
SEMI-REGULAR MESH EXTRACTION

FROM VOLUMES

Zoë Justine Wood

Technical Report CaltechCSTR 2000.006

for the
Computer Science

California Institute of Technology
Pasadena, California

2000

ii

iii

Abstract

We present a novel method to extract iso-surfaces from distance volumes. It generates
high quality semi-regular multiresolution meshes of arbitrary topology. Our technique
proceeds in two stages. First, a very coarse mesh with guaranteed topology is extracted.
Subsequently an iterative multi-scale force-based solver refines the initial mesh into a
semi-regular mesh with geometrically adaptive sampling rate and good aspect ratio tri-
angles. The coarse mesh extraction is performed using a new approach we call sur-
face wavefront propagation. Given a source voxel of the iso-surface, a set of discrete
iso-distance rings are rapidly built and connected while respecting the topology of the
iso-surface implied by the data. Subsequent multi-scale refinement is driven by a simple
force-based solver designed to combine good iso-surface fit and high quality sampling
through reparameterization. In contrast to the Marching Cubes technique our output
meshes adapt gracefully to the iso-surface geometry, have a natural multiresolution struc-
ture and good aspect ratio triangles, as demonstrated with a number of examples.

iv

Table of Contents

Abstract iii

List of Figures vi

1 Introduction 1

2 Related Work and Algorithm Overview 5
2.1 Traditional Methods and Multiresolution Models 6
2.2 Deformable Models . 6
2.3 Topology . 7

2.3.1 Digital geometry, Morse Theory and Reeb Graphs 7
2.3.2 Distance Iso-contours . 8

2.4 Signed Distance Volumes . 8
2.5 Algorithm Overview . 9

3 Coarse Extraction 11
3.1 Coarse Mesh Extraction . 11
3.2 Problem Statement . 11
3.3 General Approach . 12
3.4 Wavefront Propagation and Distance Tree 14

3.4.1 Surface Wavefront Propagation . 14
3.4.2 On-the-fly Construction of Topological Graph and Rings 15
3.4.3 Cleanup of Rings . 17

3.5 Mesh Construction from Topological Graph 18
3.5.1 Ring Classification by Topological-Event Search 18
3.5.2 Connecting Rings: The Ring Master 20

3.6 Coarse Mesh Construction . 20
3.6.1 Ring Subsampling and Shortest Distance Projection 21
3.6.2 Stitching . 21

3.7 Discussion . 22

4 Solver 23
4.1 Multi-Scale Force-based Solver . 23
4.2 Setup . 23
4.3 External Forces . 24
4.4 Internal Forces . 25

v

vi

4.4.1 Decoupling Smoothing and Reparameterization 26
4.4.2 Reparameterization as Tangential Laplacian Smoothing 26

4.5 Refinement Strategy . 28
4.6 Overall Solver Algorithm . 29

5 Conclusion 31
5.1 Results . 31
5.2 Summary . 32
5.3 Future Work . 34

A Proof of Topological Correctness 35
A.1 Set-up, Definitions, and Theorems . 35
A.2 Main Result . 37

A.2.1 Decomposition of the initial Surfel-tiled surface 37
A.2.2 Re-tiling of the object with preserved topology 38
A.2.3 A note about tails . 38
A.2.4 Boundaries . 38

Bibliography 40

List of Figures

1.1 Example of a series of semi-regular meshes 3

2.1 Algorithm overview . 9

3.1 Reeb graph . 12
3.2 Cross sections of a donut . 13
3.3 Example of a Surfel and how following its active edges 14
3.4 Adjacencies in the topological graph . 15
3.5 Distance tree . 15
3.6 Ring construction ordering . 16
3.7 Dead-end of a wavefront . 18
3.8 Topological events on torus . 19
3.9 Split and merge detection . 19
3.10 Distance rings on the Feline . 20
3.11 Triangulation . 21
3.12 Stitching . 22

4.1 Linearly varying weights for face forces . 25
4.2 Conforming edges . 27
4.3 Laplacian weights . 28

5.1 Results . 32
5.2 Head comparison . 33
5.3 Feline comparison . 33

A.1 Example of a 1-sphere and 2-cell . 36
A.2 A 1-to-1 ribbon . 37
A.3 A 1-to-n ribbon . 37
A.4 Comparison of a torus and a branching object 38
A.5 A ribbon with a tail . 39

vii

viii

Chapter 1

Introduction

Medical visualization gives doctors the power to see into the human body and identify
problems ranging from tumors to torn ligaments. As medical imaging hardware improves,
the resolution of acquired data grows at rapid rates. Unfortunately many existing algo-
rithms for visualizing and understanding this data are not scalable. This is particularly
evident with volume data,1 the typical output of imaging equipment such as MRI and CT
scanners. Typical data from these scanners consists of scalar density regularly sampled
over a volume. The user is often interested in viewing the boundary of a specific tissue,
hence a specific surface within the volume data. This can be achieved by extracting an
iso-surface: the locus of points in the volume that map to a given iso-value. For example,
the user may be interested in viewing the exterior boundary of the liver. This surface
can be extracted from the volume data by finding a particular iso-surface.
The predominant algorithm for iso-surface extraction, Marching Cubes [40], extracts

a surface in the form of a triangle mesh. The algorithm computes a local triangulation
within each voxel of the volume that contains the surface, resulting in a uniform res-
olution mesh. Uniform sampling generates large meshes that are problematic in many
applications. Datasets of several gigabytes are found in medicine, and the size of March-
ing Cubes meshes may reach several million polygons. Often much smaller meshes ade-
quately describe the surface since the uniform sampling approach results in oversampling
portions of the iso-surface. To better represent the surface, the sampling rate of the ex-
tracted surface should vary over the surface, such that details are captured while the
representation remains compact. Large Marching Cubes meshes are costly to render
on even the most powerful graphics platforms, and often interactive applications are
intractable. The excessively large meshes encumber other downstream applications as
well, e.g., denoising, finite element simulations, and network transmission. One avenue
to deal with scalability of large meshes is a multiresolution approach.
The multiresolution paradigm encompasses a class of surface representations that

scale well under increasing geometric complexity and arbitrary topology [12]. As their
name implies, multiresolution representations organize data into different levels of reso-

1Volume data is defined here as a discrete three dimensional field; it encodes samples of a function
over a volume. A typical example is density data: the function is scalar-valued, and the samples are on
a regular Cartesian grid.

1

2 1 Introduction

lution.2 Multiresolution approaches employ a hierarchy that encodes a coarse represen-
tation at the root and aggregate details at subsequent levels. Ideally, at any depth of the
hierarchy, the accumulated geometry is the best possible representation of the surface
given the available number of samples at that level.
Multiresolution meshes have many benefits:

Scalability A hierarchical mesh representation can be examined and manipulated at
the appropriate level of detail. Level of detail can be chosen based on memory and
time budgets, or user specification.

Transmission Progressive transmission over a network is very desirable and possible
with multiresolution. The presence of a hierarchy defines a breadth-first traversal
strategy, in which the coarse mesh is sent first, and details follow.

Compression For each level of a multiresolution surface, parameterization and con-
nectivity can be inferred from previous levels. This fact gives rise to superior
compression algorithms.

Modification A multiresolution surface can be edited at different levels to achieve dif-
ferent scales of effect on the surface. In particular, editing the surface at a coarse
level has a more global effect while fine level editing will only affect a very small
local area of the surface.

We observe that these representations are ideal for extracted iso-surfaces, particularly as
volumetric datasets grow in size.
One approach to obtaining a multiresolution surface is repeated decimation of an ini-

tial fine mesh. This approach could follow the application of Marching Cubes, to address
the oversampling problem [23]. Unfortunately, common mesh simplification algorithms
have large memory footprints [24, 16], and are impractical for decimating meshes with
millions of polygons (see [38, 37] for an approach to tackle this situation). Alternatively
one may apply classic iso-surface extraction techniques such as Marching Cubes to hier-
archical (filtered and down-sampled) volumetric representations [56, 2]. Unfortunately,
it is difficult to guarantee the topology of the mesh extracted from the simplified volume.
An alternative to building a hierarchy through decimation is remeshing [12, 32, 36, 31,

21]. Although previous work is compelling, it is inefficient and inelegant in the setting of
iso-surface extraction from volumes: such approaches first extract a poor, oversampled
mesh, and then repair the problem through remeshing. In contrast, we opt for the
direct extraction of an adaptively sampled hierarchical iso-surface mesh. Our approach
adaptively samples the iso-surface and builds a mesh with good aspect ratio triangles
within a multiresolution structure. This is achieved through a coarse-to-fine generation
procedure which produces an adaptive semi-regular mesh.
Semi-regular meshes are well known from the subdivision setting [60]. A semi-regular

mesh consists of a coarsest level triangle mesh which is recursively refined by quadrisect-
ing each triangle. The resulting type of meshes have a semi-regular structure, i.e, all the

2Multiresolution representations are intimately connected to wavelets and their application to repre-
senting mathematical objects at different granularities. For example, wavelet techniques can be applied
to images in order to represent them at different levels of resolution.

1 Introduction 3

Figure 1.1: Example of various levels of an extraction of adaptive semi-regular meshes
from a volume using our algorithm. On the left is a coarse resolution version of the
surface, followed in the middle by an intermediate version. Finally the finest resolution
surface is on the right.

vertices introduced via quadrisection have valence six. Since this surface representation
has an inherent multiresolution structure, it enjoys all the benefits of multiresolution
described above. Specifically, semi-regular meshes have theoretical, applied, and imple-
mentation benefits:

Theory Specific connectivity structure improves compression efficiency, data structure
compactness, and analytic error estimates in various algorithms [28, 21, 61, 5].

Applications Many applications that are “downstream” with respect to iso-surface
extraction are more efficient when using semi-regular meshes (these include edit-
ing [61], finite element simulations [5], and progressive transmission [28] among
many others). Thus semi-regular meshes are a desirable format for representing
iso-surfaces.

Implementation The mesh hierarchy is represented with a quad-tree data structure,
thus implementations are simple, elegant, and efficient.

