
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Interactive protein manipulation

Permalink
https://escholarship.org/uc/item/1pz573nj

Authors
Kreylos, Oliver
Max, Nelson L.
Hamann, Bernd
et al.

Publication Date
2003-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pz573nj
https://escholarship.org/uc/item/1pz573nj#author
https://escholarship.org
http://www.cdlib.org/


Interactive Protein Manipulation

Oliver Kreylos∗ Nelson L. Max∗ Bernd Hamann∗ Silvia N. Crivelli† E. Wes Bethel†

Abstract

We describe an interactive visualization and modeling program for
the creation of protein structures “from scratch.” The input to our
program is an amino acid sequence – decoded from a gene – and
a sequence of predicted secondary structure types for each amino
acid – provided by external structure prediction programs. Our
program can be used in the set-up phase of a protein structure pre-
diction process; the structures created with it serve as input for a
subsequent global internal energy minimization, or another method
of protein structure prediction. Our program supports basic visu-
alization methods for protein structures, interactive manipulation
based on inverse kinematics, and visualization guides to aid a user
in creating “good” initial structures.

CR Categories: J.3 [Life and Medical Sciences]: Biology and Ge-
netics; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; I.3.8 [Computer Graphics]: Applications

Keywords: Protein Structure Prediction, Protein Manipulation,
Inverse Kinematics, Molecular Modeling, Molecular Visualization,
Interactive Visualization

1 Introduction

One of the grand challenges in computational biology is the predic-
tion of the three-dimensional structure of a protein from its chem-
ical composition alone. A protein’sprimary structure, i. e., its
amino acid sequence, is directly translated from its messenger RNA
(mRNA) sequence, which is transcribed from a DNA sequence in
a gene (but perhaps subsequently modified by splicing). The pro-
tein’s primary structure, however, is purely one-dimensional and
does not directly encode a three-dimensional shape. It is commonly
believed that thenativeshape of a protein is the one corresponding
to the global minimum of its internal energy. Thus, theprotein fold-
ing problemhas been treated as an optimization problem in recent
years. As with any high-dimensional optimization problem, it is
important to start solving the folding problem from a set of “good”
initial configurations that allow the optimization code to search the
complete parameter space for a minimum. Our work focuses on
providing an interactive, visual tool assisting a user to rapidly cre-
ate many three-dimensional protein structures for a given amino
acid sequence. These structures are then used as initial configura-
tions for an optimization algorithm.

1.1 Protein Structure Hierarchy

In biochemistry, protein structure is described at four different lev-
els [1]:

Primary Structure A protein’s primary structure is its amino acid
sequence. It is directly encoded in a protein’s mRNA, with

∗Center for Image Processing and Integrated Comput-
ing (CIPIC), Department of Computer Science, Univer-
sity of California, One Shields Avenue, Davis, California,
{kreylos,max,hamann }@cs.ucdavis.edu

†Lawrence Berkeley National Laboratory, One Cyclotron Road, Berke-
ley, California,{sncrivelli,ewbethel }@lbl.gov

each group of three bases defining one amino acid. The chem-
ical structure of proteins handled by our program is a single
chain of amino acid residues connected by peptide bonds, see
Figure 1.

Figure 1: Part of the primary structure of a protein.

As shown in Figure 2, the chemical structure of proteins is
highly regular since all amino acids have the same N–C–C
backboneand differ only in their side chains, denoted in the
figure by R. In each amino acid residue, the two interior back-
bone bonds (N–C and C–C) are single covalent bonds that can
rotate around their respective bond axes1. Thus, each residue
has two rotational degrees of freedom in its backbone – the
dihedral anglesφ andψ. The peptide bond connecting two
adjacent residues, though usually drawn as a single covalent
bond, has partial double bond character, with the effect that
the six atoms C–C=O and H–N–C are always coplanar and
arranged in atransconfiguration.

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R
φ1 ψ1

φ2 ψ2

φ3 ψ2

φ4 ψ4

Figure 2: Primary protein structure and rotational degrees of free-
dom along a residue chain. Adjacent residues are separated by
dashed lines. Amino acid side chains are denoted by R.

Secondary Structure Adjacent amino acid residues inside a pro-
tein can interact with each other, forming regular substruc-
tures: α-helices, see Figure 3, andβ-strands. Inside anα-
helix, each residue forms hydrogen bonds with two other
residues, accounting for the rigidity of the helix. For each
amino acid type, the probabilities of forming either one of
these structures are known, and neural networks have been
used succesfully to predict secondary structure occurrences
from amino acid sequences [2]. A third type of secondary
structure, acoil region, is defined by the absence of any other
structure. Since they are highly flexible, we use coil regions
as basis for interactive manipulation.

