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Query-Driven Visualization of Large Data Sets

Kurt Stockinger* John Shalf?

Kesheng Wu* E. Wes Bethel®

Computational Research Division
Lawrence Berkeley National Laboratory
University of California

ABSTRACT

We present a practical and general-purpose approach to large and
complex visual data analysis where visualization processing, ren-
dering and subsequent human interpretation is constrained to the
subset of data deemed interesting by the user. In many scien-
tific data analysis applications, “interesting” data can be defined
by compound Boolcan range querics of the form (temperature >
1000) AND (70 < pressure < 90). As data sizes grow larger, a
central challenge is to answer such queries as efficiently as possible.
Prior work in the visualization community has focused on answer-
ing range queries for scalar fields within the context of accelerating
the search phase of isosurface algorithms. In contrast, our work de-
scribes an approach that leverages state-of-the-art indexing technol-
ogy from the scientific data management community called “bitmap
indexing.” Our implementation, which we call “DEX” (short for
dextrous data explorer), uses bitmap indexing to efficiently answer
multivariatc, multidimensional data querics to provide input to a
visualization pipeline. We present an analysis overview and bench-
mark results that show bitmap indexing offers significant storage
and performance improvements when compared to previous ap-
proaches for accelerating the search phase of isosurface algorithms.
More importantly, since bitmap indexing supports complex multi-
dimensional, multivariate range queries, it is more generally appli-
cable to scientific data visualization and analysis problems. In ad-
dition to benchmark performance and analysis, we apply DEX to a
typical scientific visualization problem encountered in combustion
simulation data analysis.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types H.3.3 [Infor-
mation Systems]: Information Storage and Retrieval—Information
Filtering

Keywords: query-driven visualization, visual analytics, bitmap
index, multivariate visualization, large data visualization, data anal-
ysis, scientific data management

1 INTRODUCTION

Many application scientists attending a recent series of workshops
held by the Scientific Data Management community!have stated
that information management and analysis is a limiting factor in
scientific research. Simply put, there is too much data to analyze
or visualize. Our work is motivated by the desire to provide new
capabilities to meet the “large data” challenge. Our work diverges
from previous efforts in large- and complex-data visualization in
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that we combine state-of-the-art scientific data management tech-
nology with visualization tools to implement a methodology known
as “query-driven visualization.” The fundamental premise of our
work is to focus visualization processing and subsequent visual in-
terpretation only on data deemed to be “interesting” as defined by
the user and to use state-of-the-art technology from the scientific
data management community to implement the data query portion
of the processing pipeline.

One of the significant challenges from the field of data manage-
ment is data searching. Many approaches have been used over the
years, ranging from well-known constructs like B-trees to complex
indexing techniques. The visualization community has tackled this
problem as well, notably in the topic of isosurface acceleration. The
main thrust of many isosurfacc papers during the last decade is how
to more quickly find cells intersecting the isosurface ([9], [10], [17].
[27]). While these approaches work well for single-valued search
criteria, we use a methodology that offers a capability not possible
with isosurface acceleration techniques, namely the ability to per-
form complex multidimensional, multivariate queries as part of the
visualization and analysis process and in a fashion that is generally
applicable to a wide variety of applications.

To efficiently answer complex data queries, we turn to the scien-
tific data management community. We leverage an indexing tech-
nology known as “bitmap indexing.” This approach is more gen-
eral than previous works describing isosurface acceleration for two
primary rcasons. First, the querics themselves may be complex,
multidimensional and multivariate rather than single-valued. Sec-
ond, the DEX architecture effectively compartmentalizes the query
phase from the analysis, visualization and rendering phases. The
result is a flexible architecture that is widely applicable to many
different types of data analysis and visualization problems. This
approach is not entirely new, as FastBit has been used to provide
multidimensional, multivariate, large-scale data query capabilities
to challenging analysis problems posed by data produced by High
Energy Physics experiments [37].

