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Marching Diamonds for Unstructured Meshes

John C. Anderson∗ Janine C. Bennett† Kenneth I. Joy‡

Institute for Data Analysis and Visualization
Computer Science Department
University of California, Davis

(a) Marching Tetrahedra (b) Marching Diamonds

Figure 1: Isosurface of a flow passing an aircraft wing with an attachment generated by (a) Marching Tetrahedra, and (b) Marching Diamonds.
The surface extracted by Marching Diamonds is smoother, and in the circled area more accurately represents the dataset.

ABSTRACT

We present a higher-order approach to the extraction of isosurfaces
from unstructured meshes. Existing methods use linear interpola-
tion along each mesh edge to find isosurface intersections. In con-
trast, our method determines intersections by performing barycen-
tric interpolation over diamonds formed by the tetrahedra incident
to each edge. Our method produces smoother, more accurate iso-
surfaces. Additionally, interpolating over diamonds, rather than lin-
early interpolating edge endpoints, enables us to identify up to two
isosurface intersections per edge. This paper details how our new
technique extracts isopoints, and presents a simple connection strat-
egy for forming a triangle mesh isosurface.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques;

Keywords: isosurface extraction, interpolation, unstructured mesh

1 INTRODUCTION

The seminal work on isosurface extraction from scalar fields is
Marching Cubes (MC) by Lorenson and Cline [9]. There are two
major limitations of the MC algorithm: the triangulation of iso-
points within a cube can be ambiguous, and a hexahedral input
mesh is required. The asymptotic decider method of Nielson and
Hamann [14] uses bilinear interpolation to resolve triangulation
ambiguities across faces, however, it does not address ambigui-
ties that exist when triangulating cell interiors. Internal ambiguities
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have been addressed [12, 3, 4, 8, 13], with the algorithm by Niel-
son [13] presenting the most thorough classification of isosurfaces
generated via trilinear interpolation.

Dual contouring methods [7, 16] generate isosurfaces that are
dual to surfaces created by the MC method. These methods have
several advantages over the traditional MC method such as captur-
ing sharp features and generating crack-free isosurfaces on adaptive
input domains.

Marching Tetrahedra (MT) [15, 19] is an approach to isosurface
extraction that addresses both flaws of the MC technique: there are
no triangulation ambiguities, and it allows for isosurface extraction
over a more general set of input domains (any mesh can be decom-
posed into tetrahedra). A drawback of the MT algorithm is that
the resulting isosurfaces are dependent on the tetrahedral decompo-
sition of the input domain since linear interpolation is used along
each edge.

Zhou et al. [24] address the decomposition issue for tetrahedral
meshes that derive from an initial hexahedral domain. Bilinear in-
terpolation is used for edges inserted during the tetrahedrization
process, and trilinear interpolation is applied within hexahedral cell
interiors. While their approach removes the dependence of the re-
sulting isosurface on the decomposition chosen, it does not work on
arbitrary unstructured meshes.

Marching Diamonds (MD) is a new approach for extracting
high-quality isosurfaces from unstructured mesh domains, while
avoiding the limitations of existing methods. Rather than focus-
ing on edges, our algorithm works on diamonds, which are formed
by the set of tetrahedra surrounding an edge. Points within a di-
amond are represented using a barycentric coordinate system, and
intersections of the isosurface with the diamond’s defining edge are
found by solving for the roots of a cubic polynomial. Because iso-
points are associated with mesh edges, a simple connection strategy
is sufficient to form a triangle mesh isosurface.

Section 2 describes our algorithm in two dimensions. Section 3
describes MD for three-dimensional unstructured meshes; it out-
lines the barycentric coordinate representation of points within a di-



amond (derived in the Appendix), and describes a connection strat-
egy for forming a triangle mesh isosurface. We discuss implemen-
tation issues in Section 4, and Section 5 compares this algorithm to
MT on example datasets.

