
Visualizing Gyrokinetic Simulations

David Crawford Kwan-Liu Ma ∗ Min-Yu Huang

University of California at Davis

Scott Klasky Stephane Ethier

Princeton Plasma Physics Laboratory

Figure 1: Interactive volume visualization for gyrokinetic simulations presents some unique challenges to existing commercial software packages
due to the mesh structure, size, and complexity of the data.

ABSTRACT

The continuing advancement of plasma science is central to real-
izing fusion as an inexpensive and safe energy source. Gryoki-
netic simulations of plasmas are fundamental to the understanding
of turbulent transport in fusion plasma. This paper discusses the vi-
sualization challenges presented by gyrokinetic simulations using
magnetic field line following coordinates, and presents an effec-
tive solution exploiting programmable graphics hardware to enable
interactive volume visualization of 3D plasma flow on a toroidal
coordinate system. The new visualization capability can help sci-
entists better understand three-dimensional structures of the mod-
eled phenomena. Both the limitations and future promise of the
hardware-accelerated approach are also discussed.

Keywords: graphics hardware, non-rectilinear mesh, plasma
physics, scientific visualization, texture methods, volume visual-
ization

1 INTRODUCTION

Fusion energy research gives promise to environmental attractive,
commercially viable, sustainable energy source for the next century.
A large part of the worldwide fusion research effort goes into the
development of numerical codes to simulate real experiments. By
effectively utilizing the full power of modern supercomputers, fu-
sion codes can simulate the movement of billions of particles over
thousands of time steps in complex geometry. Advanced visual-
ization is necessary for extracting the key physics from the large
amounts of data generated by these simulations.

To numerically study magnetic confinement and transport
physics in the fusion process, the gyrokinetic model [3, 4] has been

∗Department of Computer Science, University of California at Davis,

One Shields Avenue, Davis, CA 95616. ma@cs.ucdavis.edu

shown to be effective in modeling turbulent transport and highly ef-
ficient on many massively parallel computing platforms. However,
existing visualization systems do not provide adequate capability to
support the analysis of advanced gyrokinetic simulations of plasma
turbulence. These simulations produce enormous amounts of data
along a mesh which follows the magnetic field lines. Scientists need
to be able to freely vary the visualized parameters and interactively
browse the data. Local and global details must be captured at the
highest available resolution. Rendering the particle paths is needed
in addition to displaying the parameter values in order to gain un-
derstanding and new scientific insights from the data.

This paper discusses the visualization challenges presented by
gyrokinetic simulations and introduces a new volume rendering
strategy leveraging the programmable features of PC graphics hard-
ware to enable interactive visualization of plasma flow in toroidal
systems. The interactive 3D visualization technique gives the scien-
tists at the Princeton Plasma Physics Laboratory (PPPL) new abil-
ity to examine the structure and evolution of the volumetric, tubular
features in their turbulence simulation data. The resulting visual-
izations also allow scientists to more effectively communicate their
findings to others.

2 GYROKINETIC SIMULATIONS

Scientists at PPPL have been developing microturbulence codes in
fusion to gain an improved understanding of the turbulent transport
in magnetically confined toroidal plasmas. Turbulence is believed
to be the mechanism primarily responsible for cross-field transport
in such systems. Energy transport from the hot and dense core of
the plasma to the cold walls of the device greatly exceeded the level
predicted by the earlier theory of Coulomb collisions. It is now be-
lieved that plasma microturbulence driven by temperature and den-
sity gradients are responsible for these enhanced cross-field trans-
port rates. The ability to suppress microturbulence-driven transport
may well be the key to a practical magnetic confinement device.
Therefore, the size and cost of a fusion reactor is determined in
large part by the balance between particle and energy confinement
time and fusion self-heating. Plasma turbulence is also a very com-

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

59

plex nonlinear phenomenon with associated large time and spatial
scale separations, similar in many ways to general fluid turbulence.