This thesis presents an algorithm for the extraction of semi-regular multiresolution
iso-surface meshes directly from volume data. Figure 1.1 shows examples of a multireso-
lution mesh extracted from a distance volume with our algorithm. Typically the meshes
produced by our algorithm are more compact. This has significant practical relevance:
for example it is easier to design systems for visualizing medical data online. However,
application of our algorithm is by no means confined to medical applications. For ex-
ample, 3D scanners often combine scans from multiple viewpoints into one volume data
set. Engineers, designers, artists, and entertainment specialists require rapid and effi-
cient manipulation of detailed surfaces acquired from such scanned data. Our algorithm
provides these users with a compact and versatile representation, opening the door for
them to use a variety of down-stream applications with ease.

4 1 Introduction

Chapter 2

Related Work and Algorithm
Overview

This thesis addresses the application of multiresolution representations to the iso-surface
extraction problem. Iso-surface extraction is a fundamental problem in scientific visu-
alization and computer graphics. It has been investigated extensively, especially in the
last 13 years since the publication of the very successful Marching Cubes extraction al-
gorithm. Marching Cubes has been successful partially due to its simplicity. It is a very
reliable algorithm and generates an accurate 1 representation of the expected surface.
However, Marching Cubes meshes are not the most efficient representation of the desired
surface.
As volume data has grown in size, the resulting storage concerns have been addressed

through volume compression, streaming extraction techniques, and hierarchical struc-
tures [59, 39, 4]. However, these techniques do not solve the problem that the resulting
mesh will still be excessively large and inefficiently represented due to uniform sampling.
While some algorithms have focused on fixing the meshes produced by Marching Cubes
using mesh decimation and multiresolution remeshing, others have focused on improving
the meshes by replacing the Marching Cubes extraction method by other techniques, for
example deformable models. Both of these approaches have problematic aspects. The
former is a costly post-process while the latter techniques are usually limited in the type
of data they can extract. In particular, extraction algorithms that use deformable mod-
els require user input to extract surfaces with handles. Instead, our approach leverages
knowledge from both of these areas and improves both the final representation of the
resulting mesh and the extraction algorithm.

1Marching Cubes produces an accurate surface, assuming no apriori knowledge regarding how the
sampling of the volume was generated. For example, if the sampling was generated from a higher order
function from a numerical simulation. In this case, the linear basis functions used for interpolation during
a Marching Cubes mesh construction will not be sufficient to accurately represent the surface.

5

6 2 Related Work and Algorithm Overview

2.1 Traditional Methods and Multiresolution Models

Our approach is motivated by the desire to directly extract a multiresolution represen-
tation, as described in Chapter 1. Multiresolution comes in two fundamental flavors: (a)
coarse to fine: constructions which are based on classical notions of multiresolution as
they appear in wavelets and subdivision; and (b) fine to coarse: constructions based on
mesh simplification. The former comes with a rich mathematical structure which can
be leveraged for many applications [52, 53, 47]. The latter is applied when a very fine
mesh has already been constructed. Such meshes arise from 3D scanning or Marching
Cubes iso-surface extractions. As mentioned in the Introduction to this thesis, post-
process decimation of large meshes is not an elegant solution for converting them to a
multiresolution representation. In addition, most decimation algorithms create highly
irregular meshes and miss out on some of the advantages of output constructed using
a coarse to fine approach. For example, in contrast to semi-regular meshes, there is
little correspondence between the connectivity and parameter information of the origi-
nal arbitrary connectivity mesh and a decimated version, making them more difficult to
compress [28]. Hence we prefer a coarse to fine approach to construct semi-regular—or
subdivision connectivity—meshes. Our goal is the direct construction of such meshes for
iso-surface extraction. We focus on direct extraction so that we avoid the unnecessary
step of extracting a oversampled mesh and then decimating it in order to fix it.

2.2 Deformable Models

Since our approach is focused on directly extracting a good mesh, we have replaced
the Marching Cubes extraction algorithm. Our approach is closely related to surface
extraction based on deformable models [43, 26, 42, 46, 31]. In these approaches a potential
function is defined and the surface is found by formulating a finite element problem whose
minimum energy solution is the desired surface. Aside from the interpolation constraints
the energy minimization typically employs additional terms to guarantee uniqueness
and ensure a smooth solution. Our approach is similar to finding a minimum energy
solution in a signed distance function potential. However, instead of deriving our forces
from an energy field, we tailor the forces such that they lead to a good reconstruction
subject to smoothness criteria. The main differences lie in the control we exert over the
connectivity of the resulting mesh and in the minimization process we use. Instead of
using a thin-plate functional we use a balloon force [6] approach coupled with a novel
reparameterization force.
The largest advantage of our algorithm compared to other deformable model ap-

proaches is our ability to extract a surface of arbitrary topology. Almost all previous
approaches assume that the global topology of the iso-surface is known apriori since the
initial mesh for the finite element solver must have the correct topology [43, 46, 31, 42].
These previous approaches rely on user input to determine the appropriate global topol-
ogy for the initial mesh. In practice this has meant that most such algorithms only dealt
with the extraction of objects homeomorphic to a sphere. In contrast, our approach auto-
matically extracts a surface with the correct global topology without depending on user
input to determine the topology. Designing a solver which does not require the correct

2.3 Topology 7

topology initially and instead topologically modifies the mesh as the algorithm proceeds
is possible, but rather delicate [34]. Instead we opt for a robust algorithm which initially
extracts a topologically correct coarse mesh from the volume data. Subsequent refine-
ment is always performed through quadrisection, giving us the desired multiresolution
structure.

2.3 Topology

Our algorithm extracts a coarse mesh with the same topology of the desired iso-surface.
We examined a variety of approaches used to code the topology of a surface, however,
none of the existing techniques accomplished what we needed. For example, one possible
method to determine the topology of a surface is to construct the original triangulation
of the surface and then compute the Euler characteristic of this triangulated surface (see
Appendix A for more information about the Euler characteristic). By using the Euler
characteristic, a coarse surface with the same genus could be selected as the initial coarse
mesh (for example a tetrahedron for any surface that is homeomorphic to a sphere). How-
ever, this approach suffers from the same shortcomings as mesh decimation (mentioned
in section 2.1). It is a time and memory intensive post-process. We require an approach
that does not construct a full triangulation of the surface and does not depend on apriori
knowledge of the topology of the surface. We have derived our own algorithm that meets
our criteria and overcomes the shortcomings of the related approaches.

2.3.1 Digital geometry, Morse Theory and Reeb Graphs

Our coarse extraction algorithm makes use of the volume data structure in order to avoid
a costly extraction of a uniform triangulation. We use volumes that are sampled on a
Cartesian grid and we rely on the connectivity relationship of the grid elements to extract
a topologically accurate mesh (see Chapter 4). Using the adjacency relationships of the
grid we traverse the surface and store a representation of the surface’s connectivity in
a topological graph. This traversal and graph construction is related to work done by
Lachaud [33] on topologically defined iso-surfaces.
Lachaud proposes an alternative to the Marching Cubes extraction: construction of

the iso-surface from a graph. He constructs this graph using digital geometry definitions
of adjacencies and connectedness in the volume. His graph elements are called loops
which are small oriented pieces of the surface in a voxel. He proves the topological
equivalence of the triangulation that is created using the loop graph and the marching
cubes mesh for the same volume. We rely on this proof in our work, since the building
blocks of our topological graph, Surfels (see 3.3), are equivalent to Lachaud’s loops.
However, the problem with Lachaud’s approach is he triangulates every loop to generate
his final surface. Instead we only use a subset of the Surfel connectivity graph in order
to extract a coarse mesh. However, our assertions that our graph represents the same
topology as a Marching Cubes mesh rely on the equivalence of Surfels and Lachaud’s
loops.
Other works concerned with coding the topology of a surface are Morse Theory and

Reeb graphs [51, 49, 50]. Morse Theory is used to describe the minima of functionals

8 2 Related Work and Algorithm Overview

on an infinite dimensional space of paths. By applying this theory to differentiable
manifolds, the minima of a functional can be used to characterize topological features.
In brief, Morse theory deals with defining critical points and their relationship to the
topology of surfaces. Critical points are defined as the regions of the surface where
the gradient is zero. However, the critical points alone do not uniquely identify the
embedding of the manifold in space. This means that the same set of critical points
can be interpreted as having different topology. The Reeb graph addresses some of these
problems, as it encodes the connectivity of the critical points of a surface. Shinagawa has
done work on constructing the Reeb graph from cross sections [50] which is reminiscent
of our approach. However, the Reeb graph alone cannot completely capture the topology
of a surface (in particular, it has degenerate cases see Fig. 3.1). Our approach is similar
to the Reeb graph in terms of using contours to determine the topology of the surface.
However, the topological graph we construct from contours uniquely determines the
topology of the surface. We discuss this further in Chapter 3.

2.3.2 Distance Iso-contours

Our coarse mesh extraction approach was also inspired by work on computing level
sets on manifolds, specifically polygonal meshes [29, 48]. Particularly of interest is the
computation of the geodesic graph used to extract skeletal curves [35, 55]. Skeletal curves
are another method to encode a surfaces topology, however, they suffer from similar
degeneracy problems as the Reeb graph. We use a discrete distance computation related
to these ideas, however, we apply these ideas to iso-surfaces defined only implicitly. Most
importantly, we expand these ideas to the volume setting. Our algorithm propagates a
discrete distance without constructing a triangulation of the surface. Instead, we use the
connectivity relationship of voxels in the volume to build a graph representing the surface.
Distances are then propagated on this graph, creating a discrete distance graph, similar
to the geodesic graph. This graph is later used to create iso-contours of our surface that
correctly encode the topology of the surface (see Chapter 3 for more information).

2.4 Signed Distance Volumes

Signed distance volumes are utilized in a variety of applications [8, 7, 17, 45, 57]. A
distance volume is a volume dataset that stores the shortest distance to the surface at
the vertices of each voxel. Whether a vertex is inside or outside of the surface is encoded
in the sign of the distance. While our coarsest mesh extraction algorithm works with
arbitrary scalar volume datasets, our solver explicitly requires a distance volume. Our
strategy for computing distance volumes involves calculating the exact shortest Euclidean
distance within a narrow band around the surface. The information in the narrow band
is then swept out to the remaining voxels using a Fast Marching Method [48]. Distance
volumes for MRI and CT data are generated by fitting a level set model to the desired
iso-surface creating a smooth segmentation of the input data [41, 58].
Due to the fact that iso-surface extraction is such a fundamental problem, it has been

actively worked on and improved over the years. However, none of the existing techniques
can directly extract a multiresolution representation of the isosurface. Building on ideas

2.5 Algorithm Overview 9

Figure 2.1: Overview of our algorithm. Given a volume and a particular iso-value of
interest (top-left), a set of topologically faithful rings is constructed (top right). Stitching
them together creates the coarsest level mesh for the solver (bottom left). Adaptive re-
finement constructs a better and better fit with a mesh having semi-regular (subdivision)
connectivity and an explicit multiresolution structure (bottom).

from these related works we now present an overview of our semi-regular mesh extraction
algorithm.