2 MARCHING DIAMONDS IN TWO DIMENSIONS

Consider a scalar or signed distance field over a triangulated set of
scattered data points in the plane. For each edgee of the triangula-
tion, we form a diamondDe consisting of the two triangles sharing
that edge, see Figures 2(a) and 2(b). The field over the diamond can
be approximated as a bilinear function of the diamond’s four ver-
tices,di (i = 0, . . . ,3). If De is convex, the isocontour representing
a constant value over the field is a hyperbola. Rather than approx-
imating the intersection of the isocontour withe by linear interpo-
lation, we calculate the intersection of the hyperbola withe, which
requires the solution of a quadratic polynomial [14]. Consequently,
we may find up to two intersections alonge.

To simplify the calculations for finding isopoints, the diamond
De is mapped to a reference diamondR, see Figure 2(c). The ver-
tices ofR, r i (i = 0, . . . ,3), have coordinates(1,1), (−1,1), (0,0),
and(0,2), respectively.r2 andr3 are endpoints of the diagonal inR
corresponding to the edgee. Using barycentric interpolation inR,
which is equivalent to bilinear interpolation becauseR is a square,
we calculate the coordinates of intersections of the hyperbolic iso-
contour with the reference diamond’s diagonal. These coordinates
are then used as weights on the vertices ofDe to calculate points
on the isocontour. Having mapped back toDe, the isopoints may
not lie one, but will lie on the hyperbola that represents the iso-
contour throughDe. If the endpoints ofe are on opposite sides of
the isocontour, one intersection will be found. Otherwise, we may
find zero or two intersections. When two intersections are found,
the region between the intersections will be on the opposite side of
the isocontour from both endpoints ofe.

This method also allows us to consider meshes with non-convex
diamonds. Since we calculate intersections in the convex polytope
R, the calculated barycentric coordinates can be used to find iso-
points ofDe, even thoughDe may be non-convex.

In order to connect isopoints into isocontour segments on a
triangle-by-triangle basis, two cases must be considered. (1) If two
edges in a triangle each have a single intersection, and the third
edge has no intersections, the two isopoints are connected. (2) If an
edgeewithin a triangle has two intersections, we split the diamond
De before continuing with isocontour generation.

Splitting is a multi-step process. First, we insert a new vertex
v generated midway between the two intersections. The original
vertices ofDe andv are retriangulated to form four new triangles.
Finally, before isocontour generation continues, the four diamonds
defined by the newly inserted edges(v,di) (i = 0, . . . ,3) are checked
for isocontour intersections. Note that the original two intersections
found alongeare no longer used becausee is no longer in the mesh;
instead, equivalent single intersections are found in the diamonds
D(v,d2) andD(v,d3). The result of splitting the diamondDe from
Figure 2(a) is shown in 2(d).

After the connection process has completed, each triangle in the
original unstructured mesh will either contain no isocontour seg-
ments, or will have been split as necessary to exhibit one of the 9
configurations shown in Figure 3.

We find that MD gives very good results in two dimensions.
Figure 4 shows the difference in quality between MD and lin-
ear interpolation of isopoints identified for the functionf (x,y) =
sinc(x)∗sinc(y).
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Figure 3:Original triangles in the mesh through which the isocon-
tour passes will exhibit one of these 9 configurations. Isocontour
segments (gold) are formed to connect isopoints. Diamonds with
two intersections are split during isocontouring (inserted edges in
dashed blue).

(a) Linear

(b) Marching Diamonds

Figure 4:Isopoints of the function f (x,y) = sinc(x)∗sinc(y) identified
using (a) linear interpolation, and (b) Marching Diamonds. Note the
quality of the results achieved using MD.
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(a) Isocontour
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e

(b) Diamond,De
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e

(c) Reference diamond,R

v

d0
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d1

d3

(d) Approximate isocontour over
split of diamondDe

Figure 2:We consider in (a) an isocontour of a signed distance field over a triangulated set of scattered data points in the plane. The isocontour
twice intersects the diamond De defined by edge e (red) as shown in (b). In (c) De is mapped to a reference diamond R to solve for the
barycentric coordinates of isocontour intersections. During the isocontour connection process shown in (d), De is split by inserting a new vertex
v, and isocontour segments are formed over the region of the original diamond.
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mond,R4
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(c) Split of diamondDe

Figure 5:In order to use Warren et al.’s barycentric coordinates, we
map the diamond De in (a) to the 4-reference diamond R4 in (b).
If two intersections are found along e, then De is split by inserting a
new vertex v as shown in (c).