Tertiary Structure A protein’s overall three-dimensional struc-
ture is the result of interactions between amino acid residues

1This degree of freedom does not exist in proline, which forms a ring
structure and cannot rotate around the N–C bond.



Figure 3: Anα-helix. Hydrogen bonds stabilizing the helix are
shown as dashed yellow lines.

from distant parts of the chain with each other and the sur-
rounding medium:β-strands, not very rigid by themselves,
align to each other to form stableβ-sheets, see Figure 4,
whereasα-helices cluster with other structures to “hide” hy-
drophobic amino acid side chains from the surrounding wa-
tery solution. It is important to note thatβ-sheets are sta-
bilized by adjacentβ-strands forming hydrogen bonds along
the backbone, while the clustering ofα-helices is based on in-
teractions between side chains. Prediction of tertiary structure
is still an unsolved problem.

Figure 4: Twoβ-sheets. Hydrogen bonds stabilizing the sheets are
shown as dashed yellow lines. Top row: anti-parallel sheet (left)
and cartoon rendering (right). Bottom row: parallel sheet (left) and
cartoon rendering (right).

Quaternary Structure Many proteins, e. g., hemoglobin, contain
more than one amino acid chain. For those, quaternary struc-
ture describes how separate chains interact with each other
to define an overall shape. Our interactive manipulation tool,
and the internal energy optimization code it interacts with, do
not yet consider proteins with more than one chain.

2 Related Work

Existing programs for molecular visualization/interaction fall into
two classes: visualization programs that additionally allow rigid
body transformations of molecules or molecule parts, and full-
fledged molecular dynamics (MD) simulations based on physical
and chemical principles. The most commonly used program in the
first class is VMD [3], and a popular program in the second class is

NAMD [4], developed by the same group. The rendering and visu-
alization techniques used in our program are modelled after those
supported by VMD, but the interaction paradigm of our program is
entirely different. VMD supports transformations of protein parts,
but those parts have to be “cut out” from the rest of the protein be-
fore transformation, and VMD does not assist in reconnecting parts
afterwards. VMD contains a steering part that allows it to be cou-
pled with MD codes, especially NAMD, but even in combination
it does not support real-time manipulation of protein parts due to
the complexity of full MD simulations. One such coupled system,
Interactive Molecular Dynamics (IMD) [5], combines VMD and
NAMD and supports manipulation of molecules by applying forces
to single atoms with real-time force feedback. The major advantage
of our program over other systems is that ours supports interactive
real-time motion of protein parts with respect to each other without
breaking the manipulated protein’s chemical structure in the pro-
cess.

3 Protein Structure Visualization

Though the development of our program was driven more by in-
teractive manipulation capability than rendering, it offers several
methods for protein visualization that aid a user in creating protein
structures. We describe these methods briefly.

3.1 Van-der-Waals Spheres

In this visualization mode, each atom inside a protein is rendered as
a sphere, see Figure 5. The radius of a sphere is the van-der-Waals
radius of its atom’s element [1]. Spheres are colored according to
standard usage in chemical visualization programs and textbooks.
Van-der-Waals sphere rendering is most useful for judging the com-
pactness of a protein structure. In their native shapes, proteins typi-
cally fold tightly, with hardly any empty space between atoms. Van-
der-Waals spheres are a good representation of the overall volume
of a protein structure, and the amount of empty space inside it.

3.2 Bond Sticks

The relatively large sizes of van-der-Waals spheres leads to high
degrees of occlusion, which can make it difficult to understand the
chemical structure of a protein in close-up views. To deal with this,
our program can render covalent bonds between atoms as “bond
sticks,” two-color cylinders of fixed radius, where the halves of a
bond stick are colored according to the elements of the atoms at the
ends, see Figure 5. Bond stick rendering can lead to high visual
clutter in overview renderings, but enables a user to judge the exact
alignment and chemical makeup of protein structures in close-up
views.

