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Figure 1: Human brain pathways recovered from DT-MRI data using the oriented tensor reconstruction algorithm

ABSTRACT

In this paper we develop a new technique for tracing anatomical
fibers from 3D tensor fields. The technique extracts salient tensor
features using a local regularization technique that allows the algo-
rithm to cross noisy regions and bridge gaps in the data. We applied
the method to human brain DT-MRI data and recovered identifiable
anatomical structures that correspond to the white matter brain-fiber
pathways. The images in this paper are derived from a dataset hav-
ing 121x88x60 resolution. We were able to recover fibers with less
than the voxel size resolution by applying the regularization tech-
nique, i.e., using a priori assumptions about fiber smoothness. The
regularization procedure is done through a moving least squares fil-
ter directly incorporated in the tracing algorithm.

CR Categories: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications, I.6 [Computing Methodologies]: Simula-
tion and Modeling, J.3 [Computer Application]: Life and Medical
Sciences;
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1 INTRODUCTION

Directional tracking through vector fields has been a widely ex-
plored topic in visualization and computer graphics [5, 18, 19]. The
standard streamline technique advects massless particles through
the vector field and traces their location as a function of time. Anal-
ogously, a hyper-streamlines approach has been proposed to trace

changes through tensor fields, following the dominant eigenvector
direction [7]. These methods work best on very “clean” datasets,
which are usually produced as a result of simulations; these meth-
ods typically do not handle raw experimental data very well, due to
noise and resolution issues.

Recently, attention has been given to the visualization of 2D
[12] and 3D [10] diffusion tensor fields from DT-MRI data. Al-
though these methods provide nice visual cues, they do not attempt
to recover the underlying anatomical structures, which are the white
matter fiber tracts (bundles of axons) found within the brain1.

Several previous endeavors have been made for recovering the
underlying structure by extracting fibers through the application of
modified streamline algorithms. Examples include tensor-lines [20]
and stream-tubes [23, 6]. Direct fiber tractography method has been
developed in [2]. Other work suggests separate regularizaton of
eigenvalues and eigenvectors in the tensor fields before fiber trac-
ing [14]. These algorithms have had some success in recovering
the underlying structures. Some problems still remain due to the
complexity of the tensor field, voxelization effects and the signifi-
cant amount of noise that is omnipresent in experimental data. The
most recent work concentrated on deriving a continuous tensor field
approximation [15] and using signal processing techniques (for ex-
ample, Kalman filtering [8]) for cleaning up the data.

The goal of this paper is to develop more stable tensor tracing
techniques which allow the extraction of the underlying continuous
anatomical structures from experimental diffusion tensor data. The
proposed technique uses a moving local regularizing filter that al-
lows the tracing algorithm to cross noisy regions and gaps in the
data while preserving directional consistency.

1The white matter constitutes the “wiring” of the brain; the gray matter
constitutes the computational components of the brain.
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2 METHOD

2.1 Data
Diffusion tensor magnetic resonance imaging (DT-MRI) [1] is a
technique used to measure the anisotropic diffusion properties of
the water molecules found within biological tissues as a function
of the spatial position within the sample. Due to differing cell
shape and cell membrane properties, the diffusion rates of the water
molecules are different in different directions and locations.

For instance, neural fibers are comprised mostly of bundles of
long cylindrical cells that are filled with fluid and are bounded by
less-water-permeable cell membranes. The average diffusion rate
(at a spatial location) is fastest in the three-dimensional axis direc-
tion along the length of the neuron cells, since more of the water
molecules are free to move in this direction. The average diffusion
rate is slowest in the two transverse directions, where the cell mem-
brane interferes, reducing and slowing down the movement of the
water molecules.

Other parts of the brain are primarily comprised of fluid without
cell membranes, such as the ventricles. Here the average diffusion
rate is larger and more uniform (almost the same in all directions).

The diffusion properties can be represented with a symmetric
second order tensor - 3x3 matrix:

T =

(
T xx T xy T xz

T yx T yy T yz

T zx T zy T zz

)
. (1)

The 6 independent values (the tensor is symmetric) of the tensor
elements vary continuously with spatial location.

