
Hardware-Accelerated Texture Advection
For Unsteady Flow Visualization

Bruno Jobard*, Gordon Erlebacher* and M. Yousuff Hussaini*

School of Computational Science & Information Technology

Abstract
We present a novel hardware-accelerated texture advection
algorithm to visualize the motion of two-dimensional unsteady
flows. Making use of several proposed extensions to the
OpenGL-1.2 specification, we demonstrate animations of over
65,000 particles at 2 frames/sec on an SGI Octane with EMXI
graphics. High image quality is achieved by careful attention to
edge effects, noise frequency, and image enhancement. We
provide a detailed description of the hardware implementation,
including temporal and spatial coherence techniques, dye
advection techniques, and feature extraction.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Bitmap and framebuffer operations – Display
algorithms; I.3.6 [Computer Graphics]: Graphics data structure
and data types.

Additional Keywords: unsteady, vector field, pathlines, streak-
line, advection, texture, hardware, OpenGL.

1. INTRODUCTION
Traditionally, unsteady flow fields are visualized by time integra-
tion of a collection of pathlines that originate from user-defined
seed points [12]. Many experimental techniques are based on a
combination of pathlines, streaklines, and timelines [2]. It is well
known however, that the resulting structures are strongly
dependent on the initial seed points. Following this realization,
an increasing body of work aims to remove the influence of
initial conditions on the final display. This led to a several
approaches such as spot noise [6,7,18], LIC [4,14,15], texture
advection [13], and most recently, equally-spaced streamlines
[10,16], all developed for steady flows. Some of these
approaches have recently been extended to the exploration of
unsteady vector fields [7,8,14]. Most of these techniques are
based on a dense representation of the flow. While the resulting
displayed flow fields are more realistic and are to a large degree
void of computational artifacts, they are very expensive to
compute. The fastest algorithm developed to date for steady

flows is fastLIC [15]. Straightforward generalizations of steady
algorithms are even more expensive to compute since a large
collection of particles is advected at each time step.

As the performance of commodity 3D graphics cards continues to
increase at a rate substantially faster than that dictated by
Moore’s law (factor 2 every 18 months), an increasing fraction of
the visual computations will be subsumed by the graphics
processor, freeing the central processing unit for other tasks.
Many algorithms currently written in software will be re-
examined to take advantage of the latest hardware features.
These algorithms will, within a couple of years, perform far
faster than their older software-based siblings.

The trend towards increased reliance on hardware is clearly
demonstrated in the evolution of OpenGL, a graphic standard
introduced in 1992. Since then, a large number of extensions
have been proposed, and a subset of them adopted. Among the
more interesting proposed extensions advanced in 1997 is the
notion of a pixel texture [1], a form of indirect addressing that
allows many old algorithms to be recast on per pixel basis that
were not possible before [9], an enhancement not previously
possible.

In this paper, we propose a hardware-accelerated algorithm,
based on texture advection, to animate a dense set of particles in
two-dimensional unsteady flows. Based on a texture advection
scheme, the algorithm is highly accelerated by available hard-
ware features on advanced graphic workstations. Use is made of
texture maps, hardware frame buffers, pixel textures, and
blending. Several issues that plague texture advection methods
are addressed: the treatment of domain boundaries, temporal and
spatial correlation, and the loss of high frequency information.
The animations simultaneously display velocity direction,
velocity magnitude, particle path segments, and the trajectories
that result from the continuous injection of colored dye into the
flow. A dense collection of over 256 256× particles can be
advected at a rate of two frames per second on an SGI Octane
with EMXI graphics.

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. Texture advection is described in
Section 3. The hardware implementation is detailed in Section 4.
Several extensions of the algorithms are suggested in Section 5,
and finally, we draw some conclusions in Section 6.

2. RELATED WORK
Several techniques have been proposed to produce dense repre-
sentations of unsteady vector fields. Best known is perhaps
UFLIC (Unsteady Flow LIC) developed by Shen [14], based on
the Line Integral Convolution (LIC) technique [4]. The algorithm
achieves good spatial and temporal correlation although the
images are difficult to interpret. The paths are blurred in regions

* 411 Dirac Science Library, Tallahassee, FL, 32306-4120.
jobard@csit.fsu.edu, erlebach@csit.fsu.edu, myh@csit.fsu.edu .

of rapid change of direction and are thick where the flow is
almost uniform.

The spot noise technique, initially developed for the visualization
of steady flowfields, has been extended to unsteady flows [7] by
advecting the spots along pathlines. Control of the frame rate is
possible by varying the number and size of the spots.