3.3 Structure Cartoons

Neither van-der-Waals spheres nor bond sticks are appropriate for
modeling purposes since the important visualization of structure
alignment is lost due to too much rendered detail, occlusion, and
visual clutter.Structure cartoonsoffer a solution by ignoring amino
acid residue side chains, and rendering only a protein’s backbone.
Types of secondary structures are visualized by using different
glyphs for each of the three basic structure types:α-helices are
rendered as helices of thick ribbons;β-strands are rendered as
thick arrows; and coil regions are rendered as cylindrical tubes,
see Figure 5. All three glyph types are modeled by non-uniform
B-splines [6], with control points located at the centralCα carbon
atoms in each amino acid residue. By using B-splines, structure
cartoons naturally follow the shape of the structures they visualize.



β-strand arrows intuitively visualize aβ-strand’s position, orien-
tation, direction, and the four shape parameters described in Sec-
tion 4.3, while coil region tubes visualize the position, orientation,
and “desirability” of coil region conformations.

Figure 5: One configuration of protein 1pgx [7] visualized in three
different modes, using identical view parameters. Top left: van-der-
Waals spheres; top right: bond sticks; bottom: structure cartoons.

4 Protein Structure Creation and Manipu-
lation

Our interactive tool supports the creation of protein structures
“from scratch,” i.e., solely from a sequence of amino acid residues
decoded from a gene, and from a sequence of secondary structure
types for each residue, supplied by one or several structure predic-
tion servers [2]. Interactively created structures are intended to be
fine-tuned by subsequent optimization. Consequently, our program
focuses on creating overall layouts, without much regard for details
like the extra torsion angle degrees of freedom within the amino
acid side chains, and the interactions between different side chains.
More specifically, we concentrate on the creation of backbone-to-
backbone hydrogen bonds andβ-sheets and let the optimization
code take care ofα-helix clustering, determination of side chain
configurations, and clean-up of side chain interferences.

The process of protein structure creation is done in two major
steps. First, the program creates apre-configurationby assem-
bling amino acid residue templates. Second, a user manipulates the
created pre-configuration by manually – and semi-automatically –
aligning protein substructures to each other. Our program supports
several manipulation tools: manual reassignment of structure types
to individual residues; globalβ-strand shape adjustment; interac-
tive manipulation using an inverse kinematics algorithm [8]; semi-
automaticβ-sheet formation; andβ-strand shape optimization. The
following sections describe these tools in detail.

4.1 Creating Pre-configurations

Our program creates pre-configurations, i.e., protein structures ex-
hibiting only primary and secondary structure, in a fully automatic
process inspired by the working of a ribosome. A ribosome creates
a protein guided by messenger RNA (mRNA) transcribed from a
gene by successively adding amino acids to a growing chain. In
each step, an amino acid of the type prescribed by the mRNA is se-
lected, and concatenated to the (partial) protein by forming a pep-

tide bond with the last amino acid in the chain. It is believed that the
protein under construction starts folding into its native shape even
before it is completely assembled, but the specifics of this mecha-
nism are still unknown.

The approach underlying our program uses only secondary struc-
ture information during protein creation. Given a specific amino
acid sequence, a secondary structure prediction server classifies
each amino acid as being part of either anα-helix, aβ-strand, or
a coil region [2]. The server also provides confidence values for
each prediction (ranging from 0 – weakest to 9 – strongest), but
these confidence values are not yet used by our method. The struc-
tures assigned to each residue can be changed interactively during
manipulation.

To create a protein, the program assembles amino acid residues
one at a time – simulating the action of a ribosome. The position
of all atoms making up a single residue, and their connectivity, are
defined by a set of template files, one for each residue type. A
template file models a residue in “standard configuration” in its own
local coordinate system. To concatenate residues, we keep track of
an “end-of-chain” transformation describing how to translate local
template coordinates to the end of the partial protein.

While adding a new residue, its dihedral anglesφ andψ are
set to the standard values forα-helix, β-strand, or coil region, re-
spectively, and the end-of-chain transformation is updated accord-
ingly. Thus, proteins are created with secondary structures already
fully formed and intact, as opposed to previous approaches that
constructed completely unfolded proteins first, and then used con-
strained energy optimization to form secondary structures [9]. Such
optimization typically took several hours, whereas our approach is
instantaneous even for large proteins containing hundreds of amino
acid residues. A pre-configuration created by our method is shown
in Figure 6.

Figure 6: Pre-configuration for protein 1pgx created by assembling
amino acid residues and using standard dihedral angles to form sec-
ondary structures.

