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Abstract

We present a new algorithm for material boundary interface reconstruction from data sets

containing volume fractions. We transform the reconstruction problem to a problem that an-

alyzes the dual data set, where each vertex in the dual mesh has an associated barycentric

coordinate tuple that represents the fraction of each material present. After constructing the

dual tetrahedral mesh from the original mesh, we construct material boundaries by mapping

a tetrahedron into barycentric space and calculating the intersections with Voronoi cells in

barycentric space. These intersections are mapped back to the original physical space and tri-

angulated to form the boundary surface approximation. This algorithm can be applied to any

grid structure and can treat any number of materials per element/vertex.
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FIGURE 1: Grid and dual grid: The original grid (dashed lines) is replaced by a dual grid (solid lines), obtained by

connecting the centers of the original elements. Barycentric coordinates are associated with each vertex of the dual

grid. The barycentric coordinates represent the fractions of each material present in the original grid cells.

1. INTRODUCTION

There are numerous instances in which it is necessary to reconstruct or track the boundary

surfaces (or “interfaces”) between multiple materials that commonly result from finite element

simulations. Multi-fluid Eulerian hydrodynamics calculations require geometric approxima-

tions of fluid interfaces to form the equations of motion to advance these interfaces correctly

over time. In typical simulations, the grid cells (finite elements) contain fractional volumet-

ric information for each of the materials. Each cellC of a grid S has an associated tuple

(�1; �2; :::; �m) that represents the portions of each ofm materials in the cell,i.e., �i repre-

sents the fractional part of materiali. We assume that�1+�2+ � � �+�m = 1. The problem is

to find a (crack-free) piecewise two-manifold separating surface approximating the boundary

surfaces between the various materials.

To solve this problem, we consider the dual data set constructed from the given data set, see

Figure 1. In the dual grid, each cell is represented by a point (typically the center of the cell),

and each point is associated with tuple(�1; �2; :::; �m), wherem is the number of materials

present in the data set and�1+�2+ � � �+�m = 1. Thus, the boundary surface reconstruction

problem reduces to constructing the material interfaces for a grid where each vertex has an as-

sociated barycentric coordinate representing the fractional parts of each material at the vertex.

We use this “barycentric coordinate field” to approximate the material boundary surfaces.

Important applications of this problem occur for all grid types,e.g., when the data points lie
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on a rectilinear grid, curvilinear grid, or an unstructured grid. We therefore develop a solution

strategy that is tailored to tetrahedral grids, as all other types of grid structures can be converted

to this form, see Nielson [1]. In the case of rectilinear, curvilinear, or even hybrid polyhedral

meshes, we preprocess a given grid by subdividing each polyhedral cell into tetrahedra, and

apply our algorithm to the resulting tetrahedral grid.

If we have a data set containingm materials, we process each tetrahedral cell of the grid

and map our tetrahedral elements into anm simplex representingm-dimensional barycentric

space. Next, we calculate intersections with the edges ofVoronoi cells[2] in them-simplex.

These Voronoi cells represent regions, where one material “dominates” the other materials

locally. We map these intersections back to the original space and triangulate the resulting

points to obtain the boundary.

Section 2 describes previous work dealing with material boundary surfaces. Section 3

describes the two-material case, which can be viewed as a simple extension of a marching

cubes/tetrahedra algorithm [3, 4, 5]. Section 4 describes the three-material case. Here, material

boundaries are calculated in barycentric space (a triangle) and mapped back to the original

data set. The generalm-material case is described in Section 5. In this case, intersections

are calculated in a barycentricm-simplex and mapped back to the tetrahedra in the data set.

Implementation details are described in Section 6. Section 7 presents results for various data

sets, and Section 8 provides conclusions and describes possible future work.

2. RELATED WORK

The bulk of research in material interface reconstruction has been conducted in computational

fluid dynamics (CFD) and hydrodynamics, where researchers are concerned with the move-

ment of material boundaries during a simulation.

The Simple Line Interface Calculation (SLIC) algorithm by Noh and Woodward [6] is one

of the earliest, describing a method for geometric approximation of fluid interfaces. Their al-

gorithm is used in conjunction with hydrodynamics simulations to track the advection of fluids.

Working only with two-dimensional grids, their algorithm produces an interface consisting of

line segments, constructed parallel or perpendicular to a coordinate axis. Multi-fluid cells can

be handled by grouping fluids together, calculating the interface between the groups, subdivid-

ing the groups, and iterating this process until interfaces are constructed. Since this algorithm

only uses line segments that are parallel to the coordinate axes, the resulting interfaces are

generally discontinuous.
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The algorithm of Youngs [7] also operates on two-dimensional grids and uses line segments

to approximate interfaces. In this algorithm, the line segments are not necessarily perpendicu-

lar or parallel to a coordinate axis. Instead, the neighbor cells of a cellC are used to determine

the slope of a line segment approximating an interface inC. The exact location of the line

segment is adjusted to preserve the volume fractions in a cell. Multiple materials are treated by

grouping materials and determining interfaces on a two-material basis. Again, the interfaces

produced by this method are generally discontinuous.

