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Abstract

This paper describes a set of techniques developed for the
visualization of high-resolution volume data generated from
industrial computed tomography for nondestructive testing
(NDT) applications. Because the data are typically noisy
and contain fine features, direct volume rendering methods
do not always give us satisfactory results. We have coupled
region growing techniques and a 2D histogram interface to
facilitate volumetric feature extraction. The new interface
allows the user to conveniently identify, separate or compos-
ite, and compare features in the data. To lower the cost
of segmentation, we show how partial region growing re-
sults can suggest a reasonably good classification function
for the rendering of the whole volume. The NDT applica-
tions that we work on demand visualization tasks including
not only feature extraction and visual inspection, but also
modeling and measurement of concealed structures in volu-
metric objects. An efficient filtering and modeling process
for generating surface representation of extracted features is
also introduced. Four CT data sets for preliminary NDT are
used to demonstrate the effectiveness of the new visualiza-
tion strategy that we have developed.
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1 Introduction

Computed Tomography (CT) is a noninvasive imaging tech-
nique that has been used extensively in not only medicine for

Figure 1: Volume rendering of a CT of a mechanical toy
(512×512×2048 voxels).

diagnosis and surgical planning, but also in nondestructive
testing (NDT) for many industrial applications such as me-
chanical part manufacturing, production of composite mate-
rials, waste container inspection and even hardwood lumber
processing. The current industrial CT technology is capable
of generating very high-resolution images. According to the
application requirements, the resolution of the data can be
in the range of 5123–20483 voxels. Such sizes present great
challenges to the visualization process which involves both
batch processing and interactive visual inspection. Figure 1
displays volume rendering of such a CT of a mechanical toy.
Due to its size, interactive viewing was achieved with a hy-
brid rendering approach [Wilson et al. 2002].

This application paper focuses primarily on the prob-
lems of feature extraction and modeling for NDT applica-
tions. Both an interactive method and a semi-automatic
method are presented. The interactive approach is based
on the use of 2D transfer functions and a 2D histogram
interface [Kindlmann and Durkin 1998; Kniss et al. 2002],
hardware-accelerated volume rendering, and a user interface
mechanism that supports incremental and comparative vi-
sualization. The semi-automatic approach is based on a re-
gion growing algorithm that captures features with complex
geometry or small, scattered features in noisy data. A par-
ticular interesting and unique approach is the derivation of
2D transfer functions based on the partial features extracted
using region growing to visualize the full, similar features in
the volume data. This is particularly useful when several fea-
tures of the same type are disconnected in the volume, and
thus region growing cannot capture all of them at once. We
also show how to produce a boundary surface representation
for the volumetric feature extracted with region growing, and
how the quality of such surfaces can be improved with an
efficient filtering algorithm. A prototype system has been
built which incorporates all these techniques with a coher-
ent user interface. Our experimental study on this system



using four CT volume data sets from NDT shows that all
relevant features can be quickly identified and displayed.

2 Driving Application: Nondestructive

Testing and Evaluation

Nondestructive testing (NDT) is an industrial technology
commonly used to detect surface and subsurface discontinu-
ities in material without damaging or destroying the object
being tested. For example, for aircraft inspection, NDT is
used to aid in the prevention of premature or inadvertent
failures in various types of structures and materials. In con-
struction engineering, NDT plays a major role by providing
a means of checking compliance to applicable codes, specifi-
cations, and standards without significantly interfering with
physical construction of the project. Other important NDT
applications include CAD part design and quality control,
explosive ordinance examination, and nuclear waste inspec-
tion.

A variety of NDT techniques are available, which include
ultrasonic, radiography, dye penetrant, eddy current, and
magnetic particle methods. In our work, we are mainly con-
cerned with the problem of identifying and visualizing fea-
tures of interest in volume data generated from an industrial
computed tomography system. One challenge that we face
is the low-contrast and noisy image characteristics of CT
data. The other is the size of a typical data set. Because
radiation is not an issue when scanning non-organic objects,
a very large number of high-resolution images can be made
available for each study.