The gyrokinetic particle-in-cell (PIC) simulation is based on
the gyrophase-averaged Vlasov-Maxwell system of equations for
magnetically confined plasmas [3, 4]. Since its inception, major
progress has been made in carrying out full-torus (global) micro-
turbulence simulations using PPPL’s gyrokinetic Global Toroidal
Code (GTC) on massively parallel computers [6]. The PIC method
solves the nonlinear partial differential equations through sim-
ple linear local operations and is accordingly amenable to multi-
dimensional domain decompositions. The computing time in a PIC
code is usually linearly proportional to the number of particles re-
siding in each processor, while the inter-processor communication
time is usually less than a few percent of the total computing time.
Consequently, GTC has shown excellent scaling up to 1024 pro-
cessors with a parallel efficiency of up to 98% [1], and has been
effectively applied to study the size scaling of reactor-size tokamak
plasmas [5].

Understanding the behavior of turbulent plasma transport is not
only a grand challenge problem, but it is also a key to enabling
a reliable assessment of the requirements for an attractive fusion
reactor in the future. Important additional physics could also be
incorporated into the code, including an electron model with non-
adiabatic dynamics and the vector potential parallel to the magnetic
field. This would enable GTC to analyze electromagnetic shear-
Alfven physics in tokamaks and stellarators. These improvements
would enable exciting new capabilities for running realistic simu-
lations on advanced parallel architectures of turbulence and neo-
classical transport in reactor grade plasmas; however, the storage
requirements will increase by an order of magnitude. Visualization
plays an increasingly important role.

2.1 Characteristics of GTC Data

The mesh used in GTC is unstructured in the poloidal cross section,
as shown in Figure 2. The mesh maintains a constant arc distance,
r∆θ , so the number of mesh points increases as we move out in the
radial direction. For example, a typical mesh has 360 radial × 2560
poloidal × 64 toroidal points, a total of 59 million points. The mesh
twists around the torus, and the twist is different for each radial tube
as you go around the torus. A 3D view of the mesh along with two
cross sections are shown in Figure 1

Several parameters, such as density and temperature, are com-
puted at each mesh point for each time step. The largest run of
the simulations with 125 million mesh points and one billion par-
ticles that has been performed thus far produced 4 TB of data. If
all of the particle data were stored, the requirements would increase
to over 115 TB. Consequently, intelligent analysis routines are ur-
gently needed to store the most relevant portion of the data from
regions of interest. Furthermore, data compression and advanced
visualization methods are required.

2.2 Visualization Requirements

A unique diagnostic for tokamak transport would be the visualiza-
tion of the actual particle trajectories in addition to the 3D ren-
dering of density, velocity, temperature and potential fluctuations
generated by the microinstabilities. The particles should be vi-
sualized in the presence of the external toroidal magnetic field as
well as in the self-consistent perturbed electric and magnetic fields
of a torus. When the electromagnetic dynamics are implemented
in these global simulations, a formidable visualization challenge
will be to track the path of the charged particles as they move
through these perturbed trajectories and stochastic regions, and con-
sequently enhance electron transport. In addition, the perturbed
magnetic fields can introduce a tearing of the equilibrium flux sur-
faces in local regions.

Figure 2: Top: Representation of the field-line following mesh on a
flux (magnetic) surface of the system (constant radius). The twist
in the filed lines depends on the magnetic equilibrium of the device
under study. Bottom: mesh of a poloidal plane (perpendicular sec-
tion) showing the constant density of points. This mesh rotates as
one goes around the torus due to the twisting of the magnetic field
lines.

Particle simulation is uniquely equipped for addressing these
highly complex problems because it models the behavior of indi-
vidual particles in toroidal systems. Developing advanced particle
visualization software will give scientists the tools to extract key
physics insights for these important investigations:

• By following the time evolution of these particles we can
gain a better understanding of the physics of particle and en-
ergy transport and an answer to the outstanding question of
whether the turbulent transport is convective or diffusive in
nature.

• The enhanced visualization capabilities may also help unravel
the mystery of the experimentally-observed inward pinch of
the impurity particles coming from the plasma edge.

• New visualization tools are needed to address the outstanding
question of what actually causes the anomalously-high levels
of electron transport always observed in tokamak plasmas.