There are two main contributions of this paper. First, we in-
troduce an architecture that leverages state-of-the-art scientific data
management softwarc to perform highly cfficient multivariate data
queries that are used as input to a general visualization pipeline.
Our DEX implementation realizes interactive query-driven visual-
ization of complex data sets produced by contemporary computa-
tional science. Second, we provide an analysis overview and empir-
ical benchmark results that compare our approach with prior work.
Our benchmark studies focus on the data query phase of the iso-
surface algorithm: we compare the performance of the data query
phase of a well-known accelerated isosurfacing algorithm with that
of the data query phase of DEX. The analysis indicates that DEX
has favorable storage and computational complexity when com-
pared to previous work. The experimental results show that DEX
outperforms the well-known accelerated isosurfacing algorithm by
factors ranging from 137% to 392% dcpending upon the source
data.
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The rest of this paper is organized as follows. In the next sec-
tion, we discuss previous work in several topics germane to the
overall theme of this paper. In Section 3 we present the DEX archi-
tecture along with a discussion of storage and performance com-
plexity. Our experimental results follow in Section 4, where we
provide a detailed description of the benchmark used to obtain per-
formance profiles of DEX and a well-known accelerated isosurface
implementation. We conclude with discussion and suggestions for
potential future rescarch.

2 RELATED WORK

In the following subsections, we review previous research in sev-
cral arcas germanc to query-driven visualization of large and com-
plex data. Previous large-data visualization research topics have
tended to focus on scalable techniques that increase the capacity of
the visualization pipeline rather than to reduce the amount of “non-
interesting” data that must be visually interpreted. Previous work
in the field of query-driven visualization has focused on presenta-
tion and optimal implementation strategies. The related emerging
field of Visual Analytics is predicated upon the ability to find and
display “interesting data.” Previous work in isosurface acceleration
includes numerous techniques to more efficiently locate cells that
intersect an isosurface. Bitmap indexing is a technology for per-
forming rapid searches within datasets.

2.1 Large and Complex Data Visualization

In response to increased data resolution, a number of research
projects have focused on techniques for increasing the capacity of
a visualization pipeline through parallelism, or scalable visualiza-
tion. Vislt [16] and ParaView [1] are two examples of scalable ap-
plications that use a parallel and pipelined architecture to support
visualization of large datasets on parallel platforms. They represent
a small sample of the enormous body of scalable visualization and
rendering research from the past two decades. The aim of these ap-
plications, and similar rescarch cfforts, is to address the large data
challenge by bringing more resources to bear on the visualization
problem. While they are effective in that regard, they also increase
the processing load on the human observer, and do not necessarily
aid in the understanding of large and complex datasets.

Other approaches aim to reduce the downstream processing and
visual interpretation load by limiting the amount of data presented
to the visualization pipeline. The data simplification approach in
[28] accelerates visualization by focusing processing only on data
at the boundaries between two materials. Other examples can be
found in the myriad approaches to automatic feature detection and
data-mining approaches [25, 19]. These approaches are most appli-
cable to confirm the presence or absence of known phenomena. The
opportunity cost is the lost possiblity of discovering unexpected
features in the data not saved to disk.

2.2 Query-Driven Visualization

The idea of query-driven visualization is not new. Like our work
here, previous works in query-driven visualization have the aim of
highlighting data that a user defines as “interesting.”

The VisDB system described in [15] couples a guided query-
formulation facility with a relevance-based visualization and pre-
sentation paradigm. All data in a given dataset is examined and
ranked in terms of its relevance to each query. The result is
O(n) memory and processing complexity for each and every query.
VisDB aims to reduce the amount of data that is displayed by us-
ing a set of statistical heuristics to select the data most relevant to a
query. It uses a “relevance factor” to place “similar data” close to-
gether during rendering to produce the visual appearance of “clus-

bitmap index
RID | I|[=0 =1 =2 =3
110 1 0 0 0
211 0 1 0 0
313 0 0 0 1
4121 0 0 1 0
513 0 0 0 1
by by by by

Figure 1: A sample bitmap index where RID is the record ID and I
is the integer attribute with values in the range of O to 3.

ters.” It appears to be particularly well-suited for use with qualita-
tive and “fuzzy” queries.