The algorithm of Gueffier [8] requires an estimate of the normal vector to the interface

in order to reconstruct the interface. He utilizes differencing or least-squares methods to ap-

proximate this normal and adjusts a line segment perpendicular to this normal to generate

a boundary surface in a cell. The surface is generally discontinuous, and it is unclear how

multiple materials can be handled, or how one could generalize the algorithm to the case of

three-dimensional grids.

Pilliod and Puckett [9] compare various volume-of-fluid interface reconstruction algo-

rithms, including SLIC, noting differences in the surfaces reconstructed and demonstrating

first-order or second-order accuracy. Their goal is to reproduce a linear interface.

Nielson and Franke [10] have presented a method for calculating a separating surface in

an unstructured grid where each vertex of the grid is associated with one of several possi-

ble classes. Their method generalizes the marching cubes/tetrahedra algorithm, but instead of

using a strict binary classification of vertices, it allows any number of classes. Edges in tetra-

hedral grids whose endpoints have different classifications are intersected by the separating

surface. Similarly, the faces of a tetrahedron whose three vertices are classified differently,

are assumed to be intersected by the surface in the middle of the face. When all four vertices

of a tetrahedron have different classifications, the boundary surface intersects in the interior of

the tetrahedron. The resulting “mid-edge”, “mid-face” and “mid-tetrahedron” intersections are

triangulated to form the surface.

Our algorithm generalizes the above schemes. We utilize a grid that has a barycentric co-

ordinate associated with each vertex. This allows us to generate material boundaries directly

from the intersections calculated in “barycentric space.” Our algorithm handles multiple ma-

terials and can reconstruct layers and “Y-type” (non-manifold) interfaces with equal ease. Our

algorithm does not rely on application-specific knowledge of hydrodynamics or other simula-

tion codes, but solves the problem from a purely mathematical viewpoint.
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FIGURE 2: Barycentric triangle.

3. THE TWO-MATERIAL CASE

Consider a gridS, where each vertex ofS has an associated barycentric coordinate�. In the

case of two materials,� is the two-tuple� = (�1; �2) where�1 + �2 = 1. In this case, we

define the material boundary to be the set of points where�1 = �2 =
1

2
.1 We only need to find

the point on each edge where�1 = �2 = 1

2
, using linear interpolation. By computing these

points on all edges of a cell, we can use a marching tetrahedra implementation [5] to draw the

boundary surface in a cell when only two materials are present. (If only one material is present

in a cell, no boundary surface exists).

The two-material case reduces to an isosurface calculation, determining the isosurface

�1 =
1

2
, which can easily be implemented by a marching tetrahedra method.

4. THE THREE-MATERIAL CASE

In the three-material case, each vertex has an associated 3-tuple� = (�1; �2; �3), where

�1 + �2 + �3 = 1. Here,�1 is the fraction of materialm1, �2 is the fraction ofm2, and�3

is the fraction ofm3, respectively. The coordinate(�1; �2; �3) lies on the equilateral triangle

with vertices(1; 0; 0), (0; 1; 0), and(0; 0; 1), as shown in Figure 2. We partition this triangle

into three regions, defined by theVoronoi cellsV1, V2, andV3, see Figure 3. The Voronoi cells

Vj are bounded by the edges of the triangle, and the three line segmentsl12, l13, andl23, where

1The rationale behind this decision is that an infinitesimally small cell whose center is on the boundary will contain
approximately half of each material.
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FIGURE 3: Partitioning the barycentric triangle into regions. The pointc is the point( 1
3
; 1
3
; 1
3
), the center of the

triangle.l12, l13, andl23 are the line segments bounding the Voronoi cellsVj in the interior of the triangle.

�1 = �2 and�3 �
1

3
, �1 = �3 and�2 �

1

3
, or�2 = �3 and�1 �

1

3
, respectively.

For two-dimensional triangular grids, we map the associated barycentric coordinates of a

triangleT onto a triangleT 0 in barycentric space. We use the intersections of the edges ofT 0

with the edges of the Voronoi cells in the barycentric triangle to define material interfaces in

T 0. These intersections are then mapped back to points inT , using the same linear parameters

to determine the intersections on the edges ofT . There are three cases:

� The triangleT 0 does not intersectl12, l13, or l23. In this case, we assume that no material

boundary exists inT .