4.2 Structure Type Reassignment

As described above, structure types are predicted for each amino
acid residue by one or several available structure prediction servers.
One can not always rely on these predictions for the following rea-
sons: different servers often disagree; predicted structure types can
be flagged with a low confidence value; interactive manipulation
can show that predicted structures do not fit into an otherwise de-
sirable alignment; and global energy optimization sometimes “un-
ravels” predicted structures or attempts to transform one structure
type into another.

To address these concerns, our tool enables a user to re-assign
structure types during manipulation. Each amino acid residue can
individually be set to any of the three basic structure types. Chang-
ing a residue’s structure type does not immediately set that residue’s
dihedral angles to the standard angles for the new type; a user has
to explicitly request any dihedral angle changes.

Changing structure types dynamically is especially useful for en-
larging short coil regions for more freedom during manipulation, or
for inserting temporary single-residue structures as additional ma-
nipulation “handles” into long coil regions for finer control over a



coil region’s behaviour during interaction. This feature can also be
used to “touch up” already optimized protein structures by resetting
partially unraveled structures to their default shapes.

4.3 β-strand Adjustment

β-strands have a certain amount of flexibility to adjust to their envi-
ronment in sheets. Coherent shape changes result from changing all
φ angles by the same increment, or allψ angles by the same incre-
ment. Richardson and Richardson [10] suggest a different basis for
this two-dimensional space of coherent shape changes, which has a
more comprehensible geometric meaning.Twist increments bothφ
andψ by the same amount, whilepleat increments allφ angles by
the same amount, and decrements allψ angles by this amount.

Since the dihedral angles of aβ-strand are close to180◦, the
backbone forms a zig-zag pattern, with the residues on alternating
sides. Thus changes inφ andψ of period two also have coherent
effects on the strand shape.Curl, a period two change also sug-
gested in [10], decreases theφ and increases theψ of odd num-
bered residues, counting from the beginning of the strand, and
does the opposite for even numbered residues. To fill out the four-
dimensional space of period two changes toφ andψ, we added a
fourth basis element, not described in [10], which we calledbraid.
It increases bothφ andψ for odd numbered residues, and decreases
them for even numbered residues.

These changes were implemented in the form of four dials,
which can coherently change the shape of a selectedβ-strand in
the interactive user interface. These dials are useful in adjusting a
strand’s shape in order to form more hydrogen bonds with adjacent
strands in aβ-sheet.

4.4 Structure Manipulation

Our program uses inverse kinematics (IK) to transform pieces of a
protein with respect to each other, without breaking chemical bonds
in the protein backbone between those pieces [8]. As mentioned in
Section 1.1, coil regions are flexible because they do not pose tight
constraints on their residues’ dihedral angles. Thus, they can serve
as “buffers” for transformations of protein parts.

To begin manipulation, a user selects a single secondary struc-
ture, typically anα-helix or aβ-strand. The program then renders
the “3D interaction widget,” a translucent green box surrounding
the selected structure, see Figures 7 and 8. The widget can be trans-
lated or rotated by dragging it with the mouse. Additionally, a user
activates one or more coil regions that will serve as buffers for sub-
sequent manipulation. In Figures 7 and 8, active coil regions are
highlighted in yellow.

Figure 7: Aβ-strand has been selected and is surrounded by the 3D
interaction widget. The two coil regions surrounding the centralα-
helix have been activated for manipulation. Left: before dragging
the widget; right: after dragging the widget.

In the simpler case, all active coil regions are on the same side of
the selected structure (either before it or after it according to chain
order). When, for example, all coil regions are before the selected

structure, then dragging the interaction widget will transform the
selected structure, and the rest of the protein after it, with respect to
the part of the protein before the first active coil region. All active
coil regions will change shape, and all structures between active
coil regions will undergo rigid body transformations, as dictated by
the IK algorithm. This mode of interaction allows a user to align
protein parts to each other, especially to formβ-sheets by manually
aligningβ-strands.

In the more complex case, where active coil regions exist on both
sides of the selected structure, dragging the widget will move the
selected structure with respect to the two parts of the protein before
and after any active coil regions. Those two parts, even though un-
related according to chain order, will not move with respect to each
other. As in the simpler case, shape changes of active coil regions
and transformations of intermediate structures are guided by the IK
algorithm. This second interaction mode can be used to fine-tune
the placement of intermediate parts in an already assembled struc-
ture, see Figure 8.