3 MARCHING DIAMONDS

Lifting this method to three dimensions requires additional effort,
but our approach is similar. Here, a diamondDe is formed by the set
of tetrahedra incident along edgee. To approximate the scalar field
overDe, we map it to a reference diamond. The barycentric coor-
dinates of isosurface intersections withe in the reference diamond
can be obtained by solving a cubic equation. These coordinates are
then used as weights on vertices ofDe to obtain isopoints. Splitting
is still used during the isosurface connection process.

Consider an edgee in a three-dimensional unstructured mesh.
ThediamondDe is composed of thek tetrahedra incident alonge,
as shown in Figure 5(a). The vertices ofDe are denoteddi (i =
0, ...,k+1), wheredi (i = 0, . . . ,k−1) are thering vertices, anddk
anddk+1 are the endpoints ofe. Letsi (i = 0, . . . ,k+1) be the scalar
values associated with the vertices ofDe.

We define a convexk-referencediamondRk with vertices given
by:

r i =











(cosµi ,sinµi ,1) if 0 ≤ i ≤ k−1
(0,0,0) if i = k
(0,0,2) if i = k+1

where µi =
2π(i modk)

k , with associated scalar valuessi mapped
from De. Figure 5(b) illustrates a 4-reference diamondR4.

We use Warren et al.’s [23] method to define a barycentric coor-
dinate system over the reference diamond. Using barycentric coor-

dinates, a pointp in Rk can be written as

p = α0r0 +α1r1 + · · ·+αk+1rk+1, (1)

and the scalar field atp can be approximated by

s= α0s0 +α1s1 + · · ·+αk+1sk+1. (2)

Our approach limits the use of barycentric coordinates to the rep-
resentation of intersections of the isosurface withe. This simplifies
our mathematics greatly. A point(0,0,z) one in Rk, with z∈ [0,2],
can be represented using the coordinates:

αi =











4|C|z(2−z)2

E if 0 ≤ i ≤ k−1
D(2−z)3

E if i = k
Dz3

E if i = k+1

(3)

whereE = 4k|C|z(2−z)2+D
[

(2−z)3 +z3
]

, andC andD are con-
stants dependent onk. The derivation of these coordinates is pre-
sented in the Appendix. Note that for a point one, the barycentric
coordinates for the ring vertices ofRk are equal.

Let s be the desired isovalue. Substituting the barycentric coor-
dinates from Equation 3 into 2 we have:

s=
4|C|z(2−z)2

E

k−1

∑
i=0

si +
D(2−z)3

E
sk +

Dz3

E
sk+1 (4)

By solving for the roots of this equation, we get values ofz that,
when used in Equation 3, provide barycentric coordinates inRk of
isosurface intersections. To obtain the isopoints ofDe, we use the
barycentric coordinatesαi as weights on the vertices ofDe. The
isopoints ofDe are thus∑i+1

i=0 αidi (note the similarity to Equa-
tion 1). Having mapped back toDe, the isopoints will not nec-
essarily lie one, but will lie on the isosurface.

As written, Equation 4 is cubic with up to three real roots. How-
ever, by rewriting the equation, it is clear that at most two of the
roots correspond to actual points one in Rk. Consider the follow-
ing formulation of Equation 4 as a Bézier curve defined by:

f (z) = L(2−z)3 +
M
3

3z(2−z)2 +Nz3

where,L = D(sk − s), M = 4|C|
(

∑k−1
i=0 si −ks

)

, N = D(sk+1− s),

andz∈ [0,2]. This curve has control pointsc0 = 8L,c1 = M
3 ,c2 =

0, andc3 = 8N. If f (z) has three roots in the interval[0,2], then by
the variation diminishing property the control polygon off (z) must



cross thezaxis three times (see Farin [5]). This is impossible since
one of the interior control points is zero. Therefore we conclude
that f (z) has at most two roots in the interval[0,2], and that the
isosurface intersectse in Rk (and thereforee in De) at most twice.