The 3-D local axis direction of the neuron fibers will correspond
to the dominant eigenvector of the tensor. There should be one large
eigenvalue, and two small eigenvalues. This can be seen from the
physical interpretation of the diffusion tensor, which can be thought
of as a vector-valued function whose input is the local 3-D concen-
tration gradient and whose output is the 3-D directional vector flux2

of the water molecules. The function is evaluated by multiplying
the 3x3 matrix by the 3x1 concentration gradient, producing the
3x1 vector flux of the water molecules. Water will diffuse fastest in
the direction along the axis of the neurons and slowest in the two
transverse directions.

For the ventricles, a dominant eigenvector should not exist: the
three eigenvalues of the tensor should have roughly the same value.
Water will diffuse roughly at the same speed in all directions.
Hence, we can use the diffusion tensor to distinguish tissues with a
primary diffusion axis from parts that do not.

In this paper, the experimental dataset contains sampled values
of the diffusion tensor on a regularly spaced grid of 121x88x60
(cubic) voxels. We will denote these given tensor values as
Tαβ

ijk, where α and β are the three dimensional tensor components
{xx, xy, .., zz}, and i, j, k are traditional integer indexes into the
regular grid volume. Also, when no upper indexes are provided,
the operations are assumed to be performed on the entire tensor
component-wise T ≡ Tαβ , i.e., on each of the six independent
values of the tensor.

2.2 Tensor Classification
Geometrically, a diffusion tensor can be thought of as an ellipsoid
with its three axes oriented along the tensor’s three perpendicu-
lar eigenvectors, with the three semi-axis lengths proportional to
the square root of eigenvalues of the tensor - mean diffusion dis-
tances [1].

2Vector flux measures a quantity per unit area per time, in the direction
perpendicular to the area

Figure 2: Sagittal and axial slices of anisotropy measure c	 of the
dataset. The lighter regions correspond to stronger anisotropy areas
found in the white matter. See Eq. (4).

In general, eigenvalues λ and eigenvectors e can be found as a
solution to the eigen-equation

Tei = λiei (2)

Since the tensor is symmetric, its eigenvalues are always real num-
bers, and the eigenvectors are orthogonal and form a Cartesian vec-
tor basis {e1, e2, e3}. This basis (frame of reference) can be used
to represent the tensor in diagonal form and to specify directions
with respect to the “world coordinate” system

T = {e1, e2, e3}
(

λ1 0 0
0 λ2 0
0 0 λ3

)
{e1, e2, e3}T (3)

Using the ellipsoidal interpretation, one can classify the diffusion
properties of tissue according to the shape of the ellipsoids, with
extended ellipsoids corresponding to regions with strong linear dif-
fusion (long, thin cells) flat ellipsoids to planar diffusion, and spher-
ical ellipsoids to regions of isotropic media (such as fluid-filled
regions like the ventricles). The quantitative classification can be
done through the coefficients c	, cp, cs (linear, planar, spherical)
proposed in [22, 21]:

c	 =
λ1 − λ2

λ1 + λ2 + λ3
(4)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(5)

cs =
3λ3

λ1 + λ2 + λ3
(6)

These coefficients are normalized to the range of [0..1] and could
be interpreted as barycentric coordinates. For example, close to 1
values of c	 chooses the regions with strong linear (λ1 >> λ2 ≈
λ3) diffusion.

2.3 Data Interpolation
We start by reconstructing a continuous tensor field in the volume
through trilinear interpolation. In this scheme the value of a ten-
sor at any point inside the voxel is a linear combination of the 8
values at its corners and is completely determined by them. Since
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Figure 3: Comparison of non-filtered (left image) and MLS filtered
(right image) fiber tracts. Note the smoother and more regular be-
havior of the filtered fibers

the coefficients of this linear combination are independent of the
tensor indexes, the linear combination of the tensors can be done
component-wise.