To address these visualization needs, the techniques that we and
others have developed for visualizing 3D field lines [13, 11, 12],
particle data [14, 9], and time-varying data [8, 7, 15, 10] are appli-
cable. In this paper, we focus on the need to visualize the scalar
Maxwell potential data. In the past, scientists at PPPL were mainly
using AVS/Express for making cross-section and isosurface visu-
alization of the potential data. As shown in Figure 3, one exam-
ple highlights the positive and negative potential, and the other
reveals the tubular structures. However, the commercial software
tool AVS/Express currently lacks support for volume rendering
irregular-grid data and does not take advantage of the advanced fea-
tures of current graphics hardware, making the process of creating
visualization rather tedious and time consuming. The rest of this

60

Figure 3: GTC data visualization made using AVS/Express. Left: The scalar potential. Right: Isosurface of the tubular structures.

Figure 4: Steps taken to generate an image of the GTC volume data.

paper presents a new hardware-accelerated rendering technique de-
signed specifically for interactive volume visualization of the 3D
potential data on the twisted mesh.

3 A HARDWARE-ACCELERATED VOLUME VISUALIZATION

TECHNIQUE

The 3D texture hardware support of commodity graphics hard-
ware makes possible real time volume rendering. Rendering is per-
formed by drawing a set of view-aligned polygon slices that sample
a 3D texture containing the volume data. These slices are com-
posited using hardware alpha blending to derive the final image.
However, the graphics hardware is designed around linear interpo-
lation of planar data. The GTC volume data is not stored in such
a manner so it cannot be rendered directly. To maintain interactive
visualization, we have developed a rendering technique that makes
use of mixed-coordinate system textures and vertex and fragment
shaders. We have studied various quality and speed tradeoffs, in-
cluding using a data-space versus color-space texture and mapping
time-critical aspects of the fragment shader to textures. Figure 4
shows the main steps taken to generate an image of the GTC vol-
ume data.

Figure 5: Cartesian point C generated by first doing arclength-wise
linear interpolation between A0-A1, and B0-B1, to find the interpo-
lated data values at C0 and C1. The ρ location of C is then used
to linearly interpolate between C0-C1 to find the data value at the
desired texture coordinate.

3.1 The Toroidal Data Storage

The toroidal data to be visualized is structured into poloidal planes
using the minor radial (ρ) and minor angular (θ) coordinates. These
planes are arrayed evenly along the major angular coordinate (ζ).
The mesh structure of the disks is made to approach even spacing
in the plane. This is accomplished by ordering the plane into rings
of increasing number of points to maintain arclength density (see
Figure 2); the starting θ of a ring and number of points per ring
are also stored. The data values associated with a location are thus
stored in a 2D array of dimension D×p where D is the number of
disks and p is the number of points per disk.

3.2 Preprocessing

A primary capability of current graphics hardware for volume vi-
sualization is doing linear interpolation of textures. Thus, an opti-
mal coordinate system would be one that closely matched the data
storage and facilitated the use of the texture interpolator. This is
approached here by using an unwrapped square-toroid, which is a
rectangular prism, with its two equal sides corresponding to disk-
aligned Cartesian planes (s, t) and its third coordinate (u) mapping
directly to ζ .

The object texture is generated by taking Cartesian samples of
each poloidal plane created by polar interpolation of the nearest
normalized data points (see Figure 5). As the interpolation is bi-
linear in the original coordinate system, linear error propagation is
maintained. Duplicates of the first and last disks are stored as the
borders of the opposite ends of the texture to allow for continuity in
the interpolation.

One important consideration is that of resampling density versus

61

memory usage. If the data is sampled sparsely, then interpolation
error will increase. If the samples are too dense, then memory is
wasted on samples that do not contribute to adding more informa-
tion. In the case of linear error propagation, the optimum density
should occur when the number density of new sample points per
unit area is equal to the number density of the original data points
per unit area. A regularly sampled grid containing about twice as
many points results in a 3D texture that can be rendered very effi-
ciently. In the case of data containing 91 rings per poloidal plane
and 32499 points per plane, a 205×205 regularly sampled grid will
result in an average area per sample point similar to that of the orig-
inal data. Thus, a more memory aligned 256×256 grid can also
faithfully cover 30,000-50,000 points on the original structure grid
with similar sample density. A 512×512 grid can cover a case con-
taining approximately 200,000 original points per plane.