More recently, the Scout software system described in [20] pro-
vides the ability to perform expression-based queries using a sim-
ple programming language along with visualization, where both
queries and visualization are executed entirely on a GPU. The Scout
program, which is realized (compiled) as fragment assembler, op-
erates on source data that is loaded as an OpenGL. texture on the
GPU. The program (fragment assembler) is executed during render-
ing: two-dimensional data is rendered as a single quadrilateral, and
three-dimensional data is rendered as view-aligned slices in back-
to-front order as direct volume rendering. As described, Scout op-
erates only on 2D or 3D regular grid structures, and its capacity
is limited by the amount of data that can be fit entirely into GPU
texture memory. The computational complexity of Scout’s query-
driven visualization appears to be O(n), as each data cell must be
examined in answering the query. However, since n is small due
to the GPU memory footprint and the GPU supports concurrent si-
multaneous execution, Scout exhibits excellent performance char-
acteristics.

In both of these cases, the data query phase is of O(n) complex-
ity, and is also inextricably embedded within a visualization appli-
cation. The search results in VisDB, which are in effect a ranked
ordering of the entire dataset according to a relevance factor, are
then used as input to a set of subsetting tools that use statistics to
partition the ranked search results. The search results in Scout are
the pixel fragments that ultimately appear on-screen.

The term “visual analytics” has been coined to describe a sct
of activities that add discourse and dynamic interaction to the pro-
cess of analysis and visualization. Recent progress in these arcas
spans a diversity of topics, ranging from more effective means for
displaying complex and multidimensional data [15, 24, 26], novel
approaches for interaction that aid in navigating through complex
information spaces [32, 14], and a class of applications that encom-
pass both visualization and analysis [12]. Arguably, a central theme
of these works is to aid in discovery by reducing visual complexity
by conveying only that information of interest to a particular line of
inquiry.

2.3 Bitmap Indices

Bitmap indices are efficient index data structures for accelerating
multi-dimensional range queries for read-only or read-mostly data
[22, 36]. Given n records with ¢ distinct attribute values, the basic
bitmap index [8] generates ¢ bitmaps with n bits each. A bitin a
bitmap is set to 1 if the attribute in the record is of a specific value,
otherwise the bit is set to 0. For example, the integer attribute I
shown in Figure 1 can be one of four distinct values, 0, 1, 2, and 3.
For each value one bitmap is generated. Since the value in record 5
is 3, the fifth bit in b4 is sct to 1 and the same bits in other bitmaps
are 0.

Bitmap indices are efficient for processing multidimensional
range queries such as “I < 2 and J > 3”. The queries are evalu-
ated with bitwise logical operations that are well-supported by com-



puter hardware. Multidimensional and multivariate queries are sim-
ply linear combinations of single-valued queries. For this reason,
bitmap indexing does not suffer from the “Curse of Dimensional-
ity” [5] in which adding more dimensions results in an exponential
growth in storage and processing requirements. Such are character-
istics commonly associated with tree-based methods for indexing
and searching.

One concern with any indexing strategy is the storage cost for
the indcex itsclf. Onc way to reducc the storage requirecment for
bitmap indices is via compression. An efficient bitmap compres-
sion scheme must reduce the size of bitmaps as well as efficiently
perform bitwise Boolean operations. Several bitmap compression
methods were studied in [2, 13]. The authors demonstrated that
the Byte-aligned Bitmap Code (BBC) [3, 4] shows the best over-
all performance characteristics. More recently, [36] introduced
a new compression method called Word-Aligned Hybrid (WAH).
[36] shows the time required to answer a range query using a com-
pressed bitmap index to be optimal, where the worst case response
time is proportional to the number of hits rcturncd by the query.

Traditional bitmap indices encode each distinct attribute value
as one bitmap vector, which is very efficient for data of low car-
dinality. Scientific data, however, is typically of high cardinality
and represented in floating point format. [31] demonstrates that
bitmap indices with binning can significantly speed up multidimen-
sional queries for high-cardinality attributes. Rather than encode
each distinct attribute value, bitmap indices with binning encode
attribute ranges. FastBit supports two different binning strategies —
equidepth binning and equiwidth binning. The equidepth approach
sclects bin sizes in a manncr that cnsurces that nearly the same num-
ber of items end up in each bin. (Note: An analogy is “histogram
equalization,” which employs a monotonic, non-linear mapping that
reassigns the intensity values of pixels in the input image such that
the output image contains a uniform distribution of intensities.) The
equiwidth approach simply subdivides the range of the dataset into
a fixed number of bins. [31] shows that binning is very effective
for high-cardinality attributes, including double precision floating
point data, and the performance is insensitive to the query specifi-
cation.