2.5 Algorithm Overview

Since our algorithm directly extracts a semi-regular mesh, we will start with the volume
data and extract a coarse representation of the surface without first extracting a fine
mesh. In addition, our algorithm handles arbitrary topology, therefore our initial irreg-
ular connectivity mesh must have the same global topology as the iso-surface we wish
to extract (Fig. 2.1, left). This first stage of our algorithm works for arbitrary scalar
volumes with well defined iso-surfaces. Our method has very low memory overhead,
enabling us to handle very large datasets.
In the next step of our algorithm the mesh is refined and its geometry optimized

(Fig. 2.1, lower right). In addition to the regular and hierarchical structure of a semi-
regular mesh, the output of our algorithm should have good aspect ratio triangles, a
larger number of samples where the surface has more detail and a smoothly varying
number of samples across the surface of the mesh. In this stage of the algorithm, aspect
ratios and sizes of triangles are controlled through adaptive quadrisection and additional
reparameterization force terms. Since our algorithm proceeds from coarser to finer reso-
lutions simple multi-scale methods are easily used. In particular we solve successively for
the best fitting mesh at increasing resolutions using an upsampling of a coarser solution
as the starting guess for an iterative solver at the next finer level. For this optimization
stage of the algorithm we require a distance volume for the desired iso-surface.
In summary, novel aspects of our algorithm include:

• direct extraction of semi-regular meshes from volume data;

• a new and fast method to extract a topologically accurate coarse mesh with low
memory requirements, suitable for large datasets;

10 2 Related Work and Algorithm Overview

• an improved force-based approach to quickly converge to a refined mesh that adap-
tively fits the data with good aspect ratio triangles.

Since our method does not change the global topology of the mesh during refinement it
is more suitable for iso-surfaces whose topological complexity is significantly lower than
their geometric complexity. For example, the surface of the brain satisfies this criterion,
while intricate vessel networks do not.

Chapter 3

Coarse Extraction

3.1 Coarse Mesh Extraction

One of the goals of this thesis is to present an algorithm to extract surfaces of arbitrary
topology. We accomplish this by first evaluating the volume data itself to determine
the topology of the desired iso-surface. In turn, this evaluation process facilitates the
construction of a coarse mesh with the correct topology. This approach has three main
features: guaranteed topology, low memory requirement, and adjustable complexity of
the initial mesh.

3.2 Problem Statement

Our first task is the extraction of a topologically accurate coarse mesh. Since volume data
can potentially be very large and fill main memory, the task of extracting an iso-surface
can be time consuming and memory intensive due to the need to compute and maintain
the local triangulation per voxel. We want to avoid this costly triangulation step and
only store and use a small amount of data to construct the coarsest mesh. An alternate
approach for dealing with large volume data is to down-sample the volume through a
smoothed pyramid construction and then extract a coarse mesh. The problem with this
approach is that it cannot guarantee the topology, e.g., small handles will disappear in
the smoothing step, causing a change in the topology of the initial mesh. Instead we
work with the original sampling of the volume and leverage the connectivity information
inherently represented by voxel adjacency. This allows us to minimize the amount of
extra data we need to store for constructing a topologically accurate coarse mesh.
Since the volume data is represented as a regular grid, the location of each corner

of a voxel in 3 dimensional space is represented by an x, y, z triple. This triple is also
used to index the scalar value associated with that grid sample in space. Neighborhood
relationships between voxels are easily traversed as a voxel’s neighbors are reached by
simply increasing or decreasing any of the index triple’s values. Essentially, we treat the
voxel grid as a data structure already representing our surface in an implicit way and we
traverse this data structure to extract an accurate coarse mesh. While doing this, we do
not compute or store the local triangulation per voxel and instead store a small amount

11

12 3 Coarse Extraction

pit

peak

saddle point

saddle point

Figure 3.1: The critical points of a torus (left). Cross sections and critical points of the
same torus (middle) and the Reeb graph of the torus (right).

of additional information in order to represent the topological structures of the desired
iso-surface.
Our general approach is based on constructing and traversing a topological graph of

the surface, in order to subsample the volume data and extract a coarse mesh. When
extracting a coarse mesh, the user may define the discretization rate of the initial mesh.
Alternatively, the algorithm can automatically generate a coarse mesh with the minimal
discretization that maintains the topology. This is done by guaranteeing that we maintain
the Euler Characteristic of the original surface (see appendix A for more information).
Our approach is explained in the remainder of this section.

3.3 General Approach

In order to construct a topologically accurate coarse representation of a surface, one
could imagine intelligently slicing the surface at specific locations and then tiling these
slices together. This concept is similar to representing a surface with a Reeb graph,
where the critical points of a surface along with planar cross sections of the surface are
stored to represent the topology of the surfaces (Fig. 3.1).
However, Reeb graphs have limitations and can have degeneracies due to the way

cross sections are acquired. For example, consider the planar cross sections of the torus
in Fig. 3.1. Now consider if the torus was laying on its side, like a donut sitting on a
tilted table. If we take cross sections of this torus at constant heights, we would derive a
degenerate Reeb graph, see Fig. 3.2. Additional coding information is required in order
to remedy this and reconstruct the correct surface. Specifically, Shinagawa’s [49, 50]
approach requires apriori information about the number of handles. In contrast, our
approach automatically reconstructs the correct surface without prior knowledge about
the topology.
The biggest difference between the Reeb graph and our approach is that the contours

we use to represent the topology are not defined by a constant height function. Instead
our contours are defined by a distance function defined on the surface. This means that

3.3 General Approach 13

Figure 3.2: A torus on its side and tilted(left). The cross sections of this torus (middle).
The degenerate Reeb graph (right)

our contours will always correspond to the geometry of the surface. More importantly,
this means that our contours can represent the Euler characteristic of specific regions
of our surface. By examining the way these geometric contours are connected to one
another we can always uniquely encode a topological graph of our surface. Section 3.5
will discuss this process in more detail.
Our technique to acquire contours is related to computing the geodesics of a sur-

face. The key to this approach is intelligent selection of slices to accurately capture the
topology of the surface, while minimizing the computational complexity. This can be
done by constructing an accurate topological graph of the surface that ignores redundant
cross-sections. Our algorithm uses such an approach and a formal proof of this method
can be found in appendix A.
Consider a surface intersected by a Cartesian grid. This intersection and the entire

grid can be represented by tuples (i, F(i)), where i is a point in 3D space and F(i) is
the scalar value of the distance volume at that point in space. The surface is defined
as the zero iso-contour of the volume, all values in the volume where F (i) = 0. The
surface will be pierced by the edges of the Cartesian grid, creating a collection of patches
which we denote Surfels, for surface elements (Fig. 3.3, left). The edges which pierce
the surface are denoted active edges. They have the property that their endpoints lie on
opposite sides of the surface (the endpoint vertices have scalar values in opposite binary
sets). Edge endpoints are considered either outside the surface if F (i) ≥ 0, or inside
the surface if F (I) < 0. Since ”outside” is not defined with a strict inequality an edge
endpoint cannot degenerately lie on the surface. This definition of inside and outside is
equivalent to using an epsilon perturbation to move the surface so that it only intersects
the Cartesian grid on the grid’s edges. The active edges intersect the surface at points
called nodes. For the case of an iso-surface embedded in volume data, the resulting graph
will be regular in the sense that all nodes are valence four, since a piercing edge of the
Cartesian grid is shared by four Surfels.
Given this setting we return to the original goal of generating slices to subsample

the surface while retaining the original topology. To establish the topology of the sur-
face we code the Euler characteristic of important regions of our surface. In order to
code the Euler characteristic we need to traverse our surface and establish connectivity
relationships between all the regions of the surface. Connectivity information is already
implicitly represented by voxel adjacency in the volume. By organizing and traversing
these connectivity relationships we construct a topological graph of our surface. The
construction of this graph has two parts. First we construct a topological distance tree,
similar to propagating a wave front across a surface in the geodesic setting. Second, we
augment this tree to be a topological graph by establishing connectivity between Surfels

14 3 Coarse Extraction

wavefront propagation

nn+1

no shared active edges

Figure 3.3: Arrows indicate how to follow active edges from a given Surfel (left). On the
right we see that the Surfel with distance n will propagate the distance n + 1 across its
active edges to the connected Surfels. Note that the other Surfel in this voxel will only
receive a distance when the wave front reaches it.

of the same distance, similar to constructing iso-contours for geodesics on the underlying
iso-surface.

3.4 Wavefront Propagation and Distance Tree

The first step in our approach is to construct our topological distance tree by enumer-
ating the Surfels through a wavefront-like propagation of Surfel distance. Our notion
of distance is very much like Chamfer distance in image processing (also called ”chess-
board” distance): two Surfels are a unit distance apart if they share at least one node,
(1-node adjacency, see Fig. 3.4). Thus, a topological distance tree is an organization of
all the Surfels into a tree hierarchy, where:

• Each Surfel is 1-node adjacent to its parent in the tree;

• The shortest distance from a Surfel to the root is the depth of the Surfel in the
tree hierarchy.