Max and Becker [13] proposed an alternative texture-based algo-
rithm to represent steady and unsteady flow fields. The basic
idea is to advect a texture along the flow either by advecting the
vertices of a triangular mesh or by integrating the texture
coordinates associated with each triangle backward in time. In
both cases, if the flow has rotational shear, the advected texture
eventually becomes excessively distorted. To counter this
distortion, Max periodically reinitializes the texture coordinates
to their initial values and blends the texture with a second
advecting texture offset by half a period. When texture coor-
dinates leave (or particles enter) the physical domain, an external
velocity field is linearly extrapolated from the boundary. Rather
than encode the direction of the velocity and its magnitude in a
single frame, they are visualized through time animation. This
technique attains interactive frame rates by controlling the
underlying mesh resolution.

Heidrich et al. [9] described the first hardware-accelerated
implementation of LIC to depict the directional information of
2D steady flow fields. A white noise texture is successively
advected along streamlines, forward and backward, to generate
N advected textures. When blended together, these textures

produce the desired LIC image. Two major contributions of this
algorithm are the delegation of the numerical integration of
texture coordinates to the graphics hardware and the use of pixel
textures to handle indirect addressing on a per-pixel basis. The
exclusive use of graphics hardware results in a LIC algorithm
that is several times the speed of fastLIC [15].

3. TEXTURE ADVECTION
We are interested in computing the temporal evolution of
particles in an Eulerian frame of reference. A fluid particle at
position x and time t is tagged by the value of a function

(,)N tx , encoded as a two-color noise texture. This particle
describes a trajectory (, ,)t τ[as a function of τ , called a
pathline. At each point along the pathline, the velocity of the
particle is ((, ,),)t τ τv [; the trajectory satisfies the evolution
equation

(, ,)

((, ,),)
d t

t
d

τ τ τ
τ

=[

v [(1)

From (1), if a particle passes through the point x at time t and
the point ’x at time ’t , the coordinates of these points are
related by

’

’ ((’, ’,),)
t

t

t dτ τ τ= + ∫x x v [(2)

Since (,)N tx describes an invariant particle property, it is con-
stant along a pathline:

 (,) (’, ’)N t N t=x x (3)

A Taylor expansion of (, ’)N tx about time t shows that (,)N tx
satisfies the advection equation

 0
N

N
t

∂ + ⋅∇ =
∂

v (4)

valid for both steady and unsteady flows if (,)N tx is a conti-
nuous function of x . In this work, we consider discontinuous
functions of the spatial coordinates so that (4) cannot be used.

To obtain an advected texture at any time t , equation (3) is
solved at the center x of each texel of the noise texture by deter-
mining the property value at a previous location ’x at time ’t .
This approach is a common starting point for the algorithms of
Max [13], Heidrich [9] and the one presented in this paper, all
based on texture advection.

The two former methods compute an advected texture at time t
from the initial property texture at time ’ 0t = . Consequently,
they require either an extrapolation of the vector field outside the
physical domain [13] or the limitation of the advection to a few
time steps to minimize artifacts in regions of incoming flow [9].
Our algorithm, dependent on a random property function, com-
putes successive textures incrementally and suppresses artifacts
by generating random property values for particles that enter the
physical domain.

As in [9], our method advects textures on a per-pixel basis rather
than on a coarse triangular mesh [13]. It also extends the
implementation of Heidrich to track particles in unsteady flows
over indeterminate time periods. This is made possible by an
innovative treatment of incoming particles, compensating for the
nonzero divergence of the flow, and a corrective procedure to
address the loss of accuracy that results from the discrete nature
of the algorithm.

In the following sections, we describe a new algorithm that com-
putes (,)N tx based only on OpenGL routines that directly
access the hardware available on an Indigo 2 SGI with a
Maximum Impact graphics board or on an SGI Octane with
EMXI graphics.

4. HARDWARE IMPLEMENTATION
Our implementation largely capitalizes on new per-pixel opera-
tions and other recent OpenGL extensions provided by some SGI
graphics boards. The core of the texture advection process relies
mainly on two hardware features: 1) additive and subtractive
blending between framebuffer content and incoming fragments
from textured polygons or pixel arrays, and 2) an indirection
operation, called pixel texture, that uses a buffer as a lookup
table into a texture.

These hardware operations are further detailed in Section 4.1.
Section 4.2 summarizes the different steps of the algorithm
before Sections 4.3 through 4.8 describe them in detail.