Note that the ζ to u mapping works because the angular ζ distor-
tion is linear with respect to the major radial coordinate and inde-
pendent of the t (‘height’) coordinate. Therefore, angular distortion
is conserved across the linear interpolation of the texture system,
and finally undone when a given texture coordinate is remapped to
world space. Figure 6 compares the original point data and the re-
sampled data on a poloidal plane. The 256×256 resampled points
capture the fine features in the original data.

Figure 6: Left: Original point samples. Right: 256×256 resampled
points. The two planes match quite closely.

3.3 Rendering

For rendering, view-aligned slices are passed to the graphics pipe,
which then proceed to be processed by the vertex and fragment pro-
grams, which were were written in nVidia’s Cg (C for graphics) lan-
guage. The primary functionality of the rendering stage is a coordi-
nate transformation from the rectangular object coordinate system
to the mixed coordinate system of the texture data object. This can

be described as (x,y,z) → (
√

x2 +y2
,atan(y,x),z) ≡ (r,ζ ,z) (see

Figure 7), where (r,ζ ,z) is then normalized to the final texture co-
ordinates Tstu. At various points, checks are made to verify that the
sample point is within the data; otherwise the sample is discarded.
This transformation is necessary because when samples are taken
along view-aligned slice planes they do not vary linearly across the
texture (see Figure 8). The data value is then retrieved from the 3D
texture using the calculated normalized coordinates. Finally, this
data value is passed as the coordinate to the colormap to give the
final output color.

Rendering can be done in either data space or color space. In
data space, resampling is done by interpolating the data texture, and
then the color and opacity values are looked up using the resampled
data value. In color space, we render classified volume directly by
interpolating the RGBA texture. Data space rendering usually gen-
erates more accurate visualization while color space rendering is

Figure 7: The mixed-coordinate system.

Figure 8: Left: Mapping between object slice planes. Right: Corre-
sponding locations in the texture object.

faster. However, color space visualization often suffers from the
blurriness introduced by color interpolation. Figure 9 compares
data-space rendering with color-space rendering. Data space ren-
dering displays clearer tubular structures.

4 OPTIMIZATIONS

The fragment shader is neither at its fastest nor at its highest quality.
Various optional optimizations are possible and applied in different
combinations to meet different performance requirements.

Figure 9: Left: Data-space visualization of positive (blue/green) and
negative (red/yellow) potential values. Right: Color-space visualiza-
tion. Color space rendering is faster but it adds some blurriness to
the picture.

62

4.1 Quality Improvements

Aligning the texture samples to the data disks removes some arti-
facts. However, it requires two accesses each of the data and col-
ormap textures: pre-alpha multiplying each temporary color by its
alpha value, and linear interpolation between the colors; followed
by the final alpha to obtain the output color.

Using more view-aligned slices can increase image quality but
opacity must be appropriately corrected. Adding in the opacity cor-
rection formula allows for consistency across sampling densities at
a slight performance loss.

In the texture coordinate function, adding a check against the
minimum and maximum minor radii before normalizing Tst allows
for clipping the object by varying the input parameters for those
radii. This comes at the cost of an if-statement branch in the frag-
ment program.

Lighting can help illustrate the shape of 3D structures and their
spatial relationships. To including lighting, normalized gradient di-
rection of each voxel must be either precomputed and stored or cal-
culated on the fly, which requires additional texture lookup. Our
current implementation does not include lighting.

4.2 Speed Improvements

A color-space interpretation of the data can be a speed increase
of mixed blessings. On the positive side, it allows the pre-
multiplication stage to be moved into the texture object creation
phase and it removes the need for accessing an additional colormap.
However, since it has to update the texture object whenever the
RGB or alpha maps change, it adds a delay when trying to mod-
ify the transfer functions. Additionally, it can add sometimes en-
lightening, but counter-intuitive artifacts to the image. As an ex-
ample, consider a two-color transfer function. In data-space, all
output will be, for example, red or blue. In color-space however,
if there are two paths of data near to each other, one red and one
blue, then the region between them will be interpolated to be pur-
ple. A similar problem occurs with transparency functions that are
non-monotonic.