3.4.1 Surface Wavefront Propagation

We start by identifying a source voxel. Any voxel that the surface passes through is
sufficient and will serve as the root Surfel of our distance tree. The source voxel can be
chosen trivially, e.g., first encountered. From there, we construct the distance tree by
enumerating the Surfels in a breadth-first traversal. This propagation between adjacent
Surfels can be done efficiently using active edges of the initial Cartesian grid containing
the data. Active edges represent the transition of the iso-surface from one voxel to
another, always connecting four Surfels. We use a priority queue to walk from Surfel
to Surfel sequentially (Fig. 3.5, left) to construct the distance tree. Our algorithm is
equivalent to running Dijkstra’s algorithm to discover all paths from the source Surfel to
all other unvisited Surfels. Since Dijkstra’s algorithm is defined on the edges of a graph,
our algorithm is equivalent to running Dijkstra’s on the dual of the Surfel graph with
edge weights all equal to one.
There are cases when more than one Surfel is associated with a single voxel. However,

this is of no consequence to the algorithm since we propagate the wave front only across
active edges (Fig. 3.3). The corresponding Surfels will be traversed in an ordered manner

3.4 Wavefront Propagation and Distance Tree 15

2

2

2

2 2

21

2 2
222

22 2

22 1

Figure 3.4: On the left is an example of 1-node adjacency: the Surfel labeled 1 is 1-node
adjacent to all the Surfels labeled 2 since it shares at least one node (colored pink) with
each of them. On the right is an example of 2-node adjacency. Specifically this is an
example of 2-node adjacency only between Surfels of the same distance as required in
ring construction. Each of the Surfels labeled 2 is 2-node adjacent to any neighbor, also
labeled 2, sharing an edge (i.e., 2 nodes).

1

2

2
1 2

2
1

1

0

1

2

1

2

1

1

0

2

1

1

1
2

2

2

2

2

1

Figure 3.5: Small portion of the distance tree overlayed on some Surfels (left). Same
portion with adjacencies of the topological graph (rings) added (right).

(at worst four for a single voxel). Ambiguities can arise when using only the eight corners
of a voxel to determine an ordering of the active edges. We use the same solution as J.
Bloomenthal in Graphics Gems IV [22] and avoid this problem by selecting one consistent
solution in ambiguous cases.
Our distance tree requires only a compact data structure and facilitates later creation

of the topologically correct coarse mesh. The distance tree is represented by storing an
additional integer value for each voxel that the surface passes through and a pointer to
the parent Surfel as indicated by Figure 3.5(right). In addition, we temporarily store
the pointers to all the Surfels of a given distance in a bin structure (the distance bins)
to later facilitate ring construction. See section 3.7 for more information about storage.

3.4.2 On-the-fly Construction of Topological Graph and Rings

The next step in our algorithm constructs a topological graph using the distance tree.
This is done by collecting Surfels of the same distance into continuous rings, representing
a “cross-section” of the surface topology. A topological graph is a representation of all
the Surfels such that:

• All of the properties of a distance tree are true;

• Additionally, each Surfel is 1-node adjacent to its child;

16 3 Coarse Extraction

E12

E11

E1

E8
E4

E5

E10

E6E7

E9

E2

E3

Figure 3.6: A Surfel and its ordered edges. Despite the appearance of this figure, we
never explicitly calculate the intersection of a Surfel and the active edges. Instead, every
Surfel is defined by an ordered list of the “names” of the active edges. For example, in
this case, this Surfel would be identified as: E1, E4, E5. During ring construction for
the distance d, if we crossed into this Surfel by crossing the active edge pair {E1, E4},
we would first check the next active edge pair {E4, E5} to see if the neighboring Surfel
incident on this edge pair is the same distance. If it was not, we would move on to check
the next pair {E5, E1}. By definition one of these pairs must be the same distance. One
can trivially check this by considering the nodes of the active edge pair {E1, E4} (nodes
are shown in red). Since we know that this Surfel has distance d, we know that it received
that distance from one of these two nodes (by definition of how we propagate distance),
say the node on E1. Thus the node on E1 must also have propagated its distance to the
Surfel incident on E1, E5 (again by definition of how we propagate distance).

• Every Surfel has 2-node adjacency (see Fig. 3.4) with exactly two other Surfels of
the graph that are of the same depth.

A Surfel is 2-node adjacent with another Surfel if they share two nodes (i.e., an edge).
In essence, we collect the iso-distance rings and put them on separate lists to represent
their inter-connectivity. The process of linking rings for the topological graph creation
requires that we start with a given Surfel of distance n, traverse pairs of active edges, i.e.,
faces of the voxel bounding the given Surfel, in an ordered manner until we find another
adjacent Surfel of the same distance n. As the ring is traversed, we enumerate an in-ring
ordering for all the Surfels of the present ring to assist in the creation of triangles for the
coarse mesh.
In order to come up with a consistent ordering within the rings, we use an idea

very similar to work done on encoding a digital region boundary [14] and digital surface
tracking [18]. Since we want to traverse the ring in an ordered manner, we need to
pick a consistent orientation in space and an ordering for traversing that orientation.
Luckily, the edges of each Surfel are ordered (see Fig. 3.6). This ordering is consistent,

3.4 Wavefront Propagation and Distance Tree 17

since the Surfel is oriented, which allows us to traverse around the iso-distance contour
and construct a connected ring. The ring elements will only have 2-node adjacency with
exactly two other Surfels of the graph that have the same depth. This definition of 2-node
adjacency is once again very similar to rings of iso-Chamfer-distance on a rectangular
grid [3].
For a given level of our distance tree, after a single ring is constructed, we check the

distance bins to make sure that all the valid Surfels of level n are part of a ring. If not,
we start the ring construction again with one of the unprocessed Surfels at level n. This
process continues until all Surfels are incorporated in the topological graph structure.
Additionally, each distinct ring at a given level will be assigned a distinct branch name.
Thus if there is more than one ring at level n, each will have a unique branch name,
derived from its parent, or sequentially assigned if it is a completely new branch. The
following C++ like pseudo-code illustrates this process:

//for each iso-distance, try to generate rings

for(i = 1; i < max_distance; i++) {

//for all the Surfels of distance i

for (it = distance_bin[i].begin; it != distance_bin[i].end; it++) {

//if this Surfel is not already a part of a ring

if (!ElementofRing(it, i)) {

//either use my parent’s branch name if unused or new one

if (UsedBranch[it->parent->branch])

branchname = max_branch_name+1;

else

branchname = it->parent->branch;

//construct a ring for distance i with the appropriate branch name

ConstructRing(it, i, branchname);

Usedbranch[branchname] = 1;

}

}

}

3.4.3 Cleanup of Rings

If distance is propagated näıvely, rings could have tails (Fig. 3.7). Tails are large or small
dead-ends of the wave front. A dead-end of a wave front occurs when the wave front
runs into itself. Tails do not provide additional topological information (see Appendix A
for a proof) and can confuse the ring construction algorithm. Specifically, at a dead-end
it may appear that a Surfel is 2-node adjacent to more than two other Surfels. Tails
are eliminated from ring construction by pruning them from the distance tree during
distance propagation. During this stage of the algorithm if a voxel cannot propagate its
distance forward (because all of its neighbors are already visited), we prune this voxel
from the distance tree. It is clear that this procedure exactly prunes dead ends, since a
dead-end is defined as when the wave front cannot proceed.

18 3 Coarse Extraction

Figure 3.7: Unmodified distance rings for the feline dataset. The source cell for the
distance tree is near the feline’s tail. Note that there are two visible tails - one on the
left wing where two wave fronts run into each other and another on the nose where the
wave front completely dead-ends.

3.5 Mesh Construction from Topological Graph

The topological graph provides everything needed to build the coarse mesh. In order to
have a good coarse sampling of the surface, we only include the smallest number of rings
necessary. Rings essential for coding topology are those inducing topological events. A
ring represents a topological event based on its adjacency relationships in the topological
graph.

3.5.1 Ring Classification by Topological-Event Search

From the rings, we create a coarse mesh which respects the initial topology. Indeed,
there are only three types of important ring adjacencies:

• Endcap: the root Surfel or a leaf ring;

• Split: any two Surfels of a single ring at level n which have at least two differ-
ent child Surfels belonging to two or more different disjoint rings at level n + 1
(Figs. 3.8(a) and 3.9(a));

• Merge: any two Surfels of a single ring at level n having two or more different
parents belonging to two or more different disjoint rings at level n− 1 (Figs. 3.8(a)
and 3.9(b)).

3.5 Mesh Construction from Topological Graph 19

For example, in a torus there would be one Split where the graph traversal first
encounters the hole of the torus and one Merge where the hole ends. Both of these
events need to be captured in order to construct the correct topology of the torus. In
contrast, an “unimportant” adjacency is when rings of the same branch number are
stacked on top of one another with no change in branch number between any of the
rings (for example on the torus between the Endcap and the Split). These rings can be
discarded without changing the topology of the surface.

Endcap

Endcap

Merge

Split

Figure 3.8: Topological Events on a torus

In order to capture the topology of a given surface, we are specifically interested in
discovering the number of handles of that surface. A handle occurs when a ring splits
into n distinct branches (where n ≥ 2), and then subsequently, these same branches or
some subset of these branches merge together. Thus, we only store specific pairs of rings
that have split and then subsequently merged together. See Appendix A for a proof of
how this construction guarantees the correct topology of the coarse mesh.
Since these adjacency relationships are completely determined by a ring’s parent and

child, ring construction and event detection can be performed in a sweep algorithm.
Once the rings at level n are constructed, event detection is performed by walking along
the parent rings at level n − 1 to see if an event ring is encountered. For each of the
Surfels in rings at level n− 1, we check that their children have the same branch number
as their parent ring. If not, a split has been found.
While doing this traversal, we also keep track of the branch numbers of the children

already visited. For a Merge, for example, the initial parent ring of branch 1 will register
that it has seen a child of branch 1. When the other parent ring, branch 2, checks
the branch name of its children, it will find that all its children are a different branch
name and have already been seen. Thus a Merge is detected. Finally, if a ring cannot
construct a valid child ring, it is entered into the Ring Master as an Endcap. The first
ring constructed is also entered into the Ring Master as an Endcap.

Ring n-1, branch 1

Ring n, branch 2Ring n, branch 1 Ring n, branch 1

Ring n−1, branch 2Ring n−1, branch 1

(a) (b)

Figure 3.9: (a) Split detection; (b) Merge detection.

20 3 Coarse Extraction

The desired coarseness of the mesh can be controlled by adding criteria for ring
selection. For example, consider a requirement that the initial mesh exhibit good aspect
ratio triangles. This can be achieved by selecting rings at multiples of some integer
distance w and changing the sampling density within the rings to also be of distance w.
Another useful feature of ring selection is that the rings coarsely approximate distance
on the surface (assuming each Surfel has approximately the same size). Thus, ring
placement corresponds to the underlying geometric complexity of the surface.