Figure 8: Anα-helix has been selected and is surrounded by the
3D interaction widget. Both surrounding coil regions are activated
for manipulation. Left: before dragging the widget; right: after
dragging the widget.

4.5 Inverse Kinematics

Every rotatable single covalent bond along a protein’s backbone can
be interpreted, in an IK sense, as a joint with a single axis of uncon-
strained rotation. After a user selects a structure and activates coil
regions, and before manipulation begins, the program constructs a
linked assembly by creating two rotational joints for each amino
acid residue2 inside each active coil region. Let us assume that
all active coil regions are before the selected structure according to
chain order3. In this simpler manipulation case, the linked assembly
is rooted at the rear end of the last structure before the first active
coil region, and the “leaf” joint is connected to the front end of the
selected structure, see Figure 9.

Creating a linked assembly in the described way results in intu-
itive behaviour during manipulation. The selected structure, and the
rest of the manipulated protein behind it, are treated as a rigid body
and move together following the motion of the interaction widget.
If the interaction widget is moved into a position/orientation that
cannot be realized by setting dihedral angles for the currently ac-
tive coil regions, the IK algorithm will automatically approximate
the requested position/orientation in a least-squares sense.

A more complex manipulation case occurs when active coil re-
gions are located on both sides of the selected structure. The current
version of our manipulation code handles this case by creating two
independent linked assemblies: one for all active coil regions be-
fore the selected structure, and one for all active coil regions after

2In the case of proline, the IK algorithm only creates a single joint since
proline has a rigid N–C bond.

3The case where all active coil regions are behind the selected structure
is symmetrical.



active coil region active coil region

intermediate
structure

root
structure

selected
structure

Figure 9: Linked assembly created by IK algorithm from two ac-
tive coil regions on one side of the selected structure. Each coil
region contains three residues, leading to six rotational joints per
coil region. The bold arrows denote assembly direction from root
to leaf.

the selected structure. As opposed to the simpler case, the direction
of assemblies is reversed. The selected coil region serves as root
structure for both assemblies, and each of the two leaf joints is con-
nected to the first structure after the last active coil region on either
side of the selected structure, see Figure 10.

active coil region active coil region

selected
structure

leaf
structure

leaf
structure

left assembly right assembly

Figure 10: Double linked assembly created by IK algorithm from
one active coil region on both sides of the selected structure. Each
coil region contains three residues, leading to six rotational joints
per coil region. The bold arrows denote assembly direction from
root to leaf.

The benefit of creating two linked assemblies in the more com-
plex manipulation case is that it is possible to use the same IK al-
gorithm in both cases. The major drawback is reversed behaviour
at the dragging limits. The selected structure will always follow
the interaction widget, and if the requested position/orientation can
not be realized, the two protein parts behind the assemblies’ leaf
structures will move relatively to each other to compensate.

The only technical difference between the two manipulation
cases is the number of linked assemblies, and their direction ac-
cording to chain order. The IK algorithm works the same way in
both cases. While dragging the interaction widget, the IK algorithm
computes the difference between the widget’s current requested po-
sition and orientation and the position and orientation of the se-
lected structure, computed from the link assembly’s current rota-
tion angles. The algorithm updates all joint angles to minimize that
difference. Our IK algorithm uses a transposed Jacobian method
with force integration [8]. This method has two major benefits:
first, it is based on an, albeit simplified, physical model causing in-
tuitive link assembly behaviour during interaction; and, second, its
computational efficiency leads to high update rates even with large
assemblies.

The major problem with an IK approach to protein manipulation
is one of scale. In robotics or animation, typical assemblies have
up to a dozen joints, whereas assemblies created by our program
can have 80 or more joints for larger proteins. To achieve stable
behaviour and high update rates for large proteins, we improved the
basic IK algorithm by using a second-order Runge-Kutta method
with adaptive step size control for force integration [11].

4.6 Semi-automatic β-sheet Formation

The manipulation process described above is sufficient to create ar-
bitrarily complex protein structures, but the major task of creating
β-sheets by forming hydrogen bonds betweenβ-strands can be te-
dious and time-consuming. To address this problem, our system
supports the automatic formation of hydrogen bonds between two
user-selected amino acid residues. In the context ofβ-sheet for-
mation, hydrogen bonds appear in two shapes: parallel and anti-
parallel, see Figure 11. In the anti-parallel case, two residues from
differentβ-strands form a double hydrogen bond: one residue’s N–
H group bonds with the other residue’s C=O bond, and vice versa.
The parallel case involves three residues: one residueRi in one
strand, and two residuesRj−1 andRj+1 in another strand (the
latter two residues being separated by one central residue in the
chain).Ri’s C=O group bonds withRj−1’s N–H group, andRi’s
N–H group bonds withRj+1’s C=O group.