In our preliminary study, we have applied our feature ex-
traction and modeling techniques to four CT volume data
sets obtained from the Nondestructive Testing Group at the
Los Alamos National Laboratory (LANL). Figure 2 displays
two images for each data set. The first two data sets are
rather noisy. The first one is a volume reconstruction of a
block of concrete with a long glass rod off the center. The
features that the scientists are after include the long glass
rod and some of the surrounding small blobs. The multiple
thin rings are artifacts due to volume reconstruction, which
we would want to remove from the visualization. The second
data set is a volume reconstruction of a small plastic part
surrounded by an aluminum sleeve. The plastic was ther-
mally shocked to produce small cracks which are the target
of the feature extraction and visualization. In the images
in Figure 2, the cracks are barely revealed. The third one
is a Maglite flashlight. With direct volume rendering using
1D or 2D transfer functions, we can effectively depict its
shape and overall internal structure, as shown on the left
image. To capture a specific part, as shown on the right
image, segmentation methods are often required. The last
data set is a volume reconstruction of a container with a
circuit board and some batteries inside. Our objective is
to extract selected features in each data set and generate
enhanced visualizations of the features.

3 Feature Extraction and Visualization

The features which the scientists are interested in are gener-
ally related to some local density variation and can be either
clustered or scattered. The detection of such features is fur-
ther complicated by the possibly very complex structure of
the volume, the low-contrast of the features, and the noise
inherently present in the data.

Concrete: 256×256×512 voxels.

Plastic: 697×697×260 voxels.

Flashlight: 256×256×1024 voxels.

Fire Set: 512×256×512 voxels.

Figure 2: Four test data sets obtained from the Nondestruc-
tive Testing Group at the Los Alamos National Laboratory.



Figure 3: Left: The interface for editing a two-dimensional
transfer function. Right: The resulting image of the CT
flashlight volume.

3.1 Interactive Exploration

The advent of hardware-accelerated volume rendering en-
ables interactive feature finding and visualization. Hardware
accelerated volume rendering requires the loading of the vol-
ume data into the texture memory of the video card prior
to rendering. The size of the volume that can be rendered
interactively is thus limited by the amount of video memory
present on the card and the speed at which the data can be
transferred between system memory and the graphics card.

If interactive rendering is possible, data exploration is gen-
erally achieved by editing color and opacity transfer func-
tions [Pfister et al. 2001]. Kindlmann and Durkin [Kindl-
mann and Durkin 1998] introduced an intuitive way to derive
opacity transfer functions based on the fact that the deriva-
tives of data values suggest material boundaries. They show
that by looking at a two-dimensional scatterplot of data val-
ues and gradient magnitudes (i.e., a 2D histogram), opacity
transfer functions can be easily defined to effectively capture
features composed of boundaries between materials of rela-
tively constant data value. Kniss, et al. [Kniss et al. 2002]
extended their work by introducing a set of direct manipu-
lation widgets as the interface for defining multidimensional
transfer functions for volume visualization. The concept of
dual-domain interaction is particularly powerful and demon-
strated with several effective visualization examples.

Our system adopts the 2D transfer function interface in-
troduced in [Kindlmann and Durkin 1998; Kniss et al. 2002]
to assist interactive feature extraction. The user is presented
with an interface displaying two-dimensional scatterplots of
the volume data. The left image of Figure 3 shows such an
interface in which the upper left is a scatterplot of data val-
ues (x-axis) and gradient magnitudes (y-axis). The user can
explore the data by interacting with the scatterplot which is
superimposed with the current color map and the histogram
of the data to provide additional information to the user.
The trapezoid boxes, which are more general than triangu-
lar and rectangular boxes used in [Kniss et al. 2002], on the
scatterplot define the classification functions used to gen-
erate the CT flashlight image shown in the right image of
Figure 3.

Most of the time a feature in the data can be revealed
by interactively varying the two-dimensional transfer func-
tion but often other features (or noise) in the data are also
brought out, as shown in the left image of Figure 4. While
in this case our goal is to extract only the long glass rod in
the CT concrete data, some noises surrounding the structure
also appear, which is undesirable. When applying the region
growing method to be discussed next, only the long rod is

Figure 4: Feature extraction results. Left: transfer function.
Right: region growing.

Figure 5: Left: Direct visualization of the CT plastic data
using a two-dimensional transfer function that was interac-
tively defined. The cracks revealed in this image are rather
incomplete. Right: Volume rendering of the cracks extracted
using region growing. The images show the cracks actually
extend from the top to the bottom of the data set.

captured, as shown in the right image of Figure 4.
Furthermore, interactive exploration involves an itera-

tive trial-and-error process which can be very time consum-
ing. This process is made even more difficult as the size
of the data increases; thus making the manual search for
several features an impossible or unpleasant task. In order
to study large volumetric data sets, automatic feature ex-
traction techniques are desirable since it is very likely that
important features are less likely to be missed. For example,
the plastic data set is difficult to visualize directly. Even
after some careful editing of the two-dimensional transfer
function, we can barely capture the crack in the middle, as
shown in the left image of Figure 5. With region growing, a
more complete crack structure can be captured. The right
image in Figure 5 shows the region growing result in which
we can see the cracks actually extend from the top to the
bottom of the data set. In this particular case, the region
growing calculations take under 3 seconds on a PC with a
1.8GHz Pentium 4 processor.