4.1 Notation
This section introduces a simplified notation that maps to the
hardware operations used in this paper. In our algorithm, data is
drawn from, read to, and copied between a combination of
buffers and textures. During these operations, incoming data can
be blended into the destination buffer, colored using per-pixel
color tables, and color transformed using color matrices.

Buffers and Textures. The physical variables used are coordi-
nates, velocity, and particle property. They are stored either in a
2D/3D texture or in a 2D hardware RGB framebuffer. However,

rather than using an entire visual allocated by the X window
system for this purpose, the hardware back and front buffers are
divided into several sub-buffers from which data can be read and
to which data can be written. In the remainder of the paper, a
buffer refers to any subset of a hardware framebuffer used as a
storage area. Buffers and textures are denoted by B and T
respectively with subscripts that characterize their function or
content. All buffers and textures have the resolution of the
discretized physical domain.

Blending operations. Blending is a per-pixel operation executed
when an incoming fragment merges with the corresponding pixel
in the destination buffer. Additive (B+) and subtractive (B−)
blending of a texture T into a buffer B are denoted by

 (,)B α β± B T� � equivalent to α β← ±B B T� � (5)

The first argument of B± is always a buffer; the second
argument can be a texture, a pixel texture, or another buffer.

Pixel texture. Proposed by SGI in 1997 as an extension to
OpenGL [3], pixel textures have been used to advantage in a
variety of algorithms ranging from steady-state LIC to a wide
range of sophisticated lighting models [9]. Pixel textures allow
the projection of a texture onto the framebuffer through the
intermediary of a texture coordinate map [3]. Rather than directly
affecting the color in the framebuffer (see Figure 1, left), the
color components of the incoming fragment are interpreted as
texture coordinates. The texel color at these coordinates is then
sent to the framebuffer (Figure 1, right). Let A be an array of
pixels and T be a texture. The action of a pixel texture opera-
tion, denoted by (,)P A T , can be viewed as the construction of
an intermediate array of pixels ()T A , where the RGB compo-
nents of the pixels in A , acting like texture coordinates (, ,)r s t ,
are replaced by the corresponding texel values of T . The resul-
ting pixel array can be stored or blended with the contents of a
buffer B . If a pixel array A is contained in a buffer ’B , the
composite blending operation is expressed as

 (, (’,))B P± B B T (6)

Read, draw, and copy. A draw operation, denoted by (,)D B T ,
copies the contents of a texture T into a buffer B . In practice, a
polygon, texture-mapped with T , is drawn into B . A read ope-
ration, denoted by (,)R T B , takes the contents of a buffer, and
transfers it to a subset of a texture, called a sub-texture, of equal

size. In practice, we use the OpenGL extension glCopyTexSub-
ImageEXT() to directly write to texture memory. Finally, a copy
operation from a buffer 1B to a buffer 2B is denoted by

2 1(,)C B B . Although a part of the proposed SGI extensions to
OpenGL, the copy operation does not work when the second
argument is a pixel texture. In practice, the copy operator is
replaced by the combination glReadPixels() and glDrawPixels()
at the cost of accessing conventional memory. Both these
routines work with pixel textures.

4.2 Algorithm Overview
The first phase of the algorithm implements a hardware version
of the advection component described by equations (2) and (3).
Hardware buffers and textures are used to encode the particle
coordinates, velocity, and property. Components of each pixel in
a coordinate buffer, xB , encode texture coordinates in a noise
texture NT . Initially each pixel in xB references its own location
and no movement results when NT is applied as a pixel texture

()N xT B . Adding a contribution of the velocity to every pixel of

xB forces some of them to reference a neighboring texel in NT .
Now, when NT is applied as a pixel texture, property values are
displaced, producing an advected version of NT (Section 4.3).

Although most texels in the advected texture are assigned with a
valid property value during the basic advection phase,
supplementary treatments are necessary to correct and enhance
the advected texture. Regions of incoming flow are first identi-
fied to simulate new particles entering the physical domain
(Section 4.4), while the loss of spatial frequency due to the
nonzero divergence of the flow is compensated for by a random
injection of noise (Section 4.5). The corrected advected texture is
then blended with the last blended frame to produce an
animation frame with an acceptable level of spatio-temporal
correlation (Section 4.6). Finally, the coordinate buffer xB is
reinitialized in preparation for the next iteration. This
initialization takes into account constraints imposed by the
discrete nature of the algorithm (Section 4.7). Images are
enhanced by additional post processing such as masking and dye
advection (Section 4.8).