2.4 Isosurfaces

The canonical isosurface algorithm consists of two broad process-
ing steps: first, find cclls that contain the isosurface, and then gen-
erate geometry for the surface passing through the cell. Generally
speaking, the evolution of isosurface algorithms over the past two
decades has focused on improving performance of the search phase:
as data grows larger, the cost of searching cells to find those that in-
tersect the surface dominates the complexity term.

An early implementation is the Marching Cubes algorithm [18].
It exhibits O(n) complexity in the search phase as it must examine
every cell in the dataset to determine if the cell intersects the isosur-
face. Interval-tree indexing structures can help accelerate the search
process. Onc such implementation, based on an octree and de-
scribed in [34] accelerates the search phase by eliminating branches
that do not contain any cells intersecting the isosurface. Such ap-
proaches are susceptible to worst-case complexity when the source
data is noisy or contains small-scale fluctuations. The complexity
of the octree approach was later analyzed in [17] and found to have
complexity O(k + klog(n/k)) where n is the size of the dataset and
k is the number of cells that intersect the isosurface. Span-space
searches, an alternative to interval-trees, as described in [17] result
in O(y/n+ k) complexity by using k-d trees [6] to quickly locate
cclls that interscct the isosurface. [27] further improves on this ba-
sic idea by using a 2D regular lattice of tunable resolution rather
than a k-d tree in the search phase. This approach was shown to
lend itself well to effective load balancing in a parallel implemen-
tation. [9] describes a two-level, out-of-core approach to accelerate

isosurface extraction that is based on the ideas of interval trees and
spatial partitioning/clustering that is amenable to efficient I/O.

None of these search algorithms would be effective for the type
of multidimensional, multivariatc querics needed for query-driven
visualization. Nor do any appear to be well suited for use with
dynamic (e.g., streaming) data sources. One of the key features
of our approach is the ability to support multidimensional feature-
based searches for interactive refinement of feature values such as
temperature or pressure.

3 DEX ARCHITECTURE

The DEX implementation consists of four broad processing phases.
First, we create index structures later used to accelerate data
searches. Once the index structures are constructed, they are reused
and their construction cost amortized across many data queries, or
index searches. Second, an index searching phase uses the index
structures to quickly find data that satisfies user-specified search
criteria. Third, the search results (data cells) are organized into
connected spatial regions in a processing operation we refer to here
as “region growing.” In practice, the data cells produced from the
initial query or the connected regions are then passed along to the
fourth stage, which is visualization and rendering. In the imple-
mentation we present here, the connceted regions arc then con-
verted directly to geometry for direct rendering using a cuberille-
style presentation [23]. Generally speaking, the results from the
index searching phase may be used as input to codes that perform
analysis or other types of visualization or rendering.

3.1 Index Construction

In the context of this paper, there are two primary factors of concern
with respect to constructing the index structures used to accelerate
data queries: the computational complexity of the index construc-
tion algorithm and the storage requirements of the resulting index.

In the case of bitmap indices, the index construction step requires
that each data value be examined and the corresponding bitmap
code appended to the bitmap index structure. The result is of O(n)
computational complexity. In contrast, tree-based methods in gen-
eral require either a complete sort so that insertions are performed
in linear time, or they perform a sorted insertion into a tree-based
index structure for each data point. Either approach results in a
complexity of O(nlogn), which is consistent with results reported
by others who have accclerated isosurface cxtraction using span-
space indexing structures ([27], [17], [9], [10]). Since no inser-
tions, sorts or tree rebalancing operations are are needed to con-
struct bitmap indices, they are particularly attractive as the value of
n increases. Similarly, bitmap indices are particularly well suited
for use in streaming (append) and out-of-core operations.