Figure 3.10: The distance rings used to extract the coarse mesh for the feline dataset.
The source cell for the distance tree is near the feline’s tail.

3.5.2 Connecting Rings: The Ring Master

By tiling together all the relevant rings that are either a paired Split and Merge (forming
a handle) or an Endcap, we can construct a coarse mesh that is topologically equivalent
to the surface represented in the volume. To do so, we add some temporary information
to what we call the Ring Master. When a ring is designated as a topological event during
selection that information is stored for the tiling step. Specifically, we keep track of how
many child rings a given ring has as well as their branch numbers. For each child we
keep track of how many parents it has and their respective branch numbers.

3.6 Coarse Mesh Construction

At this point, we have a list of all cross sections of the surface which are required for
tiling a good coarse approximation of the final surface. This final step is related to
contour stitching (see [1, 15, 13]). However, since we work within the framework of the
volume data with the additional information stored in the Ring Master, we do not face

3.6 Coarse Mesh Construction 21

1

42 3

3 1

1

42

1

Endcap Triangulation

Ring n+1

Ring n

Figure 3.11: On the left is a triangulation between two unrolled rings. The circular nodes
represent the Surfels used to construct the ring. The dark circles represent where the ring
has been subsampled. We now use the dual of the Surfel ring and just treat the samples
as vertices and Surfels connecting these samples as an edge. The ordering of the samples
is used to trivially determine their connectivity. We make a triangle by inserting an edge
between every in-ring sample in order and between all like numbered samples between
adjacent rings. Finally, we just use a consistent rule that the final edge is from the lower
ring’s vertex n to the upper ring’s vertex n+1 (modulo the total number of vertices). On
the right is an example of an endcap triangulation.

the traditional correspondence problems of contour stitching. Specifically, the volume
data combined with the topological graph can be used to resolve any ambiguities about
inter-contour connections.

3.6.1 Ring Subsampling and Shortest Distance Projection

The general procedure is to subsample a ring along its length followed by projection to
its child ring. The topological graph is used for this projection as indicated in Figure 3.9.
The samples on both rings are enumerated in corresponding order within their ring to
facilitate triangulation (see Fig. 3.11). This process is repeated for all corresponding
layers of rings. If a ring is an Endcap we evenly subsample it based on desired triangle
size criteria and connect all these samples to a central point (see Fig. 3.11).
The projection step may result in samples being too close or too far away from one

another due to changes in the geometry of the iso-surface. In this case we can adjust
the number of samples to accommodate the density change. Specifically, we either snap
close points together, or insert a midpoint sample.

3.6.2 Stitching

It is easy to tile two contours that have a one-to-one correspondence in their sample
enumeration. The general approach of our algorithm is to use the information stored in
the topological graph and in the Ring Master, to break each connection into a one-to-
one connection. By breaking the rings into one-to-one correspondence and then using
bridges between adjacent connected rings, we correctly model the topology of the surface.
Additionally, it allows us to maximize the number of vertices of valence six.
Thus Splits and Merges are handled by “breaking” the larger ring into the appropriate

number of smaller ring segments by relating which subsamples have projected from/to

22 3 Coarse Extraction

Branch 1 of Ring n
Branch 2 of Ring n

Conforming Bridge

Figure 3.12: Stitching a Merge (Splits are handled similarly).

each distinct smaller ring. Using the information stored in the Ring Master it is known
whether a given ring has more than one child or parent. During the projection step we
separate parent and child Surfels into appropriate subrings based on the branch number
of the child (respectively parent) to which the Surfel projects (Fig. 3.12). In a second
pass around the larger ring, branch names are compared along the projection. If two
neighboring samples have come from different parent rings, the samples are stored in
an edge list and later paired with their matching edge to make the conforming bridge
between the two subrings (Fig. 3.12). With this the rings can be triangulated as usual.
It is worth noting that there is a case equivalent to a Merge immediately followed by

a Split. Due to the discrete nature of the samples this can appear as a double Split. This
case is easily identified and tagged in the event detection: two child rings will have more
than one parent in common. In such a case we follow the same routine, but a little more
care needs to be taken with inserting the conforming bridge.

3.7 Discussion

One of the benefits of this approach is the low memory overhead for the topological graph
representation. In the case of an O(n3) volume the storage requirement for the distance
tree is O(n2), as it depends on the size of the surface. The only other data that we need
to store for generation of the coarse mesh is dependent on the rings of the topological
graph and is O(n). Memory overhead for rings is minimized by keeping only, (i) the rings
selected to be part of the coarse mesh; (ii) the last ring constructed and (iii) the current
ring, which is being evaluated for possible selection. Although both our algorithms and
Marching Cubes use total storage of O(n2), our algorithm has a more compact runtime
footprint than a typical Marching Cubes implementation. In particular, in order to avoid
visiting every single voxel in the volume, the Marching Cubes algorithm keeps a stack of
all the voxels on the surface. This stack requires storage of three float values associated
with each edge intersection (up to 36 floats per voxel) and three integers per face (up
to 12 integers per voxel). In contrast, our algorithm does not require such a stack.
Furthermore, we have presented an algorithm in which a distance value is permanently
stored for each Surfel. However this is only conceptual, as distance values could be stored
temporarily, only for voxels on the frontier region of the sweep. The frontier region of the
sweep is the region of the surface between the last ring selected to be a part of the mesh
and the current ring being evaluated. Even without this modification, our algorithm has
a significantly smaller runtime footprint.

Chapter 4

Solver

4.1 Multi-Scale Force-based Solver

Once a coarse mesh with the correct topology is found, the next step of our algorithm
consists of turning this initial mesh into a hierarchical triangulation fitting the data with
suitable sampling densities and well shaped triangles. This refinement process will make
use of a simple force-based multi-scale solver.

4.2 Setup

To solve for the iso-surface one may consider the signed distance function of the volume
as a potential field and search for the minimum potential solution [27, 26, 25, 46, 42].
Employing the calculus of variations this results in an energy minimization problem in-
tended to bring the current mesh representation to the final desired shape by following
the gradient of distance. In this setup the problem does not possess a unique solution
independent of the starting position due to the non uniqueness of a minimum distance
for non convex sets. Consequently, the problem must be regularized to ensure conver-
gence and a unique solution. Following the practice in variational geometric modeling
(e.g., [19]) this is typically done by adding potential energy terms which are functions of
first and second derivative magnitudes of the surface. Such thin-plate approaches have
been used, for example, by Qin [46]. These additional energy terms also serve to control
the size distributions and well-shapedness of the triangles in the mesh.
Unfortunately, this approach has a significant drawback: the tradeoff between close-

ness to the data and the smoothness of the solution is hard to tune. In essence, smooth-
ness of the solution and faithfulness to the desired goal surface compete with each other.
Too much regularization will lead to smooth, unfit surfaces, while not enough regulariza-
tion will lead to convergence difficulties. In both cases, the overall speed and accuracy
is very dependent on fine tuning of parameters. This has been partially addressed by
scheduling the regularization as decreasing in time (e.g., [25]). Such strategies help, but
still require careful tuning of parameters on a case by case basis.
Computing the gradient of distance is notoriously unstable, especially in the presence

of noise. For this reason we have chosen to use the distance itself. The current mesh

23

24 4 Solver

approximation locally inflates or deflates based on the distance to the zero-contour. I.e.,
the direction of (local) motion of the mesh is given by its local normal, while the magni-
tude (and sign) of motion are determined by the distance function itself. This approach,
inspired by work in image processing [6], has already been used with success in the
context of active implicit surfaces [9]. As a novel element we add a reparameterization
technique to control triangle shapes and their variation across the surface. In this way,
we obtain adaptive sampling and well shaped triangles without introducing forces which
compete with the interpolation constraints. Since the meshes are refined through adap-
tive quadrisection we have a natural multiresolution structure which we exploit directly
for an efficient multiscale solver.
Our setup gives rise to a number of different force terms detailed below. External

forces minimize the distance between the mesh and the zero-contour of the data. Internal
forces arise from the reparameterization terms.

4.3 External Forces

We begin by considering the force acting on a single triangle before giving the actual
equations for the net force on a vertex in the mesh.
Following the balloon strategy, we define the force acting on a triangle T of our mesh

as being along the normal of the triangle, with a sign and a magnitude depending on the
surface integral of the distances d between the triangle and the actual zero-contour C:

FT = nT /AT
∫
x∈T
d(x,C) dx

where nT is the triangle normal and AT is the area of T . The integral of the distance
across the face can be computed exactly in the volume setting, since we assume that
the distance varies linearly across a given voxel. In practice this is overkill and we use a
much cheaper sampling criterion. Each triangle face is randomly sampled with a uniform
distribution whose area density depends on the total area of the triangle. This results in
quicker force computations, while preserving the quality of the approximation. Because
the sampling is not dependent on the face size we avoid excessive computations for large
faces that already fit the underlying zero-contour and we avoid inadequate sampling for
small faces that may be poorly aligned with a small feature. Note that the minimum
bound on the discretization rate is of the order of a voxel size, since everything is assumed
to vary linearly within a voxel. Therefore, we use the following simple sampling strategy:

1. Temporarily quadrisect the triangle into four small triangles and find the four
distances di for the barycenter of the each of the new triangles. Define the number
of samples mT = 4;

2. Estimate the variance VT [d] of these distances;

3. If VT [d] ≥ δ,

• stochastically sample the triangle with a uniform distribution and density
inversely proportional to triangle size and assign the number of samples mT

4.4 Internal Forces 25

accordingly,

• compute the distances di from these samples to the zero-contour.

The variance of a discrete set of distances is computed in the standard way VT [d] =
E[d2]−E[d]2, where E denotes the mean of its argument. A more sophisticated method,
using fully adaptive sampling depending on variance, can be derived, but this simple
approach has proved sufficient and has the advantage of being very efficient. The final
net force on a triangle would be given by the above mean of the distances

FT = nTE[d].