We will often refer to the different steps of the algorithm. They
are numbered and summarized in Table 1 and Figure 2 (see color
plate). Table 1 gathers the complete set of operations written
using the notation described in Section 4.1, while Figure 2
represents all hardware resources as a list of buffers and textures
along with the operations that link them together.

4.3 Basic Advection
In this section, we discuss the hardware implementation of the
advection component of the algorithm described by equations (2)
and (3). As proposed in [9], the red and blue components of
buffers and textures encode both velocity and coordinate data.
We store a time series of 2D vector fields, which cover the entire
physical domain, in two 3D velocity textures whose third dimen-
sion represents time. The velocity components are normalized by
the infinity norm over all the field slices. To accommodate the
fact that texture values can only be positive, the velocity field is
split into its negative and positive components ()+ −= −v v v and
stored in two separate 3D textures, −v

T and +v
T . Furthermore,

since the entire 3D vector field, (, ,)x y t , is often too large to
completely reside in texture memory, only two time slices of the

1 1 1(,) (, ,)x y r g b=A

y

y

x

x x

y

y

x

s
r

(,) (, ,0)x y r s=A

2 2 2(, ,0) (, ,)r s r g b=T

1 1 1(,) (, ,)x y r g b=B 2 2 2(,) (, ,)x y r g b=B

A A

B B

T

Figure 1. Pixel Texture. (left) Color triplets are trans-
ferred directly to the framebuffer. (right) When a pixel
texture is applied, color triplets are used to address its
texels, whose values are sent to the framebuffer.

velocity texture are stored at any given time. They are updated
whenever the current time is outside the range encompassed by
these slices.

The texel coordinates of NT are initially stored in the texture

0xT according to
0
(,) (0.5, 0.5) /i j i j N= + +xT where N is the

texture size. Each texel of
0xT references the center of the

corresponding texel in NT .

Coordinate update. Texture coordinates at time ’t t h= − are
computed from a first order discretization of (2):

 ’ [(,) (,)]h t t+ −= − −x x v x v x (7)

Two buffers, xB and ’xB , are used for this operation. xB ,
which initially contains the initial texture coordinates stored in

0xT , is blended with texels from the velocity textures, and the
result is stored in ’xB (steps 1-3 in table 1 and Figure 2).

Since each velocity component is the range [0.,1.] , h is related
to the maximum possible displacement p (in pixels) of a parti-
cle between two consecutive positions by /h p N= . To achieve
a sufficient degree of spatio-temporal correlation during an
animation sequence h must be sufficiently small. We find that

[0.5,3]p ∈ yields good results.

Noise update. The second part of the advection process (step 4)
computes (’,)N tx using the pixel texture ’(,)NP xB T . In prin-
ciple, any texture can be used for the advection. However, we
use a noise texture for its lack of spatial correlation. This pro-
perty is a necessary requirement for the treatment of particles
entering the physical domain (Section 4.4), noise injection
(Section 4.5), and noise blending (Section 4.6).

With the x buffer reinitialized between successive iterations,
first four steps implement a basic texture advection. However,
several issues must be addressed to correct and enhance the
advected textures. They are explained in the following sections.

4.4 Edge Correction
A common problem with texture advection techniques is the
inadequate treatment of particles that originate from outside the
physical domain [13]. A proper treatment of edge effects requires
that these particles be identified and new property values
assigned to them without introducing extraneous visual artifacts.
We capitalize on the OpenGL property that states that before
storage into a buffer (or into a texture), floating point color
values are clamped to the range [0,1] . Whatever the particle
referenced outside the domain, its coordinates reference an edge
texel. As an illustration, Figure 3 (a,b) shows the black and
white striations, which result from the clamp operation, on a
circular flow defined by (,) (,)u v y x= − . In this example, a
particle at (,)x y originates from

’

’

x x hy

y y hx

= +
 = −

All particles with constant ’x and ’ 1y > acquire the value of the
noise texture at (’,1)x . These particles lie on a straight line with
positive slope h , clearly seen in Figure 3 (a,b).

For clarity of exposition, let BS be the set of pixels in ’xB that
reference a point on the boundary. We seek to replace pixels in

BS by a new random noise. This is achieved by the composition
of two images 1I and 2I through an additive blend. The first

Figure 2. Algorithm for a single time step. The numbers
indicate the operation number in the algorithm, which
matches the line number in table 1. Pixel texture operations
are shown as circles.