A complete discussion of the storage requirements for bitmap
indices as well as a comparison with tree-based methods is beyond
the scopce of this paper. The ultimate size of any indexing structure
is highly dependent upon the characteristics of the underlying data.
Nonetheless, previous studies ([35], [36]) prove that in the worst
case for a dataset of n values, the upper bound in size of the bitmap
index is 2n words. In contrast, the upper bound worst case for tree-
based structures (B-trees, octrees, quad-trees, etc.) is expected to
be O(nlog, n) in theory, and has been observed to be about 4n in
practice as the logarithmic base k increases to reflect a large data
page size [36].

3.2 Index Searching

Once the search data structures (bitmap indices) have been con-
structed, the next phase of processing is to find data cells that fulfill



search criteria and prepare the results for efficient downstream pro-
cessing. The primary strengths of the bitmap indexing approach
are: (1) its low computational and storage complexity, and (2)
its ability to efficiently answer complex, multidimensional range
queries in time complexity proportional to the number of items re-
turned by the query. The DEX implementation presents the user
with a GUI that facilitates the composition of a query, and is de-
scribed in more detail in [29]. Behind the GUI, the FastBit software
performs data querics in worst-casc O(k) complexity, where k is the
number of cells that match the search criteria [36].

For convenience of later operations, we convert the compressed
bitmap generated by indexing operations into a list of blocks in
space, where each block represents a series of cells that were con-
secutive in the bitmap representation. For data from 3D space, there
are three types of blocks that can be generated from a compressed
bitmap: a line segment of connected cells; a group of connected
lines; and a group of connected planes. Fach of these blocks of cells
represents a sct of consceutive bits that arc 1. Thesce bits arc typi-
cally represented in a very compact form in the compressed bitmap.
Therefore, the space occupied by the compressed bitmap is propor-
tional to the number of blocks produced. If only one attribute is
involved in the query, the total size of all bitmaps involved in an-
swering the query is also about the size of the resulting bitmap [36].
The process of converting a consecutive group of 1s to a block takes
a constant number of machine instructions, therefore converting a
word-aligned hybrid (WAH) compressed bitmap to a list of blocks
scales linearly with the number of blocks [36].

3.3 Region Growing

Next, we take the blocks returned by the index search and group
them into arbitrarily shaped connected regions, a process we re-
fer here to as “region growing.” Our basic approach is to identify
blocks that belong to the same region using an algorithm that has
an order of complexity that is sublinear with the number of blocks.
Blocks are considered neighbors if they share any face, edge or
comer (26-connected neighbors). Unique regions identified via the
region growing process are then assigned a unique label. This type
of approach operates well regardless of the resulting concavity or
convexity of the resulting grown region.
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Figure 2: Blocks in space with three spatial dimensions.

A typical representation of blocks in a space with three spatial
dimensions is shown in Figure 2. The region growing algorithm
steps through these blocks and labels the regions that are connected.

In this example, there are three regions that are labeled from 1 to 3.
See [30] for details.

3.4 Geometry Construction

FastBit uses a very compact mechanism for presenting the cells that
match a query expression in the form of a list of blocks. The blocks
are 3D bounding box coordinates for the regions that match the
query, and cover the entire selected space. While this approach of-
fers a compact representation for identifying the selection, it cannot
be used in the visualization pipeline because neighboring blocks
will be topologically disjoint unless the comers of the bounding
boxes are coincident. The cell-centered data values associated with
the selection cannot be mapped onto such a disjoint topology in a
manncr that can be uscd by later stages of the visualization pro-
cessing pipeline. Therefore, we convert the list of blocks into an
unstructured finite element mesh that represents the outer hull of
the selection. The latter conversion is useful for simply represent-
ing the outer hulls without gaps between neighboring mesh points.
The former is useful for passing the cells that match the selection
to other visualization algorithms. For example, one may first subset
cells based upon the CH,4 concentration, then do a volume rendering
of density only on cells within a certain range of CHj.