� The triangleT 0 intersects at least one of the line segmentsl12, l13, or l23, and the center

c of the barycentric triangle does not lie insideT 0. In this case, we calculate intersec-

tions on the edges ofT , corresponding to the intersections ofT 0 with l12, l13, andl23,

respectively. (The triangleT 0 may intersect at most two of these lines.) The material

boundary line segments insideT are then defined as the line segments that connect the

corresponding edge intersections inT . Figures 4a and 4c illustrate these cases.

� The pointc lies insideT 0. In this case, we calculate three edge intersections forT ,

corresponding to the intersections ofT 0 with l12, l13, andl23, respectively, and a point

in the interior ofT , corresponding to the pointc in T 0. The material boundary line

segments are defined as the three lines connecting the edge intersections and the face

point. Figure 4b illustrates this case.

If one of the�i values is zero for each of the three vertices of a triangle, then all points map

to an edge of the barycentric triangle. Thus, the situation reduces to the two-material case. If

only one material is present at all three vertices, then no intersections are calculated.
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FIGURE 4: Mapping intersections from barycentric space to the triangleT : The images on the left show the triangle

T 0 in barycentric space, and the images on the right show the material boundary line segments mapped from barycentric

space to the original triangleT in physical space.
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For three-dimensional tetrahedral grids, we use the associated barycentric values of the

vertices of each face of a tetrahedronT and map the tetrahedron to an imageT 0 of T in

barycentric space. Intersections are calculated separately for each face ofT 0 and mapped back

to T . There are three cases:

� No edge of the tetrahedronT 0 intersects the line segmentsl12, l13, or l23. In this case, no

material boundaries exist in the tetrahedronT .

� The edges of the tetrahedronT 0 intersect at least one of the line segmentsl12, l13, or l23,

but the point(1
3
; 1
3
; 1
3
), the center of the barycentric triangle, does not lie inside any of the

faces ofT 0. In this case, we calculate the intersection line segments for each triangular

face ofT and determine a triangulation from these segments by following the marching

tetrahedra algorithm [5]. Figures 5a and 5b illustrate the possible cases.

� The center point of the barycentric triangle lies inside two faces ofT 0. In this case,

two faces have a single material boundary line segment connecting two edge intersection

points, and two faces have three material boundary line segments meeting in the interior

of two faces. We map the intersections back to the tetrahedronT , using linear interpo-

lation. Using the material boundary line segments for each face, and the line segment

connecting the two points in the interior of two faces ofT , we can determine a valid

triangulation of the boundary surface. Figure 5c illustrates this case.

5. THE GENERAL CASE

In the case of four materials, each vertex has an associated barycentric coordinate given by the

four-tuple� = (�1; �2; �3; �4), where�1+�2+�3+�4 = 1. By considering the tetrahedron

having vertices(1; 0; 0; 0), (0; 1; 0; 0), (0; 0; 1; 0), and(0; 0; 0; 1) in four-dimensional space,

we can construct a partition of this tetrahedron similarly to the three-material case. Again, we

use the Voronoi cells for the decomposition of the barycentric tetrahedron. The boundaries of

these cells include parts of the faces of the tetrahedron and six planar pieces, which are defined

by �1 = �2, �1 = �3, �1 = �4, �2 = �3, �2 = �4, and�3 = �4. This Voronoi partition is

shown in Figure 6a.

For two-dimensional grids, we map the four-dimensional barycentric coordinates associ-

ated with the vertices of a triangleT into a triangleT 0 in barycentric space. We use a clipping

algorithm to generate the intersections in the triangleT 0, clipping against the six planes defin-

ing the boundaries of the Voronoi cells of the barycentric tetrahedron. The tetrahedron is
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FIGURE 5: Examples of material boundary surface determination for tetrahedral grids.
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(a) (b)

FIGURE 6: Voronoi cell decomposition in the four-material case: The figure illustrates a three-dimensional projection

of the barycentric tetrahedron from four-dimensional space. The tetrahedron is segmented into four Voronoi cells in

(a). In (b), a tetrahedron, mapped from physical space, is shown inside the barycentric tetrahedron.

stored in a binary space partitioning (BSP) tree, and we apply the clipping algorithm described

by Samet [11] . Once the intersections are determined by the clipping algorithm, the material

boundary line segments can be determined for the triangleT .

For three-dimensional tetrahedral grids, we use a similar clipping algorithm for the image

T 0 of a tetrahedronT . This enables us to calculate the boundary surfaces inside the tetrahedron

T 0, which we then map back to the tetrahedronT in physical space.

In the general case ofm materials, we map a tetrahedronT to a tetrahedronT 0 in anm-

simplex in barycentric space. Them-simplex is partitioned into Voronoi cells whose bound-

aries consist of the faces of them-simplex and the
�
m
2

�
hyperplanes defined by�i = �j , where

i 6= j and1 � i; j � m. The material boundaries forT 0 are calculated by using a clipping

algorithm and then are mapped back to physical space to form the material boundaries inside

T . We utilize a BSP algorithm to perform the clipping.
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6. DISCUSSION

The algorithm runs in effectively the same time as does the marching cubes/tetrahedra algo-

rithm. We traverse the cells of a grid and calculate, for each cell, a polygonal representation of

the material boundaries. Most grid cells in common examples contain only one material, and

boundaries do not exist in these cells.