Figure 3. (a),(b) noise texture advected by a circular flow
(,) (,)u v y x= − . (c) regions from particles exterior to the
domain at the previous step are black 1()I . (d) new noise is
injected into the edge region; complement region is black

2()I . (e) composite of 1I and 2I .

a

b c

d eaa

bb cc

dd ee

1

B
MT

4

6

7

8 9

Fixed
Textures

Buffers Changing
Texture

2

5

3

R
NT

NB NT

14

∆xB
0xT

CB−

xB

′xB
B−

B+

CC

B+

B+

XORB

R

Bα10

11
D

17
B+

C

131516 12

B−CB−

%
NT CB

+vT

−vT

1

B
MT

4

6

7

8 9

Fixed
Textures

Buffers Changing
Texture

2

5

3

R
NT

NB NT

14

∆xB
0xT

CB−

xB

′xB
B−

B+

CC

B+

B+

XORB

R

Bα10

11
D

17
B+

C

131516 12

B−CB−

%
NT CB

+vT

−vT

 Initialize coordinates
0xT ; (,)D

0x xB T
 Initialize noise NT with black border

 0t =

 while max()t t<

 -------------------------- Basic Advection

1 ’(,)C x xB B

2 ’(, . (, []))B h P t+
−

x x v
B B T

3 ’(, . (, []))B h P t−
+

x x v
B B T

4 ’(, (,))N NC P xB B T

 -------------------------- Edge Correction

5 ’(, (,))M MC P xB B T

6
0

(,)MB+
xB T

7 (, (,))R
N M NB P+ B B T

 -------------------------- Noise Injection

8 %(,)XOR
N NB B T

 -------------------- Store Corrected Noise

 Draw black border around NB

9 (,)N NR T B

 --------------------------- Noise Blending

10 (,)C NBα B T

 ------------------------ Fractional update

11 (,)D
0x xB T

12 ’(,)C ∆x xB B

13
0’(, (,))B P−

∆x x xB B T

14 (,)B+
∆x xB B

15
0’(, (,))C P∆x x xB B T

16 ’(,)B−
∆x xB B

17 (,)B−
∆x xB B

 t t h= +

Table 1. Hardware algorithm for one time step

image, 1I , is black if BS∈x and is given by NT elsewhere. The
second image, 2I , has new noise in BS , and is black elsewhere.
Adding the two images produces a noise texture with new values
only on BS . There are no visible artifacts at the juncture between
the images since we use a spatially uncorrelated noise. Next, we
describe the construction of these two images.

As seen above, the spurious streaks at the edges of the domain
take on the color of some boundary texel. We capitalize on this
property by placing a one texel wide black border along the
perimeter of NT (initially and between steps 8 and 9). Conse-
quently, the output of step 4 is a noise buffer that contains 1I .
The second image is constructed with the help of a white mask
texture MT whose border texels are black. The pixel texture ope-
ration ’(,)MP xB T results in an intermediate black and white
image whose black texels lie in BS . This texture is then copied
into a mask buffer MB (step 5). The next two steps draw noise
from R

NT into BS . Step 6 adds the initial coordinate texture
0xT

to the mask buffer. Color clamping insures that the white pixels
of MB remain white. However, the black pixels in MB acquire
the color components associated with

0xT . R
NT is a 3D texture

with two layers in the third dimension. The bottom layer has
random noise; the top layer is black at coordinate (1,1,1). Thus,
where the mask buffer is white, the color of (,)R

M NP B T is black.
At black texels, the mask buffer has the original coordinate
values and the pixel texture returns a random noise. Finally, in
step 7, the image 2I output by the pixel texture is added to 1I ,
stored in the noise buffer generated in step 4. To insure that the
new noise generated in step 7 has no temporal correlation

0xT is
randomly translated at each iteration. This is accomplished using
a texture transformation matrix.

4.5 Noise Injection
In regions of positive flow divergence, adjacent pixels in ’xB
that reference the same texel location in NT after the backward
integration step share the same color. Therefore, the overall
frequency of the successive noise textures decreases. Figure 4
clearly demonstrates this decrease for a source flow after several
time steps. To maintain a constant noise frequency, a small
amount of new noise is injected into NB at every iteration (step
8). Through experimentation, we found that randomly inverting
the color of two to three percent of the noise texels at each time
step is enough to maintain a high frequency noise that is approxi-
mately constant without a significant loss of temporal correlation.

In practice, an invariant black texture with a 2-3 percent random
distribution of white texels, %

NT , is XORed into NB with an
OpenGL blending mode. The injection process affects a different
set of texels at each time step by applying a random texture
translation matrix to %

NT . The content of the noise buffer is read
back into the noise texture NT in step 9.