An example visualization produced by DEX is shown in Figure
3. It shows four different uscr querics of a typical intcractive analy-
sis on a combustion simulation data set. It demonstrates how data is
progressively interrogated to focus on cells that contain properties
of interest. In the first frame (a), the search finds the areas con-
taining a high concentration of CHy, a key ingredient needed for
combustion (fuel). The second frame (b) shows the areas in the
dataset where the temperature is low indicating areas that are ei-
ther pre- or post-combustion. The complex structures in the center
show the turbulence in the cooler fuel before combustion, whereas
the smoother areas at the top and bottom are outside the ignition
zonc. The third frame (¢) shows how the query can be modificd
to reject low temperature areas that are outside the region where
CH, concentration is high. It leaves only the complex structures of
the cooler fuel in the center of the simulation domain, eliminating
the “uninteresting” data at the outer boundaries. The last frame (d)
shows how the search is progressively refined to winnow in on the
“interesting” data.

3.5 Multiresolution Support

In some cases, the number of data values returned by a query can
exceed the available processing resources. For this reason, FastBit
supports a strategy for returning query results at different levels of
resolution. FastBit can encode the indices for a hierarchy of reso-
lutions — each representing a coarser downsampled version of the
original data. When a query is performed, the application can spec-
ify a level of resolution that is desired for the returned results.

Bitmap indices efficiently estimate the number of cells that
would be returned by a query. The application can request an exact
count of the number of cells that a query would return before the list
of blocks is generated. Given an accurate performance model for
pipeline processing of the cells or rendering performance, the esti-
mation information can guide selection of a level of resolution that
would stay within the response time or resource budget specified by
the user or application.

Currently, the downsampled versions of the data use a naive al-
gorithm that takes one cell out of a 2x2x2 cluster of cells for the
coarsened grid. Topological detail can be lost in this kind of down-
sampling process. In the future we will consider multiresolution
sampling strategies that address concems about topological correct-
ness.
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Figure 3: A visualization of a combustion analysis dataset displays
the cells selected by various user queries. The selected cells are
colorized by their region label that is assigned by a 3D region growing
algorithm. The image is an example taken from the combustion
studies where the goal is to track the ignition kernel of a flame.

4 EXPERIMENTAL RESULTS

The benchmarks we present in this scction arc intended to answer
two key questions. First, what is the cost of constructing bitmap
indices? Second, how does the data search capability of DEX com-
pare to a “standard implementation” of an isosurface algorithm that
uses a span-space technique to accelerate data queries?

The source data for the benchmarks consists of a multivalued
combustion simulation dataset containing about 56 million data
points from a grid that is 3833 in resolution and 38 variables per grid
cell [33]. While we have access to much larger datasets, we chose
this resolution so that both DEX and VTK’s Accelerated March-
ing Cubes algorithm would run completely in-core, and eliminate
any issucs that might arisc from memory swapping. The hardwarc
we used for the benchmarks is a 2.8Ghz P4 machine with 2GB of
RAM, and a SCSI RAID capable of 60MB/s in I/O bandwidth.

4.1 Index Construction

As previously discussed, the size of any indexing structure is influ-
enced by the qualities of the underlying data as well as the specific
indexing scheme. For the purposcs of this cxperiment, we wrote
a standalone application that reads all data values for a given field
into memory, performs the indexing, then writes the index out to
a file. This processing step need be performed only once, and the
resulting index is used as input only to the data query stage of pro-

Variable Index Size (MB)  Index Size Factor Time (sec)
pressure 77.59 0.36 747
density 128.70 .60 8.56
temp 124.93 .58 8.76
x_velocity 247.49 1.15 13.30
H,O 263.64 1.23 13.04
CH, 314.88 1.46 13.49

Table 1: The table above shows the time and storage requirements
for the Index Construction portion of processing. The size of each
input variable is 214.31MB, which is the space requirement for an
uncompressed 3833 grid of 4-byte floating point values. The time
column indicates the number of elapsed seconds required to create
the bitmap index from the original data field.

cessing. Note that the data query stage of processing produces data
cells that are then passed along to downstream analysis, visualiza-
tion and rendering modules.