Because color-space does not require a colortable lookup, an-
other optimization is available in this mode. When the data values
are first interpolated into the s-t-u coordinate system, the borders
can be set to a value that is outside of the [0, 1] range required
for data-space. Then when the color object is generated, the alpha
value of the borders can then be forced to zero, disregarding the
colormap entirely. Then the texture border clamping capabilities
can be taken advantage of, allowing the check of whether or not the
fragment is inside the toroid to be removed. Because the branch-
ing capability of current hardware is such that the program takes
as long as if sections of code were not skipped, it can currently be
faster to just process a fragment with a zero alpha than to test if the
point is outside of the object.

An additional increase in framerate can come from changing the
arctangent function call to a two-dimensional texture. This texture
can be quickly procedurally generated at run-time for a one-time
cost and then used in place of the “atan2” Cg function call. This
performance increase is primarily because the arctangent function
is not native to the current generation of graphics cards and instead
is expanded to around an additional 30 lines of GPU assembly code.
The quality trade-off comes from a blockiness that is visible at close
viewpoints when the texture lookup-function is used. Tests indicate
that this is only minimally dependent upon the texture size itself.

One speed improvement that can allow even higher sampling
densities while maintaining a faster framerate is cropping the view-
ing area to a subset of the bounding box. This is done at zero cost
by changing the parameters for the borders in the creation of the
view-aligned slices instead of putting bounds checking in as an ad-
ditional geometry step in the shaders.

5 TEST RESULTS

We have tested our hardware accelerated rendering technique on an
Intel Xeon 3.06 GHz machine with 4GB of RAM and an nVidia
GeForce 5900 Ultra graphics card. Recorded framerates in Ta-
ble 1 were achieved using a 500×500-pixel display window. The
test data set consists of 64 disks and 32,449 points per disk so a
256×256×64 regular grid is sufficient. The largest increases of
framerate came from activating the texture-based arctangent. In ad-
dition, removing disk-aligned sampling can increase framerate by
another 30-40%, which is not revealed in this table.

Other saving can be obtained by processing fewer fragments.
The default mode (G) uses geometry clipping and branching. Ad-
ditional optimization (Gd) is possible by restructuring function re-
turns to remove an if-statement in the texture coordinate generation
code. As if-statement overhead is reduced in new cards, such an
optimization will become obsolete. Further saving can be achieved
by avoiding branching. This is done with texture boarder extension,
making the space outside the toroidal region transparent rather than
performing geometry clipping. We call it alpha clipping (Ga).

Table 1: Performance: frames per second (relative speedup). Far:
500×500 window, but entire torus does not fill the screen. Close:
window filled primarily by one segment of the torus. Top: a default
view looking at the ring of the torus where the torus fills the window.

Gfx Options Far Close Top

D G A 4.28 (1) .45 (1) .48 (1)

D Gd A 4.86 (1.14) 0.55 (1.19) .56 (1.16)

D G At 9.87 (2.31) 1.22 (2.69) 1.11 (2.28)

C G A 4.42 (1.03) 0.49 (1.08) .51 (1.06)

C G At 7.26 (1.7) 1.35 (2.98) 1.14 (2.36)

C Gd At 7.65 (1.79) 1.45 (3.19) 1.19 (2.46)

C Ga At 14.48 (3.38) 3.41 (7.54) 2.98 (6.15)

Keys for Gfx options:
C: color space D: data space
A: assembly arctan At: texture-based arctan
G: geometry clipping Gd: early-discard geometry
Ga: alpha clipping

Figure 10 shows images generated with data-space rendering
The image on the left was made with direct computing of atan
values while on the right with table lookup. Figure 11 shows im-
ages generated with color-space rendering. The image on the left
was made with disk-aligned sampling while on the right with full
hardware sampling. Note that using table lookup can lead to 50-
75% speedup in rendering time but the image results, as shown, are
comparable.

The value of volume rendering is that it can show scientists all of
the tubular structure which is inside of the dataset. Figure 12 shows
direct volume rendering of the tubular structure in color space as a
result of interactive cutting away and enhancement by editing trans-
fer function. This timeslice was after the zonal flow, which means
that the tubular structure generated in the ”middle” timeslices, as
shown in Figure 3, gets torn apart into these threads. Figure 13
displays similar feature enhancement for three selected timeslices
which are rendered in data space instead. When such a feature ex-
traction and exploration can be made interactively and conveniently,
the scientists’ opportunity for discovery is greatly enhanced.