T(x, y, z) = Tijk (1 − x)(1 − y)(1 − z)+ (7)

+ Ti+1,jk x(1 − y)(1 − z) + Ti,j+1,k (1 − x)y(1 − z)

+ Tij,k+1 (1 − x)(1 − y)z + Ti+1,j,k+1 x(1 − y)z

+ Ti,j+1,k+1 (1 − x)yz + Ti+1,j+1,k xy(1 − z)

+ Ti+1,j+1,k+1 xyz

We can use trilinear component-wise interpolation because sym-
metric tensors form a linear subspace in the tensor space: any linear
combination of symmetric tensors remains a symmetric tensor, i.e.,
symmetric tensors are closed under linear combination (the mani-
fold of symmetric tensors is not left). Component-wise interpola-
tion is sufficient for our purposes; more sophisticated interpolation
methods, however, would better preserve the eigenvalues along an
interpolation path [14].

On the other hand, component-wise interpolation of eigenvectors
and eigenvalues themselves would not lead to correct results, since
a linear interpolation between two unit vectors is not a unit vector
anymore – the interpolated eigenvector value would leave the man-
ifold of unit vectors. In addition, there can be a correspondence
problem in the order of the eigenvalues.

Various types of tensor interpolation are discussed, for example,
in [11].

2.4 Regularization: Moving Least
Squares

To perform a stable fiber tracing on experimental data, the data
needs to be filtered. A simple global box or Gaussian filter will
not work well, since it will blur (destroy) most of the directional in-
formation in the data. We also want the filter to be adjustable to the
data and be able to put more weight on the data in the direction of
the traced fiber, rather than between fibers. We also want the filter
to have an adjustable local support, which can be modified accord-
ing to the measure of the confidence level in the data. Finally, we
want the filter to preserve sharp features where they exist (ridges),
but eliminate irrelevant noise if it can. Thus, to do this, the behav-
ior of the filter at some voxel in space will depend on the “history
of the tracing”, (where it came from), so the filtering needs to be
tightly coupled with the fiber tracing process.

Due to the above reasons, we chose to use a moving least squares
(MLS) approach. The idea behind this local regularization method
is to find a low degree polynomial which best fits the data, in the
least squares sense, in the small region around the point of inter-
est. Then we replace the data value at that point by the value of
the polynomial at that point T(xp, yp, zp) → T̄p. Thus, this is a

Figure 4: Coordinate systems used by linear transformation Eq.
(10) to change from {x, y, z} coordinates in Eq. (8) into {ζ, η, θ}
coordinates in Eq. (11).

data approximation rather than an interpolation method. The mea-
sure of “fitness” will depend on the filter location, orientation and
the history of motion. The one dimensional MLS method was first
introduced in signal processing literature [9, 16].

We start the derivation by writing a functional E that measures
the quality of the polynomial fit to the data in the world coordinate
system. To produce E, we integrate the squared difference between
F, which is an unknown linear combination of tensor basis func-
tions, and T, the known continuous trilinear interpolated version of
given tensor data. We integrate over all of 3D space and use weight-
ing function G to create a region of interest centered at chosen 3-D
point rp with coordinates (xp, yp, zp):

E(rp) =

∫ ∞

−∞
G(r − rp;Tp))[F(r − rp) − T(r)]2 dr3 (8)

The second argument Tp (value of the tensor at the center point) of
the weighting function G determines the weighting function’s size
and orientation.

The square of the tensor difference in (8) is a scalar, defined
through the double-dot (component wise) product [4, 3]:

(F − T)2 = (F − T) : (F − T) = (9)∑
αβ

(Fαβ − Tαβ)(Fβα − Tβα) =
∑
αβ

(Fαβ − Tαβ)2

Within the functional E(), the tensor function F is a linear com-
bination of tensor basis functions we will use to fit the data. The
function G is the moving and rotating anisotropic filtering window,
centered at the point rp (See Figure 4.)