Table 1 lists the size of the original data field, the size of the cor-
responding bitmap index, and the length of time required to con-
struct the bitmap index from the source data for a random subset
of the 38 simulation variables. Each bitmap index consists of 100
range-encoded bins compressed with WAH [36]. The size of the
index for each given field varies as a function of the source data. At
the low end, the pressure index is 36% the size of the original data,
while at the high end, the CHy index is 146% the size of the orig-
inal data. For these experiments, we were not able to measure the
size of the span-space tree VTK constructs to accelerate its isosur-
face algorithm. Tree-based structures, however, are known to have
O(nlog n) storage requircments.

4.2 Data Search Performance Analysis

We constructed a benchmark that is intended to measure the perfor-
mance of the data search phase of DEX with that of VTK’s Accel-
erated Marching Cubes implementation, which uses a span-space
technique to accclerate data scarch opcrations. Idcally, we would
measure and report the time required for the cell search phase to
compare only the search capabilities of bitmap indexing with that
of a span-space search algorithm. Due to the details of how an ap-
plication can use VTK’s algorithm, such an exact comparison is not
possible. Therefore, the series of results that follow include timings
for two stages of processing: (1) the time required to find cells that
intersect the isosurface (VTK) or meet given search criteria (DEX),
and (2) the time required to generate isosurface triangles from each
cell containing the isosurface (VTK) or to generate a finite-element
hexahedron from the cell satisfying the search criteria (DEX).

For the first stage — finding cells that meet a search criteria —
VTK and DEX are performing similar but slightly different tasks.
VTK is using a span-space algorithm to find cells that intersect the
isosurface. This corresponds to an == operation in the sense that
the search finds all cells that contain the isosurface. In contrast,
DEX is performing a <= search operation, which effectively finds
all data points that lie inside the isosurface, not just those cells on
the surface. In the first stage of processing, our benchmark gives
VTK an advantage in that DEX produces morc output duc to differ-
ent search criteria. Span-space searches return cells based upon a
min/max encodings in the search structure, whereas FastBit returns
data points based upon range queries.

For the second stage — generating isosurface geometry from cells
that meet the search criteria— VTK and DEX again are performing
somewhat different tasks. For each cell that intersects the isosur-
face, VTK produces triangles that represent the isosurface inter-
secting the cell. We estimate that approximately 2.5 triangles are
generated per cell [7]. In contrast, DEX is producing a finite ele-
ment hexahedron for each cell consisting of 12 triangles. Both VTK



and DEX are doing O(k) work in this stage of processing, but DEX
is generating more absolute geometry per cell than VTK, as well
generating geometry for a volume of cells rather than for cells on
the surface of the isosurface.

For the benchmark, we performed data extraction and geoemtry
generation over thirty different isovalues evenly distributed over the
range of the domain space for a particular data field. We performed
this test over three different fields: density, HyO, and x_velocity.
The execution times for these queries for both DEX and VTK are
shown in Figures 4 to 6. The results are summarized in Table 2, and
indicatc that DEX is outpcrforming VTK by factors ranging from
137% to 392% in task consisting of a search phase followed by a
geometry production phase.
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Figure 4: Performance comparison of VTK's Accelerated Marching
Cubes and DEX for attribute densiry.
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Figure 5: Performance comparison of accelerated Marching Cubes
and DEX for attribute H>O.

Digging deeper into the DEX pipeline, we measured the con-
tributions from each of the three stages of processing involved in
producing output. These are reported in Figures 7 through 9. These
stages arc (1) index scarching to locate the cclls that satisfy the
search criteria, (2) labeling the connected regions, and (3) con-
structing finite element geometry for each of these regions. For the
attribute density, these three time factors are about equal. For the
attributes H,O and x_velocity, the time for building the geometry

---».- Accelerated Marching Cubes —a— DEX

’
18 .
18 4
S
14 » -
- .
o 12 - -
3 ] 3
249 - ES
et +
E, . | . .

Normalized isovalue

Figure 6: Performance comparison of accelerated Marching Cubes
and DEX for attribute x_velocity.