Finally, Figure 14 shows four selected timeslices, in which we
see the onset of turbulence, where eventually the eddy structure is
formed in the later time steps. These images are generated in color
space. It is very difficult to look at this using isosurfaces, compared
to using volume rendering, because the time required to do nested
isosurfaces for large GTC datasets is prohibitive. It can take over
minutes per timeslice on a comparable PC.

63

Figure 10: Data-space visualization of potential plasma flows. Left:
Using the hardware-assembly expanded atan function. Right: Using
a 2D lookup texture for atan.

Figure 11: Color-space view using hardware atan. Left: Disk-aligned
sampling. Right: Full hardware sampling.

Figure 12: Volume rendering of the tubular structure with enhance-
ment. Positive potential in blue and negative potential in pink. The
volume is largely cut away to reveal a middle section.

Figure 13: Visualization of the tubular structure for three selected
time steps. Positive potential in blue and green and negative poten-
tial in red and yellow.

64

Figure 14: Four selected time steps from top to bottom. We see the
onset of turbulence, where eventually the eddy structure is formed
in the later time steps. Positive potential values are mapped to blue
and green and negative values to red.

6 DISCUSSION

The gyrokinetic data has been previously analyzed using isosur-
faces, but not with volume visualization techniques. With isosur-
face visualization, only a selection of data values would be seen,
possibly leaving out critical and or surprising information that could
have been available with a volume visualization. This program was
brought forward as an option for a different style of analysis. Both
techniques have pros and cons, leading to different but complemen-
tary uses. Direct volume rendering gives holistic viewing of the
data to see all of the tubular structure in ways impractical for iso-
surface techniques. The time required for isosurface creation can
become prohibitively expensive as datasets increase in size and de-
tail but isosurface visualization scales between display sizes with
little penalty.

Volume visualization has different aspects affecting visualiza-
tion time, including texture creation time and the pixel count of
the viewing window. Texture creation time is linear with respect
to not dataset size, but texture size, which can be adjusted as detail
requires. And with current graphics hardware, high quality textures
can be held on-card, at which point texture size is nearly decoupled
from rendering speed. As this program is shader-limited, render
time is proportional to the number of pixels and the sample plane
density. Thus for a given image, the current implementation would
not work well for large displays or powerwalls. However, it does
have application as a possible monitoring tool for viewing datasets
as time slices of the simulation are generated.

While interactive volume visualization is attractive, the current
hardware accelerated approach suffers from two types of artifacts.
The first type of artifacts is due to insufficient sampling rate in the
the front and back of the volume; depending on how the view-
aligned slices intersect with the poloidal data slices, different level
of blurriness may appear in those regions. The second type is
mainly transfer-function dependent, but has also to do with the
crude hardware interpolation employed. The former can be slightly
alleviated by employing more view-aligned slices but not be com-
pletely removed. The latter would require accurate interpolation
following the tubular structure which is not currently practical to
do in hardware due to the increased complexity of the shader pro-
gram. Nevertheless, the interactivity possible still makes the hard-
ware rendering approach attractive since scientists can freely vary
transfer functions and view to tell what are artifacts and what are
physical features.

7 CONCLUSIONS

The GTC particle-in-cell nonlinear microturbulence code has uti-
lized the full computing power of the modern supercomputers to
produce outstanding scientific results. Our ultimate goal is to ad-
dress the major visualization challenges associated with the increas-
ingly large data sets from GTC. In this paper we present our experi-
ence in making use of commodity graphics hardware to address the
irregular grid problem. We show interactive volume visualization
of the data on a single PC. This new capability offers scientists the
power to examine the volumetric, tubular structures in the turbu-
lence data.