We felt it was more convenient to perform the computations in
the local frame of reference connected to a particular filtering win-
dow, rather than in world coordinates. It is straightforward to trans-
form equation (8) to a local frame of reference using a change of
variables involving the following translation and rotation transfor-
mation:(

ζ
η
θ

)
= R−1

p

(
x − xp

y − yp

z − zp

)
= R−1

p (r − rp) (10)

where Rp = {e1, e2, e3} is a rotation matrix formed by the eigen-
vectors of the tensor Tp at the point rp. Then, in the local frame of
reference,{ζ, η, θ}, the equation (8) becomes

E =

∫
V

[F(Rp{ζ, η, θ}) − T(rp + Rp{ζ, η, θ})]2

G(Rp{ζ, η, θ};Tp) dζdηdθ (11)
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Figure 5: Oriented moving least squares (MLS) tensor filter. The
smallest ellipsoids represent the interpolated tensor data; the largest
ellipsoid represents the domain of the moving filter g() described in
Eq. (8); the dark ellipsoid represents the computed filtered tensor.
The filter travels continuously along the fiber line; grid shows initial
sampling of the tensor data.

Integration is performed over the parts of space where G has been
chosen to be nonzero.

We now instantiate F and G in the local (rotated and trans-
lated) frame of reference. These can be thought of as functions of
{ζ, η, θ} only, since Rp is independent of the integration variables.

For F we will use a polynomial function of degree N in the
variables ζ, η and θ:

F(Rp {ζ, η, θ}) ≡ f(A; ζ, η, θ) (12)

where
f(A; ζ, η, θ) =

∑
mnp

Amnp ζmηnθp (13)

To instantiate G, we also use a function of variables ζ, η and θ:

G(Rp{ζ, η, θ};Tp) ≡ g(ζ, η, θ,Tp) (14)

The function g() is clipped to zero at some low threshold value to
create a finite integration volume.

Substituting expressions (13) and (14) into the equation (11) we
get:

E =

∫
V

[
∑
mnp

Amnp ζmηnθp − T(rp + Rp{ζ, η, θ})]2

g(ζ, η, θ;Tp) dζdηdθ (15)

The least squares fitting procedure reduces to minimizing func-
tional E with respect to tensor elements Aαβ

rst. To do this we dif-
ferentiate the expression (11) with respect to each one of the A
coefficients, equate the result to zero, and linearly solve to find the
unknown A’s:

∂E/∂Aαβ
rst = 0 (16)

This gives us the following linear system for the unknown A’s:∑
mnp

Mmnp,rstA
αβ
mnp = Bαβ

rst (17)

where Mmnp,rst are elements of the matrix; Brst are right hand
side values of the equation:

Mmnp,rst =

∫
V

ζm+rηn+sθp+t g(ζ, η, θ;Tp) dζdηdθ (18)

Bαβ
rst =

∫
V

Tαβ(rp + Rp{ζ, η, θ})ζrηsθt

g(ζ, η, θ; Tp) dζdηdθ (19)

These integrals can be computed numerically or any specific choice
of g().3

The equation (17) is just a “regular” linear system to find the
A’s. Written out component-wise for the tensors A, B and M
with contracted indexing it becomes

Aαβ
mnp ≡ Aα+3β

m+Nn+N2p
= aα+3β

j (20)

Bαβ
rst ≡ Bα+3β

r+Ns+N2t
= bα+3β

i

Mmnp,rst ≡ Mm+Nn+N2p,e+Ns+N2t = Mij

This system is also known as a system of “normal equations” for
the least squares optimization∑

j

Mija
α+3β
j = bα+3β

i (21)

The optimization procedure allows as to compute the polyno-
mial coefficients for best approximation of the tensor data within a
region of a chosen point by a chosen degree of polynom. Then the
value at the point rp, which is the origin in the {ζ, η, θ} frame of
reference, can be easily calculated using (13):

T̄p =
∑
mnp

Amnp ζmηnθp|ζ=η=θ=0 = A000 (22)

It is important to notice, that the value of A000 depends on the order
of polynomial used for fitting.

We also notice, that using a zero-order polynomial approxima-
tion (i.e., N = 0) is equivalent to finding a weighted average of a
tensor function within the filter volume:

T̄p =

∫
V

T(rp + Rp{ζ, η, θ}) g(ζ, η, θ;Tp) dζdηdθ (23)

The major advantage of the higher order approximation is that it
better preserves the absolute magnitude of the feature in the ar-
eas which have maxima or minima, compared to simple averaging,
which tends to lower the height of the maxima and the depth of the
minima.