4.6 Noise Blending
We introduce an acceptable level of spatial and temporal
correlation into each frame by applying a one-sided exponential
filter to the sequence of frames. This effect is implemented with
standard alpha blending (step 10):

(1)C C Nα α= − +B B T

The use of noise textures implies that the only spatial correlation
after filtering is along a pathline segment. Besides smoothing the
animation, the blending process adds directional information to
static frames, a feature not present in [13] for example. A two-
color black and white noise maximizes the contrast of the final
blended image. Good visual results are obtained with 0.1α = .
The image in CB can be saved as a final animation frame or be
used for further image enhancements (Section 4.8).

Figure 4. Noise texture advected by a source (the worst
case scenario) with constant divergence: (,) (,)u v x y= .
Notice the gaps of increasing size that result from the
constant divergence of the particle paths.

4.7 Coordinate Reinitialization
During the texture advection phase, the coordinate buffer ’xB
was updated to reference the location of incoming particle
properties and a new noise texture was computed from the
advection of the current noise texture. The coordinate buffers
must now be reinitialized in preparation for the next iteration,
taking into account certain constraints imposed by the discrete
nature of the algorithm.

The displacement of the particle property between successive
frames must be small enough to maintain a good spatio-temporal
correlation. However, if the displacement of a particle is such
that both old and new positions lie within the same pixel, the
updated noise texel remains unchanged. Even worse, once the
coordinates are reinitialized to their initial values (stored in

0xT)
in step 11, any subpixel displacement (also called fractional
displacement) is lost and cannot be recovered: the motion of the
particle property is suppressed (step 5).

The above discussion suggests that the fractional displacements
of particles be accumulated, and the noise texture be updated,
once the accumulated displacement exceeds the width pw of a
pixel. The distance from 0x to ’x is the sum of an integer dis-
placement vector

 1
0 0(’) (int)[(’)]pw−− = −n x x x x , (8)

whose components are each an integral number of pixel widths,
and a fractional displacement vector

 0 0 0(’) (’) (’) pw− = − − −[[[[Q [[,

whose components each have a magnitude less than pw . If the
fractional displacements were neglected (omit steps 12-17), xB
would receive 0x in step 11. The goal of the additional steps 12
through 17 is to extract 0(’)−[[from ’xB and store

0 0(’)+ −x [[into xB in preparation for the next iteration.

Figure 5 shows the effect of the proposed correction on a circular
flow. The basic advection algorithm (left) leaves points of low
velocity fixed in space as evidenced by the lack of blending in
the central regions. In addition, dye injected into the flow slowly
drifts to the center as inaccuracies accumulate in time. The
corrected version is seen on the right.

4.8 Image Enhancement
We propose two techniques to augment the information content
of the animations. First, the brightness of regions of low velocity

is reduced to better identify strong currents in the flow. Second,
colored dye is introduced into the flow to visualize streaklines.

4.8.1 Velocity Mask
Figure 6 shows a single frame of wind patterns over Europe [17].
High and low velocity regions are discerned thanks to the spatial
correlation of the velocity field. However, the high frequency
noise associated with regions of low velocity detracts the user
from regions of interest related to higher-speed currents. To
increase the contrast between these regions, we subtract the
linear function 1f = −v v from CB and store the result in the
final display buffer ’CB . For this purpose, we store fv in the
blue component of the negative velocity texture during the initia-
lization phase. At each iteration, the corresponding time slice of

−v
T is mapped into a temporary buffer vB . The blue component
of vB is duplicated into the red and green components through
the intermediary of a color matrix and subtracted from ’CB .
These operations are expressed as ’(,)C CC B B , (,)D −v v

B T , and

’(,)CB−
vB B . The velocity mask is applied between steps 10 and

11. A larger class of functions can be constructed with color
maps to implement more general feature enhancements or feature
extractions.

4.8.2 Dye Advection
Experimentalists have long tracked tracer particles, dye, and
smoke to help understand the structure of unsteady flows [2]. In
our implementation of dye advection, the advected texture acts
like a physical surface upon which dye is released. Dye is
introduced into the flow between steps 8 and 9 by drawing
geometric primitives (dots, lines, etc.) into the noise buffer NB .
The algorithm then automatically advects the dye at no additional
cost. In the final image, the dye is automatically subject to a
temporal convolution of successive frames for increased
smoothness. The dye is stored in the green and blue texture
components while the noise is stored in the red component.
Thus, multiple colored streaks can be tracked. Figures 5, 7, and 8
were produced in this way.