For large meshes, like the largest one consisting of 59 million
points, a much larger texture would be needed to retain accuracy.
Our hardware accelerated technique can be implemented on a PC
cluster to render texture of that size at interactive rates. We envi-
sion a multiresolution approach to the large data problem. That is,
the scientist will switch between interactive browsing in the tempo-
ral, spatial and variable domains of the data and a close-up view of
some region of interest by resampling on the fly the corresponding
subset of the highest resolution data. Furthermore, these visualiza-
tion techniques are valuable for most of the datasets produced in

65

fusion simulations, since they work in toroidal coordinates.
Future work includes temporal-space animation and the incorpo-

ration of particle visualization along with volume visualization. A
parallel data streaming approach has been developed to efficiently
transfer terabytes of time-varying data generated by the Gyrokinetic
code for data analysis and visualization [2]. We will set up a paral-
lel rendering pipeline coupled with the data streaming method for
simultaneous visualization of volume and particle data.

ACKNOWLEDGMENTS

This work has been sponsored in part by the U.S. National Science
Foundation under contracts ACI 9983641 (PECASE award), ACI
0222991, and ACI 0325934 (ITR). the U.S. Department of Energy
under Memorandum Agreements No. DE-FC02-01ER41202 (Sci-
DAC program), No. B523578 (ASCI VIEWS), and the LANL/UC
CARE program.

REFERENCES

[1] S. Ethier, Z. Lin, J. Lewanowski, W. Wang, W. W. Lee, T. Hahm, and

W. M. Tang. Gyrokinetic toroidal code: A 3d parallel particle-in-cell

code to study microturbulence in magnetized plasmas. In Proceedings

of the CCP02 meeting of American Physical Society, APS/DCOMP,

2002.

[2] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney.

Grid-based parallel data streaming implemented for the gyrokinetic

toridal code. In Proceedings of Supercomputing 2003 Conference,

2003.

[3] W. W. Lee. Gyrokinetic approach in particle simulation. Physics of

Fluids, 26(2):556–562, February 1983.

[4] W. W. Lee. Gyrokinetic particle simulation model. Journal of Com-

putational Physics, 72:243–269, 1987.

[5] Z. Lin, S. Ethier, T. Hahm, and W. M. Tang. Size scaling of turbulent

transport in magnetically confined plasmas. Phyica. Review Letters,

88:195004–1–195004–4, May 2002.

[6] Z. Lin, T. Hahm, W. W. Lee, W. M. Tang, and R. White. Turbulent

transport reduction by zonal flows: Massively parallel simulations.

Science, 281:1835–1837, September 1998.

[7] E. Lum, K.-L. Ma, and J. Clyne. Texture hardware assisted rendering

of time-varying volume data. In Proceedings of Visualization 2001

Conference, pages 263–270, October 2001.

[8] K.-L. Ma and D. Camp. High performance visualization of time-

varying volume data over a wide-area network. In Proceedings of

Supercomputing 2000 Conference, November 2000.

[9] K.-L. Ma, G. Schussman, B. Wilson, K. Ko, J. Qiang, and R. Ryne.

Advanced visualization technology for terascale particle accelerator

simulations. In Proceedings of Supercomputing 2002 Conference,

November 2002.

[10] J. Schneider and R. Westermann. Compression domain volume ren-

dering. In Proceedings of IEEE Visualization 2003 Conference.

[11] G. Schussman and K.-L. Ma. Visualizing tokamak magnetic field line

data. In Proceedings of IEEE Visualization 2000 Conference, pages

501–504, October 2000.

[12] G. Schussman and K.-L. Ma. Scalable self-orienting surfaces: A com-

pact, texture-enhanced representation for interactive visualization of

3d vector fields. In Proceedings of the Pacific Graphics 2002 Confer-

ence, pages 356–365, October 2002.

[13] D. Stalling, M. Zockler, and H.-C. Hege. Fast display of illuminated

field lines. IEEE Transactions on Visualization and Computer Graph-

ics, 3(2):118–128, April 1997.

[14] B. Wilson, K.-L. Ma, and P. McCormick. A hardware-assisted hybrid

rendering technique for interactive volume visualization. In Proceed-

ings of 2002 Volume Visualization and Graphics Symposium, pages

123–130, 2002.

[15] J. Woodring, C. Wang, and H.-W. Shen. High dimensional direct ren-

dering of time-varying volumes. In Proceedings of IEEE Visualization

2003 Conference.

66