Our triangulation strategy in three dimensions is very similar to
that explained in Section 2 for forming two-dimensional isocon-
tours. In order to connect isopoints into isosurface triangles on a
tetrahedron-by-tetrahedron basis, two cases must be considered. (1)
If either of the cases handled by MT arise [15, 19], we directly tri-
angulate the isopoints with one or two triangles. (2) If some edgee
within a tetrahedron has two intersections, we split the diamondDe
before continuing with isosurface generation.

Splitting is a multi-step process. First, we insert a new ver-
tex v generated midway between the two intersections. Next,
we add the edges(v,di) (i = 0, . . . ,k+ 1), and the 2k tetrahedra:
(v,dk+1,di ,d(i+1) modk) and(v,dk,d(i+1) modk,di) (i = 0, . . . ,k−1).
Finally, before isosurface generation continues, thek+2 diamonds
defined by the newly inserted edges(v,di) (i = 0, . . . ,k + 1) are
checked for isosurface intersections. Note that the original two in-
tersections found alonge are no longer used becausee is no longer
in the mesh; instead, equivalent single intersections are found in
the diamondsD(v,dk) andD(v,dk+1). Figure 5(c) illustrates the split
of the diamond shown in 5(a).

4 IMPLEMENTATION ISSUES

The use of this technique is straightforward, with few caveats:

• We utilize the algorithm of Schwarze [17], which will locate
up to three real roots of Equation 4. Only two, however, will
lie in the rangez∈ [0,2].

• We cannot define diamonds on boundary edges of the mesh.
For these edges, we use linear interpolation.

• This algorithm was designed for meshes that have few non-
convex diamonds. For non-convex diamonds, results may be
less accurate because intersection calculations are performed
within a convex reference diamond.

• Numerically it is possible (although rare) to encounter situ-
ations in which splitting proceeds indefinitely. Letl be the
splitting level of a diamondDe, with l = 0 for diamonds
formed by edges of the original mesh. When a diamond is
split, the newly introduced diamonds are assigned a splitting
level of l +1. In our implementation, when two intersections
are found in a diamond withl ≥ 2, they are discarded and the
diamond is not split. We have found that this does not nega-
tively affect MD’s visible output.

5 RESULTS

Marching Diamonds in two dimensions, as discussed in Section 2,
generates superior results compared to linear interpolation. In three
dimensions, our algorithm continues to extracts high-quality isosur-
faces. The reader is encouraged to refer to Table 1 for information
about the isosurfaces discussed below.

Consider the analytic function defined by Marschner and
Lobb [10]:

ρ(x,y,z) =

(

1−sin(πz/2)+α
(

1+ρr

(

√

x2 +y2
)))

2(1+α)

(a) Ray-traced

(b) Marching Tetrahedra

(c) Marching Diamonds

Figure 6: Three isosurfaces of the Marschner and Lobb function
with s= 0.5 generated by (a) ray-tracing, (b) MT, and (c) MD. Note
the increased accuracy of the MD reconstruction of this function
compared to MT.



Table 1:Isosurfacing with Marching Tetrahedra and Marching Diamonds

Marschner and Lobb (s= 0.5) Aerodynamics (s= 0.7) Aerodynamics (s= 0.8)
MT MD MT MD MT MD

Isosurface Triangles 57,986 117,406 25,983 32,309 39,570 46,592
Split Diamonds — 10,255 — 893 — 990
Tetrahedra in Mesh 355,914 457,328 567,862 576,714 567,862 577,652
Non-convex Diamonds — 0 — 23,345 — 23,347

where,

ρr (r) = cos(2π fM cos(
πr
2

))

fM = 6

α = 0.25.