Finally, for the filter function g(), we have chosen an anisotropic
Gaussian weighting function G with axes aligned along the eigen-
vector directions and ellipsoidal semi-axes (the radii) proportional
to the square root of corresponding eigenvalues.

g(ζ, η, θ;Tp) =
1
V

exp (−(ζ/(σa))2 − (η/(σb))2 − (θ/(σc))2)
(24)

with

a =
√

λ1[Tp], b =
√

λ2[Tp], c =
√

λ3[Tp] (25)

The variable lambda1 is the largest eigenvalue of the diffusion ten-
sor at the location rp. The value σ is a parameter that can enlarge or
contract all of the ellipsoid radii. It is important to notice, that since
we are trying to trace fibers, i.e., to extract structures with a very
strong directional information, the filter is typically much more in-
fluenced by the data points “in front” and “behind” but not on the
side. Thus, usually, a >> b, c.

Also note that in the equation for the filter function g() (25), we
have a choice of values for the diffusion tensor Tp. In our algorithm
we use the filtered tensor value from the previous time step, T̄p−1,
to determine the weighting function ellipsoid to use for the current
time step.

3For Gaussian filter g(), the integral in the equation (18) can be expanded
over the entire domain and evaluated analytically using Gamma functions
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Figure 6: Height plot for anisotropy measure (“mountain” function)
described in Section 2.6 for an axial slice of the data. The higher
portions, red, corresponds to stronger anisotropy. See Eq. (30).

2.5 Streamline Integration
The fiber tract trajectory s(τ) can be computed as a parametric 3D
curve through linear integration of the filtered principal eigenvector:

s(τ) =

∫ τ

0

ē1(t)dt (26)

where t is a parameter of the curve and has corresponding t =
t(x, y, z) values and ē1 is the MLS filtered principal direction (unit)
eigenvector as a function of position.

T̄ē1 = λ̄1ē1 (27)

The discrete integration can be done numerically using explicit or
implicit methods depending on the converging/diverging nature of
the tensor field. The simplest approaches are a forward (for diverg-
ing fiber fields)

rnew = rold + ē1[T̄(rold)]∆t (28)

or inverse Euler schemes (for converging fiber fields):

rnew = rold + ē1[T̄(rnew)]∆t (29)

One can easily employ higher order integration schemes, but
they still should be chosen according to the local properties of the
tensor field (converging or diverging) that are associated with the
“stiffness” of the differential equation, bifurcations and the desired
geometry.

2.6 The “Mountain” function
For the continuous tensor field, we use a anisotropy measure height
function c	(x, y, z), defined using a continues version of Eq. 4:

c	(x, y, z) =
λ1 − λ2

λ1 + λ2 + λ3
(30)

where λi are eigenvalues of T (x, y, z).
Metaphorically, we call this a “mountain function” because we

initiate the fibers at the high points and peaks of the mountain (the
most highly directional portions of a region) and grow them follow-
ing the major eigenvector directions. The metaphor continues as the
anisotropy measure decreases; we let the fibers grow until they go
“under water” into the lakes (corresponding to a chosen lower value
for the anisotropy measure); the low anisotropy values indicate an
absence of fibers.

We can also incorporate the mountain function within the filter
function g() itself, so that the higher regions will be given more
weight in the scheme.

2.7 Fiber Tracing Algorithm
The algorithm starts with the user selecting a rectangular starting
region. The fibers are traced starting from the points only where
the anisotropy measure is bigger than the threshold, i.e., that are
high enough on the mountainside. The initial direction will be de-
termined by the “largest” eigenvector of locally filtered tensor field.
At this point the filter is not oriented. The tracing will proceed in
two opposite directions along the “largest “ eigenvector.

The tracing procedure integrates forward from the provided
initial point and initial direction using forward or inverse Euler
method. It then computes a filtered value of the tensor at the new
point using the oriented filter (orientation and width of the filter is
determined from the previous position: the filter is oriented along
the “largest” eigenvector and is shaped according to the eigenval-
ues, with largest semi-axis along the “largest” eigenvector). If the
anisotropy of the new point is greater than threshold value, the
point is accepted and the tracing continues, otherwise the tracing is
finished. The tracing routine also chooses the direction of tracing
consistent with previous steps (no turn > 90 degrees is allowed).