It is well known that in unsteady flows, streaklines, streamlines,
and particle paths are different from one another. We test the
validity of the dye advection algorithm on the uniformly rotating
uniform flow (,) (cos(),sin())u v t t= . In this flow, streamlines are
straight, while streaklines and particle paths have circular
trajectories. Figure 7 shows two frames of an animation in which
dye is released at three points in the flow. As expected, the
streaklines are circular.

Figure 5. Dye advection in a circular flow defined by the
circular flow (,) (,)u v y x= − . Left: fractional coordinate
correction is disabled. Right: fractional correction is
enabled.

Figure 6. Winds over Europe. Regions of low velocity
included (left) and excluded (right).

5. DISCUSSION
The use of graphics hardware implies some constraints and
restrictions due to the limited number of bits available to encode
data.

Resolution limitation. The depth of the framebuffer has a direct
impact on the spatial and temporal accuracy of the texture
advection. In particular, it affects the number of bits that encode
the fractional part of the coordinate displacement in the
coordinate buffers. Figure 5 shows the extreme case when no bits
are available for the fractional part. Through experimentation,
we found that four bits are necessary for good visual results.
Under this constraint, a visual of 12 bits per color component
only provides 8 bits to encode texture coordinates, which then
limits the advection to 256 256× textures. We have since
addressed this limitation using a tiling algorithm [11].

Hardware resources. Hardware buffers and texture memory are
limited resources. Our algorithm uses seven textures (see

Figure 2). Using internal texture formats available in OpenGL
that require the minimum amount of memory, the advection of
256 by 256 textures consumes less than 1.2 Mbytes of texture
memory. In practice, the incomplete implementation of the pixel
texture extension on SGI graphic boards requires that the
textures mapped by this operation be 3D and RGBA (see manual
page for glPixelTexGenSGIX). This limitation increases the
required texture memory to 2.3 Mbytes, which can still reside in
the four Mbyte texture memory of the Octane.

Multiple buffers are stored in each hardware framebuffer. They
are arranged in a single hardware buffer as a non-overlapping
array of 3 by 2 buffers of size N N× . We used the fact that ∆xB ,

MB , can share in turn the same space without conflict to reduce
the required number of stored buffers from seven to six. 256
pixels wide buffers are easily accommodated.

6. CONCLUSION
This paper describes the first complete hardware-accelerated
implementation of an algorithm to visualize unsteady flow based
on a per-texel advection technique. It can simultaneously display
velocity direction, velocity magnitude, and dye advection. A
major advantage of this system is its ability to interactively
compute long animation sequences.

We solved intrinsic problems that plague texture advection
algorithms, particularly when they are applied to time-dependent
data over extended periods:

• Incoming flow regions are handled with uncorrelated
noise textures and image compositing.

• Long time advection is achieved through a restoration
of the texture frequency at each time step without
significant loss of temporal correlation.

• Spatio-temporal correlation is enhanced by applying a
temporal filter on advected textures. As an additional
bonus, flow direction is available in static frames.

We demonstrated how to use masks to control the regions of
interest through the intermediary of a control function stored in
the velocity texture. Finally, we capitalized on the possibility of
long time integration to transport dye and visualize streaklines.
Figure 8 displays three frames of a 1000 frame animation of
unsteady wind patterns over Europe using all the above. Dye is
released both from a point, and from a line segment. Regions of
rotation are easily discerned, along with the regions of high
velocity.

This paper further demonstrates the usefulness of new hardware
capabilities and advanced graphic functionality, such as the SGI
pixel texture extension. Interactive frame rates are achieved with
buffer sizes of 256 256× and over 65,000 individual particles.
The small texture size led to a novel algorithm for long time
advection. At present, only the Maximum Impact and the Octane
have the required hardware in their graphics engines to
implement the algorithm. However, these features deserve to be
incorporated into a wider class of machines. Each 256 256×
frame takes 0.4 seconds to compute on an Octane with EMXI
graphics. Although 18 texture applications per step are required,
we expect the algorithm to be increasingly superior to the best
software implementations. On the other hand, the precise control
afforded by a software implementation will most probably lead to
higher quality images.

7. ACKNOWLEDGMENTS
We would like to thank David Banks for lively discussions in all
areas of visualization, including several valuable suggestions to
improve the quality of this paper, and van Liere for the use of the
wind data from CWI. We also appreciate the comments of the
reviewers, which led to improved clarity of exposition. We
acknowledge the support of NSF under grant NSF-9872140.