We evaluate this function over a 40x40x40 rectilinear grid with
domain−1 ≤ x,y,z≤ 1. This grid is then tetrahedrized using a
six tetrahedra per cell decomposition. We look at isosurfaces with
s = 0.5. Figure 6(a) shows a ray-traced image of the Marschner
and Lobb function. Figures 6(b) and 6(c) show the isosurfaces ex-
tracted by MT and MD, respectively. The surface reconstructed by
MD is considerably more accurate than that produced by MT. Ta-
ble 1 provides triangle counts associated with both surfaces. The
higher triangle count for the surface extracted by MD is due the
large number of diamonds for which two intersections were found.

To further demonstrate MD, we consider a dataset of an aerody-
namics flow simulation run upon an unstructured mesh of an aircraft
wing. This mesh contains over half a million tetrahedra. Figures 1
and 7 illustrate isosurfaces generated from this dataset withs= 0.7
ands= 0.8, respectively.

Since MD can identify up to two intersections per edge, it is
often able to extract complex isosurfaces that are mis-handled by
MT. An example of this can be seen in the surfaces of Figure 1.
Here, the MD-produced surface in 1(b) correctly separates isosur-
face components in the circled area from the nearby, larger surface.
The components are incorrectly connected by MT in 1(a).

Another benefit of the MD algorithm is that it extracts smooth
isosurfaces. Figure 7 demonstrates this aspect of our higher-order
approximation; we see that the surface extracted by MD in 7(b)
is considerably smoother than that extracted by MT in 7(a). For
s= 0.8, we derive from Table 1 that the MD surface contains only
17.7% more triangles than the MT surface.

6 CONCLUSIONS

Marching Diamonds is a new approach for extracting high-quality
isosurfaces from unstructured mesh domains, while avoiding the
limitations of existing methods. Rather than focusing on edges,
our algorithm works on diamonds. Using a novel barycentric co-
ordinate representation we are able to identify up to two isosurface
intersections along each diamond’s defining edge. We have found
that MD produces smoother, more accurate isosurfaces on analytic
and real-world datasets. The primary computational burden intro-
duced by this algorithm is the calculation of the roots of a cubic
polynomial. In the future, we intend to quantify the effects of non-
convex diamonds on our algorithm, and to work on improving the
speed of MD.
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APPENDIX

The vertices of the reference diamondRk are given by:

r i =











(cosµi ,sinµi ,1) if 0 ≤ i ≤ k−1
(0,0,0) if i = k
(0,0,2) if i = k+1

where µi =
2π(i modk)

k , with associated scalar valuessi mapped
from De.

Warren et al.’s [23] formulation of barycentric coordinates re-
quires identifying the planes that define the convex polytope. For
Rk there are 2k defining planes. The normal vectors associated with
these planes can be divided into two groups: thek lower normals
−→
Li (i = 0, . . . ,k−1) of the planes intersectingrk, and thek upper
normals

−→
Ui (i = 0, . . . ,k−1) of the planes intersectingrk+1.

−→
Li is the normal of the plane defined by the verticesr i ,

r(i+1) modk, andrk:

−→
Li =

(

sinµi+1−sinµi ,cosµi −cosµi+1,−sin
2π
k

)

−→
Ui is the normal of the plane defined by the verticesr i , r(i+1)modk,

andrk+1:

−→
Ui =

(

sinµi+1−sinµi ,cosµi −cosµi+1,sin
2π
k

)

The normals
−→
Li and

−→
Ui are similar because they are defined by

two common vertices, so:

−→
Li = (σi ,τi ,−υ)
−→
Ui = (σi ,τi ,υ)

σi = sinµi+1−sinµi
τi = cosµi −cosµi+1
υ = sin 2π

k

We define the reference diamondRk in terms the matrix inequal-
ity used to derive its barycentric coordinates:























−→
L0
...

