture acts 
like a physical surface upon which dye is released. Dye is 
introduced into the flow between steps 8 and 9 by drawing 
geometric primitives (dots, lines, etc.) into the noise buffer NB . 
The algorithm then automatically advects the dye at no additional 
cost. In the final image, the dye is automatically subject to a 
temporal convolution of successive frames for increased 
smoothness. The dye is stored in the green and blue texture 
components while the noise is stored in the red component. 
Thus, multiple colored streaks can be tracked. Figures 5, 7, and 8 
were produced in this way.  

It is well known that in unsteady flows, streaklines, streamlines, 
and particle paths are different from one another. We test the 
validity of the dye advection algorithm on the uniformly rotating 
uniform flow ( , ) (cos( ),sin( ))u v t t= . In this flow, streamlines are 
straight, while streaklines and particle paths have circular 
trajectories. Figure 7 shows two frames of an animation in which 
dye is released at three points in the flow. As expected, the 
streaklines are circular. 

    

Figure 5. Dye advection in a circular flow defined by the 
circular flow ( , ) ( , )u v y x= − . Left: fractional coordinate 
correction is disabled. Right: fractional correction is 
enabled. 

     

Figure 6. Winds over Europe. Regions of low velocity 
included (left) and excluded (right). 



5. DISCUSSION 
The use of graphics hardware implies some constraints and 
restrictions due to the limited number of bits available to encode 
data. 

Resolution limitation. The depth of the framebuffer has a direct 
impact on the spatial and temporal accuracy of the texture 
advection. In particular, it affects the number of bits that encode 
the fractional part of the coordinate displacement in the 
coordinate buffers. Figure 5 shows the extreme case when no bits 
are available for the fractional part. Through experimentation, 
we found that four bits are necessary for good visual results. 
Under this constraint, a visual of 12 bits per color component 
only provides 8 bits to encode texture coordinates, which then 
limits the advection to 256 256×  textures. We have since 
addressed this limitation using a tiling algorithm [11]. 

Hardware resources. Hardware buffers and texture memory are 
limited resources. Our algorithm uses seven textures (see  

Figure 2). Using internal texture formats available in OpenGL 
that require the minimum amount of memory, the advection of 
256 by 256 textures consumes less than 1.2 Mbytes of texture 
memory. In practice, the incomplete implementation of the pixel 
texture extension on SGI graphic boards requires that the 
textures mapped by this operation be 3D and RGBA (see manual 
page for glPixelTexGenSGIX). This limitation increases the 
required texture memory to 2.3 Mbytes, which can still reside in 
the four Mbyte texture memory of the Octane. 

Multiple buffers are stored in each hardware framebuffer. They 
are arranged in a single hardware buffer as a non-overlapping 
array of 3 by 2 buffers of size N N× . We used the fact that ∆xB , 

MB , can share in turn the same space without conflict to reduce 
the required number of stored buffers from seven to six. 256 
pixels wide buffers are easily accommodated. 

6. CONCLUSION 
This paper describes the first complete hardware-accelerated 
implementation of an algorithm to visualize unsteady flow based 
on a per-texel advection technique. It can simultaneously display 
velocity direction, velocity magnitude, and dye advection. A 
major advantage of this system is its ability to interactively 
compute long animation sequences. 

We solved intrinsic problems that plague texture advection 
algorithms, particularly when they are applied to time-dependent 
data over extended periods: 

• Incoming flow regions are handled with uncorrelated 
noise textures and image compositing. 

• Long time advection is achieved through a restoration 
of the texture frequency at each time step without 
significant loss of temporal correlation. 

• Spatio-temporal correlation is enhanced by applying a 
temporal filter on advected textures. As an additional 
bonus, flow direction is available in static frames. 

We demonstrated how to use masks to control the regions of 
interest through the intermediary of a control function stored in 
the velocity texture. Finally, we capitalized on the possibility of 
long time integration to transport dye and visualize streaklines. 
Figure 8 displays three frames of a 1000 frame animation of 
unsteady wind patterns over Europe using all the above. Dye is 
released both from a point, and from a line segment. Regions of 
rotation are easily discerned, along with the regions of high 
velocity.  

This paper further demonstrates the usefulness of new hardware 
capabilities and advanced graphic functionality, such as the SGI 
pixel texture extension. Interactive frame rates are achieved with 
buffer sizes of 256 256×  and over 65,000 individual particles. 
The small texture size led to a novel algorithm for long time 
advection. At present, only the Maximum Impact and the Octane 
have the required hardware in their graphics engines to 
implement the algorithm. However, these features deserve to be 
incorporated into a wider class of machines. Each 256 256×  
frame takes 0.4 seconds to compute on an Octane with EMXI 
graphics. Although 18 texture applications per step are required, 
we expect the algorithm to be increasingly superior to the best 
software implementations. On the other hand, the precise control 
afforded by a software implementation will most probably lead to 
higher quality images. 
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Figure 8. Two frames from a 1000 frame animation 
(computed in 11 minutes) sequence of wind currents over 
Europe [17]. Note the lack of artifacts at the domain 
boundaries. Dye is released from a point and from a line 
segment. Vortical patterns are evident in the lower frame.  