1. User inputs starting region
2. For every starting point P in the region
{

Tp = filter(T,P,sphere);
cl = anisotropy(Tp);
if (cl > eps){

e1 = direction(Tp);
trace1 = fibertrace(P, e1);
trace2 = fibertrace(P,-e1);
trace = trace1 + trace2;

}
}

trace = fibertrace(P,e){
trace->add(P);
do {

Pn = integrate forward(P,e1,dt);
Tp = filter(T,Pn,ellipsoid,e1);
cl = anisotropy(Tp)
if (cl>eps){
trace->add(Pn);
P = Pn;
e1 = direction(Tp);
}

} while (cl >eps)
return(trace);

}
}

We have also incorporated some simple mechanisms to ignore
very short fibers and to stop tracing when the length of the fiber
exceeds an allowed limit. The starting points are usually generated
on a grid within user defined regions. We use numerical integration
to evaluate the integrals (18)-(19) inside the filter. We use SVD
and LU factorization routines from the “Numerical Recipes” [16]
to solve the linear system (21). Evaluation of the tensor function T
at the center of the filter (origin) requires only the first coefficient
of the polynomial expansion (22), so we use only a single back-
substitution procedure in LU factorization.

3 RESULTS: BRAIN ANATOMY

The DT-MRI data set we used has 121x88x60 voxels which pro-
vides resolution of roughly 1mm3. We used various orders of
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polynomial approximation from zero (average within the filter) up
to 3rd in each dimension. We were able to trace bundles of fibers
which correspond to well known anatomical structures, such as:
anterior and posterior forceps, corona radiata, optic radiation, cra-
nial nerves, U-shape fibers, (superior) longitudinal fasciculus, cin-
gulum and corpus callosum. The results are illustrated and further
explained in the figures Fig. (7) to Fig.(12).

4 CONCLUSIONS AND FUTURE WORK

In this paper we developed a new technique for tracing anatom-
ical fibers from 3D DT-MRI tensor fields, recovering identifiable
anatomical structures that correspond to many of the white matter
brain-fiber pathways.

We found that simple component-wise interpolation of the ten-
sors, forming a crude continuous approximate tensor field, worked
well for extracting brain fiber directions when combined with a
moving least squares filtering approach.

Our plan is to extend the work to more advanced nonlinear filter-
ing methods to better handle bifurcation points like crossings and
“T” junctions. In addition, we plan to examine the benefits of de-
tecting the local stiffness properties of the tensor field related to
convergence or divergence of the fibers and automatically switch
from forward to inverse integration schemes.
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Figure 7: Brain structures: Corona radiata. The diagram on the left is from [17]. On the right the fibers are reconstructed from DT-MRI data
using our oriented tensor reconstruction (OTR) algorithm. The corona radiata is visible in both hemispheres.

Figure 8: Right hemisphere corona radiata shown from opposite directions. The yellow boxes show the seed region for the OTR fiber tracing
algorithm. Color coding indicates orthogonal directions in the amount of RGB (XYZ).

Figure 9: Brain structures: U-shaped fibers, parts of corona radiata and corpus callosum. The diagram on the left is from [17]. Note the short
U-shaped fibers in the left upper part of the right image. Color coding is the same as the previous figure.
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Figure 10: Brain structures: Fibers near the cortical surface and U-shaped fibers on the left; optic tract on the right.

Figure 11: Brain structures: on the left is a side view of the right hemisphere cingulum bundle on the background of corresponding cl

anisotropy; on the right the same structure together with 3d models of the ventricle and CSF (cerebrospinal fluid) extracted by isosurfacing
[13] on isotropic part cs (see Eq. (6)) of the same DT-MRI dataset.

Figure 12: Brain structures: corpus callosum (left) and corona radiata (right) shown together with isotropic brain structures - ventricle, eye
sockets and pockets of CSF on the top of the brain. Cutting planes show isotropic cs values.
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