We note that the algorithm can miss material boundaries in tetrahedra. In any isosurface-

type algorithm, it is possible for the isosurface to enter a tetrahedron, but only intersect one

edge. In this case, the algorithm cannot detect the material boundary from only the information

at the vertices.

In the three-material case, we have chosen the pointc = (1
3
; 1
3
; 1
3
) as the “center” of

the barycentric triangle. This assumes that there are three distinct sectors in the barycentric

triangle, subdividing the triangle in a “Y” fashion, and that a cell of infinitesimally small

size contains about one-third of each material in the cell. This is not always the case. For

example, consider a “T intersection,” where any small cell would contain one-half of one

material and one-quarter of the other two materials. We can adjust our segmentation of the

barycentric triangle so that the pointc is at an arbitrary location in the triangle, and the edges

that determine the intersections can be adjusted appropriately. This can be done by sampling

in a larger neighborhood of a specific cell to understand how to weigh the materials about the

“Y point.”

In the four-material case, the center of the tetrahedron can also be adjusted. However,

this implies that the “center” vertices on the faces must also be adjusted so that the separating

surfaces remain planar. In them-material case, similar considerations also hold when adjusting

the center of them-simplex.

Our algorithm can be considered as a direct generalization of Nielson’s and Franke’s

algorithm [10]. Each vertex of a gridS has an associated barycentric coordinate� =

(�1; �2; :::; �m), and by restricting material fractions such that exactly one�i = 1, we obtain

the case where each vertex is only associated with one material. In this case, our algorithm

produces the results produced by the Nielson-Franke algorithm.

7. RESULTS

We have implemented this algorithm and used it to generate material interfaces for a variety of

data sets. Figure 7 illustrates the material interfaces for a data set consisting of three materials.
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FIGURE 7: The boundary surfaces of two materials formed as concentric spherical layers.

The boundary of the region containing material 1 has a spherical shape, and the other two

material regions are formed as concentric layers around material 1 – forming two material

interfaces. The original grid is rectilinear-hexahedral consisting of64 � 64 � 64 cells. We

constructed the dual grid, and then split each dual cell into six tetrahedra, see Nielson [1],

creating 1,572,864 tetrahedra. Approximately 30% of the tetrahedra containing the material

boundaries contain two boundary surfaces.

Figure 8 shows the material interfaces for a three-material data set of a simulation of a ball

striking a plate consisting of two materials. The original data set rectilinear-hexahedral and

has a resolution of53� 23� 23 cells. Again, we created the dual grid, and split each dual cell

into six tetrahedra, creating 28,037 tetrahedra. Four instances of the data set are shown.

Figure 9 illustrates the material interfaces for a human brain data set. The original grid

is rectilinear-hexahedral containing256 � 256 � 124 cells. Each cell contains a probability

tuple giving the probability that each material is present at the point. The resulting dual data

set contains over eight million tetrahedra.

8. CONCLUSIONS

We have presented a new algorithm for material boundary surface reconstruction from data

sets containing material volume-fraction information. We transform a given grid to a dual

grid, where each vertex has an associated barycentric coordinate that represents the fractions
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FIGURE 8: Simulation of a ball striking a plate consisting of two materials. The picture in the upper-left corner shows

the initial configuration, and the following sequence of pictures shows the boundary surfaces as the ball penetrates the

two-material plate.
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(a) (b)

FIGURE 9: Illustrations of a brain data set. The material boundary surfaces are shown in red, green and yellow. The

polygons forming the material boundaries were clipped to show the interior of the data set. Two views of the material

boundary surfaces, rotated differently, are shown in (a) and (b).

of each material present. After tetrahedrizing the dual grid, we construct the material interfaces

by mapping each tetrahedron to barycentric space, calculating the intersections with Voronoi

cells in barycentric space. These intersection points are mapped back to physical space and

triangulated to form the resulting boundary surface.

The algorithm can treat any number of materials per cell, and since it is based on tetrahedral

grids, it can be used with any grid structure.

Concerning future work, we would like to insert a “measure-and-adjust” feature to the

algorithm. Once an initial boundary surface approximation is calculated, we calculate (new)

volume fractions for cells directly from this boundary surface. This will enable us to calculate

the difference between the original volume fractions and the volume fractions as implied by

our initial boundary surface approximation. It is then possible to adjust our material interfaces

to minimize the volume fraction deviations.

We also plan to extend this algorithm to multidimensional grids.
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