N
C

C

HO

HR

N
C

C

HO

HR

N
C

C

HO

HR

N
C

C

HO

HR

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

N
C

C

H O

H R

Figure 11: The two shapes of hydrogen bonds betweenβ-strands
in a β-sheet. The upper two strands are aligned in an anti-parallel
way; the lower two strands are aligned in a parallel way. Note that
the direction of the topmost strand is right-to-left in chain order.

Our automatic bonding feature supports both shapes. To invoke
it, a user selects aβ-strand and activates coil regions as usual, and
then selects two residues – the first being inside the selected strand –
and a bonding shape. In the anti-parallel case, the program calcu-
lates a transformation that moves the selected structure to a position
and orientation that will form a double hydrogen bond between the
selected residues. In the parallel case, it calculates a transformation
to bond the first selected residue with both neighbours of the sec-
ond one. In either case, the IK algorithm updates dihedral angles in
all active coil regions to realize the calculated transformation. This
process typically requires a few seconds, and is animated in real
time. Once twoβ-strands have been aligned semi-automatically, it
is a matter of seconds to manually fine-tune the alignment to involve
more hydrogen bonds.

4.7 β-strand Shape Optimization

In an effort to automate the adjustment ofβ-strand shape in aβ-
sheet environment, we tried to define optimal twist, pleat, curl, and
braid parameters forβ-strands of length four through twelve, in
combination with rotated and translated copies of an identically
configured adjacent strand at either side in theβ-sheet. Since these
two adjacent strands can be either in the parallel or anti-parallel



direction, and the two sides of a strand are not equivalent, this
gives a total of four cases, each of which extend to a global twisted
helicoid-likeβ-sheet of spiral symmetry, either all parallel, all anti-
parallel, or alternating parallel and anti-parallel, with two strands in
one direction, followed by two strands in the other.

In forming the two adjacent copies of a central strand, there are
three translational degrees of freedom for each, and three rotational
degrees of freedom, for a total of twelve. There are also four de-
grees of freedom for the twist, pleat, curl, and braid parameters. In
addition, account for the difference in geometry near the edges of
the helicoid, compared to the center, we allowed a quadratic vari-
ation in the increments used in these four parameters, which was
proportional to the square of the difference between the residue in-
dex and the center of the strand. Adding these four quadratic coef-
ficients gives a total of twenty degrees of freedom.

We optimized the Amber energy of the strand [12], counting
interactions of atoms within the strand, and with its two adjacent
copies in the sheet, using the version of the BFGS non-linear local
optimization in [13]. Since only theφ andψ angles were varied
in this optimization, and our standard initial configurations of the
larger residues were not optimal forβ-sheets, we got unfavorable
results for the larger residues. Therefore we performed the opti-
mization only for polyalanine, and adjust all the atomic positions
for the side chains later in other optimizations once the initial back-
bone configuration is specified interactively. The optimization re-
sults for each length and sheet environment of polyalanine are saved
in tables of dihedral angles, which are loaded when requested by the
user.

5 Visual Manipulation Guides

To be most useful for protein structure manipulation, our program
offers several visualization methods that guide a user towards cre-
ating good structures, and decrease the interaction time required to
create a structure that is fit for subsequent optimization.

5.1 Hydrogen Bond Visualization

The main task in creating protein structures is the alignment of in-
dividualβ-strands to formβ-sheets – mostly because the optimiza-
tion algorithm used subsequently has problems creating them auto-
matically. Asβ-sheets are stabilized by hydrogen bonds between
their strands, protein manipulation is mostly used to alignβ-strands
to each other in such a way that the number of hydrogen bonds be-
tween them is maximized.

To assist a user in this task, the program offers several align-
ment guides. The first guide is real-time detection and visualiza-
tion of backbone hydrogen bonds. As a protein changes shape, the
program constantly monitors position and orientation of hydrogen
bonding sites along the backbone, and renders a dashed yellow line
between all pairs of negatively charged C=O and positively charged
N–H groups that satisfy certain constraints. This visualization pro-
vides immediate feedback about the quality of the current alignment
during interaction, but it does not advise how to change an align-
ment to improve it.