The solver requires forces acting on vertices. To arrive at these we use the above sam-
ple points to compute integrals for each vertex by integrating over all incident triangles,
weighting each sample point with its respective barycentric coordinate. Figure 4.1 illus-
trates this idea in the case of a single triangle. Every sample point within this triangle
contributes to the force integrals associated with its corner points as follows:

1/mT nTd(xi, C) φj(xi)
1/mT nTd(xi, C) φk(xi)
1/mT nTd(xi, C) φl(xi)

where xi ∈ T is the sample location; (j, k, l) are the corners of T ; and the φ give the
barycentric coordinate of xi with respect to j, k, and l respectively. Effectively we are

Figure 4.1: Samples from a given triangle contribute to vertex integrals according to their
barycentric coordinates as indicated by the linearly varying weighting ramps.

using piecewise linear finite elements and stochastic sampling to evaluate the associated
integrals. In the implementation one simply iterates over all triangles and accumulates
the integrals at each corner.
With this scheme, faces will tend to move towards the zero-contour. If the mesh is

coarser than the small details from the zero-contour, it will settle in an optimal position,
smoothing the details. The finer the mesh is, the better the fit will be. As mentioned
in [26], we also noticed that vertices tend to align with sharp features in the zero-contour.

4.4 Internal Forces

Internal forces are usually added as a regularizing term, to guide the minimization to
a desirable local minimum. In our approach internal forces are mainly used to ensure
good aspect ratios for the faces and to keep the sampling across the surface smoothly

26 4 Solver

distributed. Usually, springs of zero rest length and identical stiffness are used to keep
sample points from clustering locally and ensure uniform sampling [26]. Instead we define
reparameterization forces which act similarly, but only along the local parameter plane,
not in space.

4.4.1 Decoupling Smoothing and Reparameterization

In recent work on mesh smoothing [54, 10], the Laplacian operator has been extensively
used to denoise triangulated surfaces, using the approximation:

L(xi) =
1

m

∑
j∈N1(i)

xj − xi (4.1)

where xj are the neighbors of vertex xi, andm = #N1(i) is the number of these neighbors
(valence). Note that this definition is exactly similar to springs with zero restlength
whenever the valence is constant throughout the mesh. This Laplacian of the mesh at a
vertex can be broken down into two orthogonal components:

• a component normal to the surface, creating shape smoothing

• and a component in the tangent plane, fairing the parameterization of the mesh.

The normal vector to the surface can be found easily by normalizing the curvature normal
vector K [10, 11]:

K(xi) =
1

2A
∑
j∈N1(i)

(cotαij + cot βij)(xi − xj). (4.2)

For arbitrary connectivity meshes numerical evidence shows that no spurious drifting
artifacts appear when the surface is modified only in the direction of K [10]. This
decomposition into normal and tangential components separates motion into one com-
ponent changing shape and one changing the parameterization. We are only interested
in the latter.

4.4.2 Reparameterization as Tangential Laplacian Smoothing

In our context shape smoothing would act against the external forces trying to fit the
initial data. Thus we are only interested in the tangential motion of Laplacian smoothing
in order to improve the quality of the discretization. This reparameterization force is
defined as

T(xi) = L(xi)− (L(xi) · n)n, (4.3)

where n is the normalized K of Equ. 4.2.
Since we use the Laplacian as a reparameterization force, and our refinement scheme

is adaptive (the triangles of our surface are not uniformly subdivided) we must account for
the irregular parameterization of the conforming edges. Conforming edges are added to

4.4 Internal Forces 27

avoid t-vertices at the edges between a refined face and an unrefined face. Our scheme is
restricted in the sense that neighboring triangles can only differ by one level of refinement.
This results in only a small number of configurations that require conforming edges (see
Fig. 4.2). Since the Laplacian is designed for the regular case (all vertices with valence
6 and all angles equal to π/3), we add a term to account for the change in the angle of
the triangles generated by the conforming edges:

L(xi) =
1

m

∑
j∈N1(i)

(xj − xi)(cotαpij + cot β
p
ij)

where αpij and β
p
ij are the angles in the parameter plane (see fig. Figure 4.3). These

weights are easily precomputed based on the possible conforming edge configurations.
Determining the correct weight to use for each edge incident on a vertex is a simple
case look-up, depending on how neighboring triangles are subdivided. It is important to
note that in the normal uniform subdivision setting when αpij = β

p
ij we find the expected

Laplacian, similar to springs with zero restlength, Equ. 4.1.

P3

P1P2 P1P2

P3

T0

T3

E1

T2T1

E2

P2 P1

Case 1: Case 2:

Case 3:
Case 4:

E1

P3

E1 E2

E3
P2 P1

P3

Figure 4.2: The possible conforming edge configurations with respect to T0 are invariant
under rotation and reflection. In case 1, none of the neighboring triangles are subdivided
and no conforming edges are added. In case 2, T1 is subdivided and we need to add a
conforming edge for P1. In case 3, T1 and T2 are refined and we add two conforming
edges, one between the two refined triangles and one for P1. Finally, all three neighbors
of T0 can be subdivided and T0 is not subdivided. In this case we add three conforming
edges between the refined triangles.

We also use the second Laplacian operator L2 [30, 10] to ensure a smoother variation
of sampling rate over the surface. As in the case of the Laplacian, we use the same
weights for the conforming edges, and suppress the normal component in the same way.
By proceeding as described, we keep internal and external forces distinct, thus simplifying
parameter choices.

28 4 Solver

α

j

β

ij

i

ij

Figure 4.3: Example of how the weights for the Laplacian are applied depending on the
conforming edge configuration. In this situation the top coarse triangle (in red) has been
refined and the bottom triangle (in blue) has not. A conforming edge is added, as seen
in case 2 of Fig. 4.2. The weights associated with edge i, j are based on the angles of the
incident triangles measured in the parameter plane. Here, αij is

π
3 and βij is

π
6 .

4.5 Refinement Strategy

After an optimal solution has been found for a given mesh, if the mesh does not meet the
user supplied accuracy criterion, we evaluate a subdivision criterion over each triangle in
the mesh. Any triangles failing the criterion are split 4-to-1. This hierarchy is naturally
maintained in a forest of quadtrees, one tree for each original coarsest level triangle.
Within the forest we enforce a restriction criterion, i.e., no triangle is allowed to be off
by more than one subdivision level from its neighbors. The solver is run anew after any
triangles required to subdivide have been refined.
The two criteria used to determine if a triangle should be subdivided are curvature

and variance of distance. If the variance of the distance samples for a given triangle is
too high, the surface underneath this particular triangle must have high curvature, i.e.
is not flat. Subdivision is therefore required since a simple triangular approximation is
clearly insufficient. Using a user supplied threshold εV all triangles T with VT [d] ≥ εV
are subdivided.
In addition to this criterion, we also test the curvature of the current mesh to ensure

good discretization in highly curved areas. If the three vertices of a triangle have too high
a curvature compared to the area of the triangle, our solver subdivides the triangle to
better adapt to the local geometry. For generality, we add a condition to deal with sharp
features in the volume data: we invalidate the test on curvature if the variance of sampled
distances is too small. Subdivision will be avoided if we are already describing the surface
adequately. Therefore, our second subdivision criterion for a triangle T = (xi, xj , xk) can
be written:

(|K(xi)|+ |K(xj)|+ |K(xk)|)AT ≥ εκ and VT [d] ≥
εV
10

where εκ, the maximum discrete curvature, is a user-defined value. The choice of εV /10

4.6 Overall Solver Algorithm 29

seems reasonable in all our tests, but could be defined by the user if needed, depending
on the prevalence of high frequency detail in the iso-surface. It is worth noting that εV
can be viewed as a smoothing factor. For example if the user wants a smoothed version
of the surface they can set εV to a higher number and the system will stop after reaching
a solution with fewer triangles that approximate the surface.

4.6 Overall Solver Algorithm

Once forces have been computed for every vertex in the current mesh, vertex positions
are updated through an explicit dynamics step:

x
(t+δt)
i = x

(t)
i + Fxiδt

advancing the mesh in time until the approximation error does not decrease further.
When advancing the mesh, we also must put a restriction on the time step δt. Specifically,
the time step must satisfy the Courant condition (also known as the CFL), that the
velocity of change must not travel faster than the minimum detail in the system. This
condition is simple to compute in our system and is

δt = me/Mf

where me is the minimum edge length and Mf is the maximum force. Then the subdi-
vision criteria are evaluated for each triangle and quadrisection is performed as needed.
Subsequently we solve again until convergence and continue this process until the user
supplied error criteria are satisfied at every point on the surface.
The behavior of the solver is controlled by the relative weightings of distance and

reparameterization forces. We have found a factor of 2 in favor of the distance forces
to work reliably for a wide variety of data sets. Similarly, error thresholds of εκ = 15
and εV = 10

−4 have proven to work well without the need for tuning (to make the error
criteria scale invariant we consider the object to occupy the unit cube).

30 4 Solver

Chapter 5

Conclusion

5.1 Results

We have applied our algorithm to a variety of datasets and compared the results with
Marching Cubes reconstructions as “ground truth.” Some of these are shown in Fig-
ure 5.1.
The top sequence illustrates the case of a MRI dataset (1283) which was segmented

through a level set method. Construction of the coarsest mesh (186 triangles) took .5
seconds. The intermediate mesh contains 4810 triangles, while the final mesh has 21360
triangles. Comparing our reconstruction against the Marching Cubes mesh (58684 trian-
gles) we find a relative L2 error of 1.8∗10−4 (Fig. 5.2). The surface is a topological sphere,
but requires fairly fine levels of refinement near the ears, attesting to the performance of
our solver in the presence of rapidly changing local geometric complexity.
The middle sequence shows an extraction from a 3D scanner generated distance

function [8]. The topology of the feline is non-trivial containing numerous handles in
the tail region (Fig. 5.3) and demonstrates the performance of our coarsest level mesh
extraction and topology discovery algorithm. It also demonstrates the ability of our
solver to resolve fairly fine detail such as the mounting posts on the bottom of the paws.
Triangle counts are 3412, 13412 and 46996 respectively (Marching Cubes: 72685) for
an error of 3.3 ∗ 10−4. Coarsest mesh extraction time was .34 seconds on a volume of
158 ∗ 74 ∗ 166 voxels.
Finally the bottom row shows another MRI dataset of a mouse embryo which was

segmented with a level set method. The surface has several handles (near both front
paws) and numerous concavities. All were resolved successfully. Triangle counts are
1030, 4086, and 26208 respectively (Marching Cubes: 129670) with an error of 6 ∗ 10−4.
Coarsest level extraction took .78 seconds on a volume of 256∗1282. Typical solver times
are on the order of a few seconds for the initial meshes increasing to 4 to 5 minutes for
the final reconstructions.