3.2 Region Growing Methods

In our study, we couple interactive browsing with local re-
gion growing methods [Ballard and Brown 1982]. Region
growing is a fundamental segmentation technique in image
processing [Rosenfeld and Kak 1982]. In the context of vol-
ume data segmentation, the goal of region growing is to map
the input volume data into sets of connected voxels, called
regions, according to a prescribed criterion which generally
examines the properties of local groups of voxels [Lohmann
1998]. The growing starts from a voxel in the proximity of
the the seed point selected by the user. The voxel can be
chosen based on either its distance from the seed point or



Figure 6: From left to right: A slice of the plastic volume data, the slice was enhanced to facilitate seed picking; additional
information displayed on the histogram to assist seed selection; volume rendering of the corresponding region growing result.

the statistical properties of the neighborhood. Then each
of the twenty-six immediate neighbors of that voxel are vis-
ited to determine if they belong to the region. This growing
expands further by visiting the neighbors of each of these
twenty-six voxels. This recursive process continues until ei-
ther some termination criterion is met or all voxels in the
volume are examined. The result is a set of connected vox-
els determined to be located within the region(s) of interest.

Feature finding thus becomes semiautomatic starting with
an interactive seed point selection step, followed by region
growing process. As a result, the user only needs to find a
few representative features and lets the region growing locate
all features of similar properties in the same volume data.
This approach is similar to the volume seedling method in-
troduced by Cohen et al. [Cohen et al. 1992]. In their work,
region growing is used to help identify fine blood vessels
in MRA volume data. More recently, Hahn, et al. [Hahn
et al. 2001] develop a pipeline of 3D image processing steps
to derive accurate models for visualization and exploration
of vascular structures from radiological data. The resulting
vessel models are used to study the branching patterns, for
measurement, etc. Hu, et al. [Hu et al. 2001] apply region
growing to the segmentation of lung data to derive airway
tree for surgical planning and treatment.

3.2.1 Seed point selection

Region growing begins from a seed point. In our system
the user picks a seed by interactively slicing through the
volume data. As soon as a slice is picked the user can move
the cursor into the desired region and click to complete the
selection. For noisy data sets, seed point selection becomes
difficult, especially when regions are small or thin. First,
according to the histogram of the data values, our system can
automatically map more colors to a particular value range of
interest to increase the visibility of the features, as shown in
Figure 6. Such enhancement can also be done by the user in
an interactive manner while looking at the two-dimensional
scatterplot of the data.

To further assist interactive seed point selection, some in-
formation about the seed voxel and its surrounding voxels is
presented to the user. As shown in the third image from the
left in Figure 6, when a point is selected, it is highlighted on
the scatterplot together with its 26 neighbors. This resem-
bles to the dual-domain interface but more information is
provided to the viewer. The coordinates of each highlighted
point are the corresponding voxel’s scalar and gradient mag-
nitude values. A solid line connects the current point to
each of its 26 neighbors. Another very important piece of
information is the red rectangle which shows the standard

deviation of the data values (x-axis) and the standard devi-
ation of the gradient magnitudes (y-axis) of the neighbors.
Essentially, a tighter rectangular box suggests a region of
high homogeneity. The right most image in Figure 6 shows
the corresponding region growing result.

3.2.2 Criteria selection

To do region growing, a set of criteria must be appropriately
selected to effectively extract the regions. Possible crite-
ria include region homogeneity and contrast with the back-
ground, strength of the region boundary, size, conformity
to a desired texture or shape, and so on [Rosenfeld and Kak
1982]. We have derived three criteria mainly based on region
homogeneity and region aggregation using either data values
or gradient magnitudes of the voxels. To make our region
growing method more robust, at each voxel we also take into
account some first-order statistical information about its 26
neighboring voxels.

Each criterion is defined by a cost function which is de-
signed to extract a particular type of feature. If the value
returned by the cost function is less than 1, then the voxel
under consideration is within the region. Three functions
are defined:

A. fca = |v−vs|
kσv

where v is the data value of the current

voxel, vs is the data value of the seed voxel, k is a
constant specified by the user, and σv is the standard
deviation of the values of the 26 neighboring voxels of
the seed voxel. Note that 0 < k. It is used to con-
trol the strictness of the criterion, and its default value
is 1. This cost function exploits the data values. It
works well for capturing homogeneous regions in which
gradient magnitudes are nearly zero.