To guide interaction, the program provides two different ways
of rendering potential hydrogen bonds, see Figure 12. First, it can
render abond site, i.e., the midpoint of a hypothetical hydrogen
bond, for each charged backbone group, showing a potential bond’s
midpoint position and orientation. Forming bonds therefore is re-
duced to aligning the midpoints and orientations of two differently
charged backbone groups. Alternatively, the program can render a
hydrogen cagearound each backbone N–H group. Hydrogen cages
enclose the space a C=O group’s oxygen atom must fall into to form
a hydrogen bond. Hydrogen cages are more accurate than hydro-

gen bond sites, but the latter are more appropriate for rapid coarse
alignments, and lead to less visual clutter.

Figure 12: A mixed parallel and anti-parallelβ-sheet. Formed hy-
drogen bonds are shown as dotted yellow lines. Left: hydrogen
bond sites for positively charged N–H groups are rendered in blue;
those for negatively charged C=O groups are rendered in red. Right:
Hydrogen cages are rendered as yellow wireframe cages around N–
H groups; C=O groups are rendered in red.

5.2 Ramachandran Plots

The current IK algorithm assumes that a residue’s backbone bonds
can freely rotate, and that dihedral angles can take any value in
the interval [0, 2π). In reality, however, not all dihedral angle
value combinations are equal. Due to interference of a residue’s
side chain with its backbone, some values ofφ andψ are more
favourable than others. The internal energy of a single residue can
be treated as a bivariate function ofφ andψ, and graphs of this
function are calledRamachandran plots[1]. Incidentally, some es-
pecially low-energy regions in Ramachandran plots correspond to
the particular angle combinations that formα-helices and standard
β-strands. Our program visualizes the dihedral angles of active coil
regions in the style of Ramachandran plots to help a user evaluating
the “naturalness” of a configuration created by the IK algorithm.

5.3 Visualization of Atom Collisions

Another aspect not considered by the IK algorithm is global inter-
ference of atoms inside a protein. Ignoring atom collisions during
manipulation gives a user more freedom to rapidly create “good”
structures and to move from one structure to another one. How-
ever, before a protein structure can be used as initial configuration
for optimization, atom intersections that are too “deep” to be au-
tomatically cleaned up by the optimization code must be resolved
manually.



To assist a user in this task, the program calculates and visualizes
atom intersections in real-time during manipulation. We use a sim-
ple grid-based algorithm to quickly find all pairs of atoms whose
van-der-Waals-spheres intersect deeper than some threshold value.
This algorithm is efficient enough for real-time collision detection,
even for large proteins consisting of thousands of atoms. To visu-
alize intersections, the program renders red spheres of radii propor-
tional to the depth of an intersection at the midpoint between two
intersecting atoms, see Figure 13.

Figure 13: Protein structure where the centralα-helix is too close to
theβ-sheet; parts of the helix’ side chains interfere with the sheet.
The collision spheres are updated in real-time during manipulation.

6 Conclusions and Future Work

We have described a program that allows a user to interactively cre-
ate protein structures from “scratch,” i.e., from an amino acid se-
quence, by using simple geometric constructions and inverse Kine-
matics, see Figures 14 and 15. Structures created with this program
are meant to be refined by subsequent global energy optimization,
or another method of protein structure prediction, see Figure 16.
Our collaborators from the Lawrence Berkeley National Labora-
tory, the University of California at Berkeley, and the University
of Colorado at Boulder have used the program to create initial
configurations for several large proteins during preparation for the
Fifth Meeting on the Critical Assessment of Techniques for Protein
Structure Prediction (CASP5) in Summer 2002 [14], see Figures 15
and 16.

Our current research focuses on improving the IK algorithm to
better handle bidirectional manipulation, see Section 4.5, and to
optionally consider the “desirability” of(φ, ψ) angle pairs to find
better coil region conformations, see Section 5.2. Furthermore, we
are adding a steering component that enables to use our program as
a monitoring and steering front-end for protein structure prediction.

7 Acknowledgments

This work was supported by the U.S. Department of Energy under
contract DE–AC03–76SF00098, the National Science Foundation
under contract ACI 9624034 (CAREER Award), through the Large
Scientific and Software Data Set Visualization (LSSDSV) program
under contract ACI 9982251, through the National Partnership for
Advanced Computational Infrastructure (NPACI) and a large Infor-
mation Technology Research (ITR) grant; and the National Insti-
tutes of Health under contract P20 MH60975–06A2, funded by the
National Institute of Mental Health and the National Science Foun-
dation. We thank the members of the Visualization and Graphics
Research Group at the Center for Image Processing and Integrated

Figure 14: Protein structure consisting of severalα-helices grouped
around a centralβ-barrel, i.e., a closedβ-sheet. The structure was
created from scratch using an artificial amino acid sequence and a
custom secondary structure type sequence.