31

32 5 Conclusion

Figure 5.1: Reconstructions performed with our algorithm on MRI datasets (top and
bottom) and a 3D scanner generated distance function (middle). The coarsest mesh is
shown on the left followed by an intermediate adaptive mesh and a final result.

5.2 Summary

We have demonstrated a novel algorithm for the capture of iso-surfaces in the form of
hierarchical, adaptive semi-regular meshes. It is based on a new approach to construct a

5.2 Summary 33

Figure 5.2: Comparison between our algorithm output and a Marching Cubes mesh. The
relative L2 error between these is 1.8 ∗ 10−4.

Figure 5.3: Tail section of feline showing nontrivial topology. Marching Cubes extraction
on the left, adaptive semi-regular mesh on the right.

34 5 Conclusion

coarsest mesh with guaranteed topology approximation of the iso-surface using surface
wavefront propagation to discover the topology and ensure that it is represented faith-
fully. Construction of this coarsest mesh is based on a low memory overhead traversal
of the volume and does not require or incur the potentially enormous overhead of sim-
plifying a Marching Cubes mesh. In a subsequent solver step we adaptively refine this
mesh and optimize its vertex positions based on a balloon inflation/deflation model. In
contrast to previous approaches, we use a novel explicit reparameterization force em-
ploying tangential components of the first and second Laplacian of the mesh. Thus we
do not have to trade off fidelity to the original data and uniqueness of the solution. The
resulting meshes have a natural multiresolution structure based on semi-regular meshes.
A large number of algorithms are now available which take optimal advantage of such
meshes. Examples include editing [61], finite element simulations [5], and progressive
coding [28] among many others.
We have demonstrated the algorithm with a number of examples including a distance

volume produced by 3D scanning [8] which exhibits non-trivial topology, and two MRI
datasets which were segmented with level set methods. A human head with spherical
topology (the neck was closed) and a mouse embryo with non-trivial topology.

5.3 Future Work

In order to avoid self-intersection problems during the solution process we have so far
relied on coarsest meshes which resolve the geometry reasonably well to begin with. It
would be desirable to start with the coarsest possible (in the topological sense) initial
mesh and counteract any self-intersection problems in the solver itself. Other interesting
areas for future work include

• investigate the use of multiresolution representations of the volume;

• optimization of the solver including adaptive time stepping strategies and auto-
matic selection of parameters such as the relative weighting of reparameterization
forces.

• application of the topological graph to irregular meshes to code topology

Appendix A

Proof of Topological Correctness

This appendix demonstrates that our algorithm preserves the topology of the initial
discrete surface (consisting of the union of Surfels). In order to do so, we prove that the
two surfaces are homeomorphic to one another.

A.1 Set-up, Definitions, and Theorems

All of the following definitions and theorems are from Chapter 21 of Geometric Topol-
ogy in Dimensions 2 and 3 by Edwin E. Moise [44].
Let K be a finite complex, of dimension ≤ 2 (refer to [44] for the complete definition

of a finite complex, however, recall that K is a collection of simplexes in a space IRm and
specifically, if K is a finite complex, then |K| is a finite polyhedron).
The Euler characteristic χ of K is

χ(K) = V −E + F

where V is the number of vertices, E the number of edges, and F is the number of
faces. The Euler characteristic for open cell-complexes is defined in the same way as for
complexes. In our setting the open cell-complexes, C, is comprised of vertices, edges and
faces [44].
Next, we recall the following theorems:

Theorem T1: Let M be a compact 2-manifold with or without boundary. Then all
triangulation K of M have the same Euler characteristic.

Theorem T2: For open cell complexes, the Euler characteristic is combinatorial invari-
ant

From these two theorems we can define the Euler characteristic of a compact 2-manifold
M as the number χ(M) which is = χ(K) for every triangulation K of M . Specifically,
we can understand the Euler characteristic of a 2-manifold in terms of the Euler char-
acteristics of its open cell-complexes. This property reflects the main advantage of the
Euler characteristic: it is an invariant for any given 2-manifold, or subset of a 2-manifold,
regardless of the discrete representation used.

35

36 A Proof of Topological Correctness

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Figure A.1: On the left is a 1-sphere. On the right is a 2-cell.

Now, recall that the topology of a compact 2-manifold is completely determined by its
genus. The genus of a 2-manifold, M (closed polyhedral surface) is defined with respect
the Euler characteristic as follows:

χ(M) = V −E + F = 2(1 − g)

where again V is the number of vertices, E the number of edges, F the number of faces
and g the genus.
Finally we recall the most important theorem with regards to our construction:

Theorem T3: Let K1 and K2 be finite complexes (in our case, polyhedrons), such that
|K1|∩|K2| is a polygonal line J, and so that K1∪K2 is a finite complex. (Recall that
|K1| and |K2| are finite polyhedrons). In other words if we have two polyhedrons
such that they intersect along a polyline, then:

χ(K1 ∪K2) = χ(K1) + χ(K2).

This means that we can compute the Euler characteristic of our final polyhedron
K1 ∪K2 by computing the sum of the Euler characteristics of its parts. Regardless of
how we triangulate those regions, we will not affect the Euler characteristic.
Specifically, we use the following:

1-sphere: A 1-sphere is a set homeomorphic to a unit circle. If J is a 1-sphere, χ(J) =
0 since V = E and F = 0. In other words the Euler characteristic of a contour, or
boundary, is 0 (see Fig. A.1).

Since the ’rings’ in our topological graph are actually rings of Surfels (see Fig. A.2),
the boundary of the rings are 1-spheres.

n-cell: An n-cell is a set homeomorphic to an n-simplex. Therefore, a 1-cell is an arc,
while a 2-cell is a disk. χ(any 2-cell) = 1 since V = E and F = 1, (see Fig. A.1).

Any endcap of our topological graph is a 2-cell. (Recall that our initial seed Surfel
is also defined as an endcap and thus is also a 2-cell).

A.2 Main Result 37

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Figure A.2: A 1-to-1 ribbon (left) and a closed 1-to-1 ribbbon homeomorphic to a sphere
(right)

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

Figure A.3: On the left is a 1-ring-to-n-rings ribbon. On the right is the closed ribbon,
making it homeomorphic to a sphere

A.2 Main Result

A.2.1 Decomposition of the initial Surfel-tiled surface

We now clarify the relationship between our approach and these definitions and theorems.
As metioned earlier the boundary of a ring in our topological graph is a 1-sphere. A ring
itself is a ribbon, defined as follows:

A ribbon is comprised of a polygonal surface connecting 1-spheres (for example, see
Fig. A.2).

Our algorithm covers the surface by slicing it into a sets of ribbons. We use T2 to
decompose the Euler characteristic of the whole surface (union of our Surfels) as a finite
sum of the Euler characteristic of these ribbons and endcaps. Fortunately, each of these
objects are easy to analyse. Let’s review the possible cases:

endcaps: These are obviously 2-cells (homeomorphic to a disk), their Euler character-
istic is χ = 1.

1-to-1 ribbon : This is the most common case for a ribbon and is comprised of two
connected 1-spheres (see Fig. A.2). Its Euler characteristic is trivially equal to 0
by the following argument. Close this tube section by two end caps one at each
end of the tube (see Fig. A.2). Clearly we obtain a closed object homeomorphic to
a sphere, therefore with a genus 0, therefore with a Euler characteristic of 2. Use
now T3 to decompose this 3-part object in order to discover that the tube itself
must have χ = 0 since the Euler characteristic of each end cap is 1.

1-to-n ribbon (and vice-versa) : These occur at either a split or merge. For these
branchings, the Euler characteristic of the ribbon is slightly more complex. How-
ever, it turns out that the exact same derivation used for a 1-to-1 ribbon applies:
close the different branches by endcaps, to get an object that is homeomorphic
to a sphere. Therefore, for 1-to-n ribbons, where one ring turns into n rings (see
Fig. A.3), we have: χ = 1 − n. Notice that we also have to consider the general
case: m rings to n rings, which relies on the same arguement as above. However, in
our implementation, we separate these cases into a finite set of 1-to-q branchings.

38 A Proof of Topological Correctness

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����������
�����������
�����������

�����������
�����������
�����������

����������
����������
����������

����������
����������
����������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

Figure A.4: Compare the torus on the left with the branching object on the right.

We now have a very easy way to compute the Euler characteristic (and therefore, the
genus): start with 1 (for the initial endcap), add (1-n) for every 1-n or n-1 branchings
that happens along the surface, finally add 1 for each end cap. Notice, that since we did
not make any assumptions about the placement of the inital cap this proof works for any
seed Surfel. No degenerate cases, like those found for the Reeb graph, will take place,
guaranteeing a completely automatic process.
This proof can easily be verified on simple geometric objects. A sphere will only have

an initial endcap and a final endcap, resulting in an object with genus 0. Since we are
specifically interested in objects with genus≥ 1, we make the following observation about
a torus. A torus, will also have an initial endcap and final endcap, in addition it will
have a split and a merge, (a 1-to-2 ribbon and a 2-to-1 ribbon). Therefore, the Euler
characteristic will be: 1+1-1-1 = 0, leading to the correct genus: 1.

A.2.2 Re-tiling of the object with preserved topology

Now, our process of re-tiling the whole object with a sub-sampling of the total rings
can be proven to preserve the topology in just a few words. Since a stack of 1-to-1
ribbons have a zero Euler characteristic, we can easily simplfy this down to a single
large ribbon between the intial ring and the final ring, without changing the topology.
With a split or a merge, we carefully respect the branching by preserving the associated
1-to-n ribbons. Finally, endcaps are retained, guaranteeing an Euler characteric equal
to the original surface. Despite severe downsampling, our subsampling of the entire
Surfel graph, preserves the correct topology of our initial discrete surface, based on the
properties shown in theorems T1 and T3.