B. fcb = |g−gs|
kσg

where g is the gradient magnitude value of

the current voxel, gs is the gradient value of the seed
voxel, and σg is the standard deviation of the gradient
values of the 26 neighboring voxels of the seed voxel.
This cost function exploits gradient magnitudes and is
used to capture only the boundaries of a region.

C. fcc(p) = fcap+fcb(1−p) where p is a weight specified by
the user or by the system. By default, p =

σg

(σv+σg)
. As

a result, this cost function exploits both the data values
and gradient magnitudes. It is more flexible than fca

and fcb. The left image of Figure 4 was generated using
fcc.



Figure 7 shows the results of applying each cost function
to the segmentation of the flashlight data set. In this case,
among the three functions, fcc gives us the desired result.

Modayur et al. [Modayur et al. 1997] design an adaptive
cost function which takes into account the statistical infor-
mation of the region extracted so far to handle the situation
where small connections between two regions should be dis-
carded. Basically, an adjacency criterion is employed in a
postprocessing step. However, their cost function does not
consider the gradients of voxels which are useful for growing
boundaries.

3.2.3 Postprocessing

After region growing, a postprocessing step might be de-
sirable to extend the results or to improve the results such
as removing erroneous voxels or to fill gaps introduced by
noisy data. Depending on which criteria is used, the results
of feature extraction may vary. For example, due to noise it
is possible for a feature to grow into another through a very
thin connection one- or two-voxels wide. A postprocessing
step can be performed to remove this type of erroneous con-
nection. The three images in Figure 8 show the result of
applying fca, the result after the cleanup, and the result
of applying fcc. In this case, fcc works better because of
the use of neighboring gradient values to verify connectivity.
However, fcb alone performs poorly in this case.

Since it is easier for the user to extract one feature at a
time, our system allows the user to compose multiple ex-
tracted features into a single visualization, as depicted in
Figure 9. The composition is done interactively through the
user interface providing the user with multiple views. In this
way, the user can extract and enhance each of the features
completely independent of the other features in the same
data set but present them in a single visualization for other
specific purpose. The multiple views also allow the user to
perform comparative visualization of similar features in the
same volume or two different volumes.

3.2.4 Partial region growing and transfer functions

When the cost of region growing is high or there are multi-
ple regions, it might be desirable to perform partial region
growing instead. That is, feature extraction is only done for
a subset of the volume, or only a small subset of all the in-
terested regions in the data is extracted. It is then possible
to derive a two-dimensional transfer function based on the
partial results of feature extraction for the visualization of
other regions/features in the data.

Such a transfer function can be derived by using the av-
erage data value and average gradient magnitude value in
the regions already extracted, and standard deviations of
the data values and gradient values for the whole extracted
region. These four values define a rectangular region on the
two-dimensional scatterplot of the data values and gradient
values, which is the classification function we are looking for
to capture the extended features. The two average values
are the coordinates of the center of rectangular region, and
the two σ values define the size of the region. The left most
image in Figure 10 displays a single metal screw extracted
using partial region growing. The second image shows the
result of applying the derived transfer function to the whole
volume to reveal other screws inside the container. The third
image shows the derived transfer function (in red), and two
other transfer functions (in green and blue) manually defined
for adding context to the visualization, as shown in the right
most image.

Figure 7: Segmenting the flashlight data set. Top: Using fca

alone extracts unwanted parts. Middle: Using fcb extracts
an incomplete part. Bottom: Using fcc. fcc gives us the
desired result.



Figure 8: Left: the result of using fca. Middle: after cleaning
up. Right: the result of using fcc.

Figure 9: Composition of two features.Each feature is in-
dependently extracted through an interactive user interface
providing multiple views of features. This visualization al-
lows the user to see both the glass rod and the surrounding
blobs but not the noises.

3.3 Feature Modeling

Although volume rendering can generate images of the fea-
tures of interest without first extracting any geometric in-
formation from the data, a geometric representation of the
features allows for evaluation beyond visual inspection. The
commonly used isosurface extraction method [Lorensen and
Cline 1987] based on a binary decision would not work well
here because the CT data are noisy and may contain small,
fine features.