Figure 15: One initial structure for protein T187, one of the tar-
gets from the CASP5 protein structure prediction competition. We
focused on the central anti-parallelβ-sheet and did not attempt to
cluster the surroundingα-helices into a compact shape.



Figure 16: Protein T139, another CASP5 target. Top: an initial
structure for T139 created from scratch. Middle and bottom: two
renderings of a candidate configuration for T139 returned by the
global energy optimization process. Note the compactness of the
returned configuration, and howα-helices andβ-strands bend and
twist to form a compact shape.

Computing (CIPIC) at the University of California, Davis and the
Visualization Group at the Lawrence Berkeley National Laboratory.
We thank Prof. Head-Gordon, Prof. Byrd, Prof. Schnabel, and Eliz-
abeth Eskow for their helpful comments.

References

[1] Lehninger, A. L., Nelson, D. L. and Cox, M. M.,Principles of
Biochemistry, 2nd ed. (1993), Worth, New York, New York

[2] McGuffin, L. J., et al.,PSIPRED: a Protein Structure Predic-
tion Server, http://www.psipred.net

[3] Humphrey, W., Dalke, A. and Schulten, K.,VMD – Vi-
sual Molecular Dynamics, Journal of Molecular Graphics 14,
pp. 33–38

[4] Nelson, M. T., Humphrey, W. F., Gursoy, A., Dalke, A.,
Laxmikant, V. K., Skeel, R. D. and Schulten, K.,NAMD: A
Parallel Object-Oriented Molecular Dynamics Program, In-
ternational Journal of Supercomputer Applications and High
Performance Computing 10(4) (1996), pp. 251–268

[5] Stone, J. E., Gullingsrud, J. and Schulten, K.,A System
for Interactive Molecular Dynamics Simulation, 2001 ACM
Symposium on Interactive 3D Graphics, ACM SIGGRAPH
(2001), pp. 191–194

[6] Farin, G.,Curves and Surfaces for Computer Aided Geomet-
ric Design, 3rd ed. (1993), Academic Press, Boston, Mas-
sachusetts

[7] The Protein Data Bank, http://www.pdb.org

[8] Welman, C.,Inverse Kinematics and Geometric Constraints
for Articulated Figure Manipulation, Master’s Thesis, Simon
Fraser University, Vancouver, Canada, 1993

[9] Crivelli, S., Eskow, E., Bader, B., Lamberti, V., Byrd, R.,
Schnabel, R. and Head-Gordon, T.,A Physical Approach to
Protein Structure Prediction, Biophysical Journal 82 (2002),
pp. 36–49

[10] Richardson, J. S. and Richardson, D. C.,Principles and Pat-
terns of Protein Conformation, in: Fassman, G. D., ed.,Pre-
diction of Protein Structure and the Principles of Protein Con-
formation, Plenum Press, New York, New York, 1989

[11] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery,
B. P.Numerical Recipes in C, 2nd ed. (1992), Cambridge Uni-
versity Press, Cambridge, Massachusetts

[12] Cornell, W. D., Cieplak, P., Bayly, I., Gould, I. R., Merz,
K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell,
J. W. and Kollman, P. A.,A Second Generation Force Field
for the Simulation of Proteins, Nucleic Acids and Organic
Molecules, Journal of the American Chemical Society 117
(1995), pp. 5179–5197

[13] Liu, D. C. and Nocedal, J.,On the Limited Memory BFGS
Method for Large Scale Optimization Methods, Mathematical
Programming 45 (1989)

[14] Head-Gordon, T., Crivelli, S., Kreylos, O., Eskow, B., Choi,
H., Byrd, R. and Schnabel, R.,A Physical Approach to Protein
Structure Prediction, in: Moult, J., Fidelis, K., Zemla, A. and
Hubbard, T., eds.,Proceedings of CASP5 – Fifth Meeting on
the Critical Assessment of Techniques for Protein Structure
Prediction, Pacific Grove, California, December 1–5, 2002,
pp. A76–A78