A.2.3 A note about tails

We now show that the removal of tails from the rings in the topological graph does not
change the Euler characteristic of the surface. A tail can be seen as just a sucession
of Surfels, and these Surfels are arbitrarily triangulated (for example, hanging from a
complete ring, see Fig. A.5). It is easy to see that each piece of the tail consists of adding
1 vertex, 2 edges and 1 face. Thus the Euler characteristic for a ribbon with a tail is just
χ(ribbon) + χ(tail) where χ(tail) = 1 + 2 + 1 = 0.

A.2.4 Boundaries

All the previous arguments apply to a closed initial surface. Although our current im-
plementation deals only with this case, the same proofs can be derived for open objects.

A.2 Main Result 39

Figure A.5: A ribbon (or ring) with a tail. The boundaries of this ring, without the tail
(shown in red) are 1-spheres.

Boundaries could exist if the surface represented by the volume data exceeds the limits
of the volume. These boundaries could easily be found and identified. Then, similar
arguments (adding caps at the boundaries) can be used to derive the general formula:
χ = V −E −F = 2(1− g)− b where now g indicates the genus of the closed object once
the boundaries have been closed, and b is the number of boundaries. All the rest of the
derivation then holds.

40 A Proof of Topological Correctness

Bibliography

[1] C. Bajaj, E. Coyle, and K. Lin. Arbitrary topology shape reconstruction from planar cross
sections. Graphical Models and Image Processing, 58(6):524–543, 1996.

[2] C. Bajaj and V. Pascucci. Progressive isocontouring. Technical Report TR 99-36, University
of Texas at Austin, 1999.

[3] Y. Chehadeh, D. Coquin, and P. Bolon. A skeletonization algorithm using chamfer distance
transformation adapted to rectangular grids. In ICPR96, page B71.3, 1996.

[4] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding up isosurface
extraction using interval trees. IEEE Transactions on Visualization and Computer Graphics,
3(2):158–170, 1997.

[5] Fehmi Cirak, Michael Ortiz, and Peter Schröder. Subdivision surfaces: A new paradigm for
thin-shell finite-element analysis. Int. J. Numer. Meth. Engng., 47, 2000.

[6] Laurent D. Cohen and Isaac Cohen. Finite-Element Methods for Active COntour Models
and Balloons for 2D and 3D Images. IEEE Trans. PAMI, 15(11):1131–1147, 1993.

[7] D. Cohen-Or, D. Levin, and A. Solomivici. Three-dimensional distance field metamorphosis.
ACM Transactions on Graphics, 17(2):116–141, 1998.

[8] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. Proceedings of SIGGRAPH 96, pages 303–312, 1996.

[9] Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active implicit surface for computer an-
imation. In Graphics Interface (GI’98) Proceedings, pages 143–150, Vancouver, Canada,
1998.

[10] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Implicit Fairing of Irregular
Meshes using Diffusion and Curvature Flow. In SIGGRAPH 99 Conference Proceedings,
pages 317–324, August 1999.

[11] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Anisotropic Feature-
Preserving Denoising of Height Fields and Bivariate Data. In Graphics Interface’2000 Pro-
ceedings, May 2000.

[12] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, andWerner
Stuetzle. Multiresolution analysis of arbitrary meshes. Proceedings of SIGGRAPH 95, pages
173–182, 1995.

[13] A. B. Ekoule, F. C. Peyrin, and C. L. Odet. A triangulation algorithm from arbitrary shaped
multiple planar contours. ACM Transactions on Graphics, 10(2):182–199, 1991.

[14] H. Freeman. Computer processing of line-drawing images.ACM Computing Surveys, 6(1):57–
97, 1974.

41

42

[15] H. Fuchs, Z. Kedmen, and S. Uselton. Optimal surface reconstruction from planar contours.
Communications of the ACM, 20(10):693–702, 1977.

[16] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. Proceed-
ings of SIGGRAPH 96, pages 209–216, 1996.

[17] S. Gibson. Using distance maps for accurate surface representation in sampled volumes.
In Proceedings of the 1998 Symposium on Volume Visualization, pages 23–30. ACM SIG-
GRAPH, October 1998.

[18] D. Gordon and J.K. Udupa. Fast surface tracking in three-dimensional binary images. Com-
puter Vision, Graphics, and Image Processing, 45(2):196–241, February 1989.

[19] G. Greiner. Variational design and fairing of spline surfaces. Computer Graphics Forum,
13(3):143—154, 1994.

[20] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing for
meshes. Proceedings of SIGGRAPH 99, pages 325–334, 1999.

[21] Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder. Normal meshes. Proceedings
of SIGGRAPH 00, 2000.

[22] Paul Heckbert, editor. Graphics Gems IV. Academic Press, Boston, 1994.

[23] Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification algorithms.
Technical report, Carnegie Mellon University, 1997.

[24] Hugues Hoppe. Progressive meshes. Proceedings of SIGGRAPH 97, pages 189–198, 1997.

[25] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald,
Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface reconstruction. Proceedings
of SIGGRAPH 94, pages 295–302, 1994.

[26] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh
optimization. Proceedings of SIGGRAPH 93, pages 19–26, 1993.

[27] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.
In 1st Conference on Computer Vision, pages 321,331, London, U.K., June 1988.

[28] Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. Progressive geometry compres-
sion. Proceedings of SIGGRAPH 00, 2000.

[29] R. Kimmel and J.A. Sethian. Fast marching method on triangulated domains. In Proceedings
of the National Academy of Science, volume 95, pages 8341–8435, 1998.

[30] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive Multi-
Resolution Modeling on Arbitrary Meshes. In SIGGRAPH 98 Conference Proceedings, pages
105–114, July 1998.

[31] Leif P. Kobbelt, Jens Vorsatz, Ulf Labsik, and Hans-Peter Seidel. A shrink wrapping ap-
proach to remeshing polygonal surfaces. Computer Graphics Forum, 18(3):119–130, 1999.

[32] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes.
Proceedings of SIGGRAPH 96, pages 313–324, 1996.

[33] J.-O. Lachaud. Topologically Defined Iso-surfaces. Research Report 96-20, Laboratoire de
l’Informatique du Parallélisme, ENS Lyon, France, 1996.

[34] J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topology changes
for coarse-to-fine 3D surface extraction. Medical Image Analysis, 3(2):187–207, 1999.

43

[35] F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In Proceedings of the
Fifth Symposium on Solid Modeling and Applications, pages 130–140. ACM, June 1999.

[36] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.
Maps: Multiresolution adaptive parameterization of surfaces. Proceedings of SIGGRAPH
98, pages 95–104, 1998.

[37] Peter Lindstrom. Out-of-core simplification of large polygonal models. In Computer Graphics
(SIGGRAPH ’00 Proceedings), July 2000.

[38] Peter Lindstrom and Greg Turk. Evaluation of memoryless simplification. IEEE Transac-
tions on Visualization and Computer Graphics, 5(2):98–115, 1999.

[39] Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson. A near optimal isosurface ex-
traction algorithm using the span space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, 1996.

[40] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface construction
algortithm. Computer Graphics (Proceedings of Siggraph ‘87, 21(4):163–169, 1987.

[41] R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propagation: A level
set approach. IEEE Trans. PAMI, 17(2):158–175, 1995.

[42] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey.
Medical Image Analysis, 1(2):91–108, 1996.

[43] James V. Miller, David E. Breen, William E. Lorensen, Robert M. O’Bara, and Michael J.
Wozny. Geometrically deformed models: A method for extracting closed geometric models
from volume data.Computer Graphics (Proceedings of SIGGRAPH 91), 25(4):217–226, 1991.

[44] Edwin E. Moise. Geometric Topology in Dimensions 2 and 3. Springer-Verlag, New York,
USA, 1977.

[45] B. Payne and A. Toga. Distance field manipulation of surface models. IEEE Computer
Graphics and Applications, 12(1):65–71, 1992.

[46] Hong Qin, Chhandomay Mandal, and Baba C. Vemuri. Dynamic catmull-clark subdivision
surfaces. IEEE Transactions on Visualization and Computer Graphics, 4(3):215–229, 1998.

[47] Peter Schröder and Wim Sweldens. Spherical wavelets: Efficiently representing functions on
the sphere. In Computer Graphics (SIGGRAPH ’95 Proceedings), 1995.

[48] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
Cambridge, UK, 1999.

[49] Yoshihisa Shinagawa, Yannick L. Kergosien, and Tosiyasu L. Kunii. Surface coding based
on morse theory. IEEE Computer Graphics and Applications, 11(5):66–78, 1991.

[50] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a reeb graph automatically from
cross sections. IEEE Computer Graphics and Applications, 11(6):44–51, 1991.

[51] Barton T. Stander and John C. Hart. Guaranteeing the topology of an implicit surface poly-
gonization for interactive modeling. In Computer Graphics (SIGGRAPH ’97 Proceedings),
pages 279–286, August 1997.

[52] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.
ACHA, 3(2):186–200, 1996.

[53] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J.
Math. Anal., 29(2):511–546, 1997.

44

[54] Gabriel Taubin. A Signal Processing Approach to Fair Surface Design. In SIGGRAPH 95
Conference Proceedings, pages 351–358, August 1995.

[55] A. Verroust and F. Lazarus. Extracting skeletal curves from 3d scattered data. The Visual
Computer, 16(1):15–25, 2000.

[56] Rüdiger Westermann, Lief Kobbelt, and Thomas Ertl. Real-time exploration of regular vol-
ume data by adaptive reconstruction of isosurfaces. The Visual Computer, 15(2):100–111,
1999.

[57] R. Whitaker and D. Breen. Level-set models for the deformation of solid objects. In Proceed-
ings of the Third International Workshop on Implicit Surfaces, pages 19–35. Eurographics
Association, June 1998.

[58] Ross T. Whitaker and David T. Chen. Embedded active surfaces for volume visualization.
In SPIE Medical Imaging VIII, pages 340–352, 1994.

[59] J. Wilhelms and A. Vangelder. Octrees for faster isosurface generation. ACM Transactions
on Graphics, 11(3):201–227, 1992.

[60] Denis Zorin and Peter Schröder, editors. Subdivision for Modeling and Animation. Course
Notes. ACM SIGGRAPH, 1999.

[61] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolution mesh editing.
Proceedings of SIGGRAPH 97, pages 259–268, 1997.