To construct boundary surfaces for the features, we make
use of the segmented volume from region growing. A bound-
ary tracking algorithm [Artzy et al. 1981] is used to identify
boundary faces. This is followed by a procedure to locate
the voxels internal to the boundary identified. The result-
ing volumetric feature representation allows us to construct
compact and hole-free boundary surfaces. The next step is to
filter out high-frequency artifacts in the boundary cells. At
this point, we could rendering the boundary faces directly by
interpolating the faces’ normals. However, this would only
give us a better picture of the boundary surfaces but not
the actual smoother surfaces. The more desirable bound-
ary surfaces can be extracted by using the marching cubes
method [Lorensen and Cline 1987]. A reasonable isovalue
used is the average values of those voxel on the boundary
faces. The resulting surfaces are smooth while preserving
the main topological information of the features, as shown
in Figure 11 for the concrete data set. Figure 12 displays
the extracted surface of the crack for the plastic data set.

Because of the size of the volume data, the filtering op-
eration can become time-consuming. In this work a Box
or Guassian filer is used according to the characteristics of
features. To speed up the filtering operation (i.e., convolu-
tion), we have applied a set of high-performance computing
techniques. Specifically, we have extended a blocked algo-
rithm [Lam et al. 1991] for our 3D filtering problem to im-
prove the effectiveness of memory hierarchies which include
virtual memory, caches, vector registers and scalar registers,
and the main memory. The basic idea is to explore the lo-
calities of both program and data. The best block size to
use thus depends on the volume data size and the memory
architecture.

We have also followed the PHiPAC coding guide-
lines [Bilmes et al. 1998] to achieve further performance im-
provement. Among the set of coding guidelines, we found
that loop unrolling and register caching result in the biggest
performance improvement. Our experimental results show
that an overall 5-8 times speedup may be achieved depend-
ing on the size of the filter kernel used. Figure 13 displays
test results using a 3×3×3 filter kernel for the concrete data
set with the block size = 64. The performance difference
is apparent. Adding PHiPAC-based optimization is about
three times faster than using blocking alone. The same PC
with a 1.8GHz Pentium 4 processor was used for testing and
the filtering time was cut from about 25 seconds to 5 sec-
onds. PHiPAC coding changes the behavior of the program.
According to our test results, PHiPAC coding allows us to
use large block sizes leading to better performance; that is,
PHiPAC coding improves the locality of the program.

4 Conclusions

In this paper we have presented our preliminary results on
visualizing industrial CT volume data. A prototype sys-
tem has been created which allows us to experimentally
study both interactive and semi-automatic techniques. Two-



Figure 10: Left: The result of a partial region growing for capturing a single screw. Middel-left: Using the derived transfer
function to capture other screws. Middle-right: The derived transfer function (in red) plus two manually defined transfer
functions for adding context to the visualization. Right: Visualization using the three transfer functions.

Figure 11: Left: Original boundary surface. Middle: After applying 3×3×3 filter. Right: After applying 5×5×5 filter.

Figure 12: A surface representation of the extracted crack
features in the plastic volume data.
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dimensional transfer functions are powerful for visualizing
material boundaries but often fail to completely capture
complex volumetric features in noisy data. The region grow-
ing methods we have developed supplement the transfer
function methods. During our experimentation using sev-
eral representative CT data sets, we have found that the
seed selection interface and the cost functions we have de-
veloped are very helpful and effective in accomplishing the
intended tasks.

We have also applied a refined region growing based ap-
proach to medical volume data, and obtained very promising
results [Huang and Ma 2003]. We should point out that while
these test data sets do present challenges to our study, the
data sets we expect to work on for the actual nondestructive
evaluation tasks will be larger and could contain multiple,
more complex features.

A related project of ours has shown that by employing
an intelligent system it is possible to derive a more intuitive
user interface and also eliminate the typical trial-and-error
process of visualization parameter specification required in
complex classification and visualization tasks [Tzeng et al.
2003]. We are currently incorporating an intelligent system
into our NDT data visualization system.

We will also continue our study in several other directions.
We plan to investigate geometrically-sensitive segmentation
such that even more robust criteria can be derived for region
growing. Adaptive region growing such as incorporating the
statistical information about the regions already identified
into cost functions is also a promising approach. Morpho-
logical operations can help to further improve the feature
extraction results and should be experimentally studied. We
are also interested in deriving topological information about
the extracted features for region merging and splitting and
to create more compact models. We have the ability to con-
struct and display boundary surfaces for the extracted volu-
metric features. As suggested by the application scientists, it
is helpful to render these surfaces by coloring them according
to selected statistical information about the features.

The large data problem must also be addressed. Presently,
realtime rendering and manipulation of the volume data is
limited to only a subset of the volume since the entire volume
will not fit into the texture memory of a PC graphics card.
We are in the process of porting the current system to a PC
cluster for not only interactive rendering of large CT volume
data, but also the feature extraction and modeling tasks.
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