Algorithm Density HyO  X_velocity
Avg VTK time 9.22 7.36 6.79
Avg DEX time 235 5.34 332

DEX speedup 392% 137% 204%

Table 2: Summarizing the overall performance numbers from Figures
4 to 6, we see that the data searching and geometry construction
times for DEX are better than VTK's accelerated Marching Cubes
implementation by factors ranging from 137% to 392%.

takes up most of the time, and is linear with the number of cells in
the isovolume. The time for the bitmap index search and the region
labeling depends on the distribution of the attribute. In other words,
if the cells and regions that satisfy a particular region are densely
packed in space, the cost of finding those cells and labeling the re-
gion is substantially sublincar. Notc that the region labeling stepis a
feature not commonly associated with the data search algorithms in
any of the published isosurface acceleration algorithms, and reflects
one of the unique capabilities of using the FastBit bitmap indexing
implementation.
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Figure 7: Various time factors of DEX pipeline for attribute density.
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Figure 8: Various time factors of DEX pipeline for attribute H>0.
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Figure 9: Various time factors of DEX pipeline for attribute x_velocity.

5 FUTURE WORK

The work we have described illustrates how state-of-the-art data in-
dexing and searching technology from the scientific data manage-
ment community can be successfully leveraged to accelerate query-
driven visualization. As a result of this initial effort, we envision
further research and development along a number of different av-
enues.

o Incorporation into Mainstream Visualization Tools: The capa-
bilities of fast bitmap indices need not be marooned in a stan-
dalone research prototype like DEX. We already have work
underway that will result in these capabilities being an in-
tegral part of mainstream visualization applications. This is
important for it represents a transition of research technology
into the hands of scientists with challenging data analysis and
visualization problems.

o Search Estimation and Multiresolution Queries: an ill-formed
query can potentially returmn “all of the data.” To help pre-
vent downstream saturation, we can take advantage of Fast-
Bit’s ability to quickly generate an estimate of the number of
cells that will satisfy a multidimensional, multivariate range
query to request reduced-resolution searches.

o Topology-Preserving Multiresolution Queries: An early pro-
totype (not discussed in this paper) creates multiresolution
data hierarchies using simple subsampling of data. A better
approach is to modify the methods for developing multireso-
lution indices so that if any of the cells that are contained by a
coarsened cell meet the query requirements, the finer cell will
be selected. This approach ensures that features that would
otherwise disappear at coarser levels of the multiresolution
hicrarchy will remain at any level of detail.

o View Dependent Subsetting: The query response times for fast
bitmap indices are relatively insensitive to the complexity of
the query expression. Therefore, if the cartesian location of
each grid point is encoded in the indices, queries can embed a
region of interest (or a list of ROIs) that are within the viewing
conc of the projection matrix. This information can be uscd
to return only the cells that are currently in the viewport.

6 CONCLUSIONS

We have presented DEX, an implementation of query-driven visu-
alization that leverages state-of-the-art data indexing and search-
ing tcchnology from the scicntific data management community.
Leveraging such technology allows us to benefit from reduced com-
putational and storage complexity when compared to previous work
in both query-driven visualization as well as isosurface acceleration
algorithms. The basis for comparison was two primary processing
regimes: index construction and data query. For the index con-
struction phase, our index construction algorithm has O(n) com-
plexity, and requires O(n) storage. In contrast, previous methods
from span-space accelerated isosurfacing require O(nlogn) stor-
age and computational complexity. For the search phase, FastBit
was shown to have O(k) complexity, where k& is the number of data
cells returned from a search of n data items. The benchmark results
show that our data search algorithm performs, on the average and
for the dataset we tested, from 137% to 392% faster than VTK’s
Accelerated Marching Cubes algorithm, which uses a span-space
technique to accelerate data queries. Beyond the performance ben-
efits, our approach is capable of performing arbitrarily complex,
multivariate and multidimensional range queries in O(k) time. This
new capability is beyond the scope of what is possible with tree-
based methods, and has been shown to be applicable in other re-
scarch to challenging data analysis problems in the High Encrgy
Physics community. The DEX implementation is structured so as
to demonstrate how modularizing the pipeline processing stages —
index construction, index searching, visualization, and rendering —
results in a flexible architecture in which state-of-the-art scientific
data management technology can be effectively applied to a large
number of data analysis and visualization problems.
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