−−→
Lk−1
−→
U0
...

−−→
Uk−1



























x
y
z
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0
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0

2υ
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To determine the barycentric coordinate(α0,α1, . . . ,αk+1), cor-
responding to a point one in Rk, we begin by determining the
weight functionsωi (i = 0, . . . ,k+ 1) associated with the vertices
r i . In the following calculations, we assume thatx = y = 0, as we
are only interested in intersections of the isosurface along the edge
e in Rk. This simplifies calculations significantly. We also assume
that plane indices are modulok.

Weight Function for Ring Vertices

Warren et al.’s method derives barycentric weight functions for each
vertex using the planes incident to that vertex. The vertexr i (i =

0, . . . ,k−1) lies at the intersection of four planes with normals
−−→
Li−1,

−→
Li ,

−−→
Ui−1, and

−→
Ui . Thus, the weight functions associated with the

verticesr i are given by:

ωi =

∣

∣

∣

∣

∣

∣

∣

Det
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Li−1
−−→
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∣
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Det







−→
Li
−−→
Li−1
−→
Ui







∣

∣

∣

∣

∣

∣

∣

υ3z2(2−z)

We note that the two terms in the numerator simply calculate the
volume of a parallelepiped spanned by three plane normals, and that
the absolute value of each term is identical. Thus:

ωi =

2

∣

∣

∣

∣

∣

∣

∣

Det







−→
Li
−−→
Li−1
−−→
Ui−1







∣

∣

∣

∣

∣

∣

∣

υ3z2(2−z)

=
4|σiτi−1−σi−1τi |

υ2z2(2−z)

Finally, by lettingC = σiτi−1−σi−1τi = −2sin2π
k + sin 4π

k we
are able to expressωi as:

ωi =
4|C|

υ2z2(2−z)

Weight Functions for Vertices rk and rk+1

rk is incident tok planes, with normalsLi (i = 0, . . . ,k−1). Given
these normals, the weight functionωk can be formulated as:

ωk =
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Again we note that thek−2 terms in the numerator simply cal-
culate the volume of a parallelepiped, and that the absolute value of
each term is identical. Therefore:

ωk =

(k−2)
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Finally, by lettingD = (k−2) |−2C− (σiτi+2−σi+2τi)| = (k−

2)
∣

∣

∣
3sin2π

k −4sin4π
k −sin 6π

k

∣

∣

∣
we have:

ωk =
D

υ2z3



Similarly, rk+1 is incident tok planes, with normalsUi (i =
0, . . . ,k−1). Given these normals:

ωk+1 =
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Barycentric Coordinates

The final step in solving for the barycentric coordinates of points
one in Rk is to determine the sum of the weight functions∑k+1

i=0 ωi
and to divide each of the weight functionsωi by this sum.

k+1

∑
i=0

ωi = k∗

(

4|C|
υ2z2(2−z)

)

+
D

υ2z3 +
D

υ2(2−z)3

=
4k|C|z(2−z)2 +D

[

(2−z)3 +z3
]

υ2z3(2−z)3

Thus, the barycentric coordinates for a point(0,0,z) one in Rk,
with z∈ [0,2], are:

αi =











4|C|z(2−z)2

E if 0 ≤ i ≤ k−1
D(2−z)3

E if i = k
Dz3

E if i = k+1

(5)

where,

C = −2sin
2π
k

+sin
4π
k

(6)

D = (k−2)

∣

∣

∣

∣

3sin
2π
k

−4sin
4π
k

−sin
6π
k

∣

∣

∣

∣

(7)

E = 4k|C|z(2−z)2 +D
[

(2−z)3 +z3
]

. (8)

(a) Marching Tetrahedra

(b) Marching Diamonds

Figure 7: Isosurface of a flow passing an aircraft wing with an at-
tachment generated by (a) Marching Tetrahedra, and (b) Marching
Diamonds. The MD surface is visually smoother than the MT sur-
face, and contains only 17.7% more triangles.