8. REFERENCES
 [1] OpenGL ARB. OpenGL Specification, Version 1.2, 1998.

 [2] Visualized flow : Fluid Motion in Basic and Engineering
Situations Revealed by Flow Visualization, Pergamon
Press, 1988.

 [3] Advanced Graphics Programming Techniques Using
OpenGL. SIGGRAPH ’98 Course, http://www.sgi.com/-
software/opengl/advanced98/notes/notes.html, 1998.

 [4] B. Cabral and L. C. Leedom. Imaging Vector Fields
Using Line Integral Convolution. Computer Graphics
Proceedings. In James T. Kajiya, editor, Annual Confe-
rence Series, 263-272, ACM, August 1993. ISBN 0-201-
58889-7.

Figure 7. Three streaklines in the rotating uniform flow
(,) (cos(),sin())u v t t= (see [5]).

 [5] W. C. de Leeuw and R. van Liere. Comparing LIC and
Spot Noise. IEEE Visualization ’98. In David Ebert, Hans
Hagen, and Holly Rushmeier, editors, pages 359-366,
ISBN 0-8186-9176-X.

 [6] W. C. de Leeuw and R. van Liere. Enhanced Spot Noise
for Vector Field Visualization. Proceedings Visualization
’95. In D. Silver and G. M. Nielson, editors, 359-366,
IEEE Computer Society Press, 1995.

 [7] W. C. de Leeuw and R. van Liere. Spotting Structure in
Complex Time Dependent Flow. Technical Report CWI -
Centrum voor Wiskunde en Informatica, Technical Report
SEN-R9823, September 1998.

 [8] L. K. Forssell and S. D. Cohen. Using Line Integral
Convolution for Flow Visualization: Curvilinear Grids,
Variable-Speed Animation, and Unsteady Flows. IEEE
Transactions on Visualization and Computer Graphics,
1(2) , 133-141, June 1995.

 [9] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl.
Applications of Pixel Textures in Visualization and
Realistic Image Synthesis. ACM Symposium on Interac-
tive 3D Graphics. 127-134, ACM, April 1999.

 [10] B. Jobard and W. Lefer. Creating Evenly-Spaced
Streamlines of Arbitrary Density. Visualization in
Scientific Computing. In W. Lefer and M. Grave, editors,
pages 43-56, Springer Verlag, 1997.

 [11] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Tiled
Hardware-Accelerated Texture Advection for Unsteady
Flow Visualization. Graphicon 2000.

 [12] D. A. Lane. Visualizing Time-Varying Phenomena In
Numerical Simulations Of Unsteady Flows NASA Ames
Research Center, Visualizing Time-Varying Phenomena
In Numerical Simulations Of Unsteady Flows NAS-96-
001, February 1996.

 [13] N. Max and B. Becker. Flow visualization using moving
textures. Proceedings of ICASE/LaRC Symposium on
Visualizing Time Varying Data. In David C. Banks, Tom
W. Crockett, and Stacy Kathy, editors, NASA Conference
Publication, 3321, 77-87, 1996.

 [14] H.-W. Shen and D. L. Kao. A New Line Integral
Convolution Algorithm for Visualizing Time-Varying
Flow Fields. IEEE Transactions on Visualization and
Computer Graphics, 4(2), 98-108, 1998.

 [15] D. Stalling and H.-C. Hege. Fast and Resolution
Independent Line Integral Convolution. ACM SIGGRAPH
Computer Graphics Proceedings. Annual Conference
Series, 249-256, 1995.

 [16] G. Turk and D. Banks. Image-Guided Streamline Pla-
cement. Proceedings of SIGGRAPH 96. In Holly
Rushmeier, editor, Computer Graphics Proceedings, An-

nual Conference Series, 453-460, ACM SIGGRAPH,
ISBN 0-201-94800-1.

 [17] Wind field over Europe Compiled by: van Liere, R., CWI,
Amsterdam, the Netherlands.

 [18] J. J. van Wijk, Spot Noise-Texture Synthesis for Data
Visualization. Computer Graphics (Proceedings of SIG-
GRAPH 91), vol. 25, 309-318, July, 1991.

Figure 8. Two frames from a 1000 frame animation
(computed in 11 minutes) sequence of wind currents over
Europe [17]. Note the lack of artifacts at the domain
boundaries. Dye is released from a point and from a line
segment. Vortical patterns are evident in the lower frame.

