
© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933605

scenery: Flexible Virtual Reality Visualization on the Java VM
Ulrik Günther*
CASUS, Görlitz

Technische Universität Dresden
Center for Systems Biology Dresden

MPI-CBG, Dresden

Tobias Pietzsch
Center for Systems Biology Dresden

MPI-CBG, Dresden

Aryaman Gupta
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG, Dresden

Kyle I.S. Harrington
University of Idaho

Howard Hughes Medical Institute,
Janelia Research Campus

Pavel Tomancak
MPI-CBG, Dresden

IT4Innovations, VŠB - Technical
University of Ostrava

Stefan Gumhold
Technische Universität Dresden

Ivo F. Sbalzarini†
Technische Universität Dresden

Center for Systems Biology Dresden
MPI-CBG, Dresden

ABSTRACT

Life science today involves computational analysis of a large
amount and variety of data, such as volumetric data acquired
by state-of-the-art microscopes, or mesh data from analysis
of such data or simulations. Visualization is often the first
step in making sense of data, and a crucial part of building
and debugging analysis pipelines. It is therefore important
that visualizations can be quickly prototyped, as well as de-
veloped or embedded into full applications. In order to bet-
ter judge spatiotemporal relationships, immersive hardware,
such as Virtual or Augmented Reality (VR/AR) headsets and
associated controllers are becoming invaluable tools. In this
work we introduce scenery, a flexible VR/AR visualization
framework for the Java VM that can handle mesh and large
volumetric data, containing multiple views, timepoints, and
color channels. scenery is free and open-source software,
works on all major platforms, and uses the Vulkan or OpenGL
rendering APIs. We introduce scenery’s main features and
example applications, such as its use in VR for microscopy, in
the biomedical image analysis software Fiji, or for visualising
agent-based simulations.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools Human-centered computing—
Virtual reality

1 INTRODUCTION

Recent innovations in biology, like lightsheet microscopy [13],
or Serial Block-Face Scanning Electron Microscopy [7] are
now making large, spatiotemporally complex volumetric data
available. However, the data acquired by the microscope is
only a means to an end: researchers need to extract results
from it, and for that efficient tools are needed. This includes
tools that not only enable the researcher to visualize their data,
but to interact with it, and to enable them to use the tool in
ways the original designer had not anticipated.

For this purpose, we introduce scenery, a flexible, open-
source visualization framework for the Java Virtual Machine
(JVM) that can handle mesh data (e.g. from triangulated
surfaces), and multi-channel, multi-timepoint, multi-view

*e-mail: guenther@mpi-cbg.de
†e-mail: ivos@mpi-cbg.de

volumetric data of large size1. Our main contribution with
scenery is to combine all of the following design goals into
one reusable, open-source framework:

G1 Virtual/Augmented Reality support: The framework
should make the use of VR/AR in an application pos-
sible with minimal effort. Distributed systems, such as
CAVEs or Powerwalls, should also be supported.

G2 Out-of-core volume rendering: The framework should
be able to handle datasets that do not fit into graphics
memory and/or main memory, contain multiple chan-
nels, views, and timepoints. It should be possible to
visualize multiple such datasets in a single scene.

G3 User/Developer-friendly API: The framework should
have a simple API that makes only limited use of ad-
vanced features, such as generics, so the user/developer
can quickly comprehend and customize it.

G4 Cross-platform: The framework should run on the major
operating systems: Windows, Linux, and macOS.

G5 JVM-native and embeddable: The framework should
run natively on the JVM, and be embeddable, such that it
can be used in popular biomedical image analysis tools
like Fiji [29, 30], Icy [5], and KNIME [1].

2 RELATED WORK

A particularly popular framework in scientific visualization
is VTK [10]: VTK offers rendering of both geometric and
volumetric data, using an OpenGL 2.1 renderer. However,
VTK’s complexity has also grown over the years and its API
is becoming more complex, making it difficult to change in-
ternals without breaking existing applications (G3). A more
recent development is VTK.js , which brings VTK to web
browsers. ClearVolume [28] is a visualization toolkit tailored
to high-speed, volumetric microscopy and supports multi-
channel/multi-timepoint data, but focuses solely on volu-
metric data and does not support VR/AR. MegaMol [9] is a
special-purpose framework focused on efficient rendering of
a large number of discrete particles that provides a thin ab-
straction layer over the graphics API for the developer. 3D
Viewer [31] does general-purpose image visualization tasks,
and supports multi-timepoint data, but no out-of-core volume
rendering, or VR/AR.

1Out-of-core data is stored in tiles, with 64 bit tile indices, and each
tile comprising up to 231 voxels. Therefore the theoretical limit for a
single volume is 294 voxels, roughly corresponding to a cube with 2.1
billion voxels edge length, equal to 20000 Yottabyte. The largest tested
dataset was an 8TB multi-angle time-series, with 7GB per timepoint.

1

ar
X

iv
:1

90
6.

06
72

6v
3

 [
cs

.G
R

]
 2

2
A

pr
 2

02
0

https://doi.org/10.1109/VISUAL.2019.8933605

© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933605

Application

Hub

GPU

Vu
lk

an
Re

nd
er

er

O
pe

nG
LR

en
de

re
r

Vulkan Open
GL

HMD

Di
sp

la
y

Tr
ac

ke
rIn

pu
t

Open
VR

Keyboard, Mouse,
Gamepad

In
pu

tH
an

dl
er

GLFW,
Swing

St
at

ist
ics

Ap
pl

ica
tio

n

Se
tti

ng
s

No
de

Pu
bl

ish
er

/S
ub

sc
rib

er

ZeroMQ

chip vector graphics by vecteezy.com

Figure 1: Overview of scenery’s architecture.

In out-of-core rendering (OOCR), the rendering of volumetric
data that does not fit into main or graphics memory, exist-
ing software packages include Vaa3D/Terafly [4, 22], which is
written with applications like neuron tracing in mind, and
BigDataViewer [25], which performs by-slice rendering of large
datasets, powered by the ImgLib2 library [24]. The VR neuron
tracing tool [33] supports OOCR, but lacks support for multi-
ple timepoints and is not customizable. Inviwo [15] supports
OOCR and interactive development, but does not support
overlaying multiple volumetric datasets in a single view.

In the field of biomedical image analysis, various commer-
cial packages exist: Arivis, Amira, and Imaris2, and syGlass [23]
support out-of-core rendering, and are scriptable by the user.
Arivis, Imaris, and syGlass offer rendering to VR headsets,
while Amira can run on CAVE systems. Imaris provides lim-
ited Fiji and Matlab integration. Due to being closed-source,
the flexibility of these packages is ultimately limited (e.g.,
changing rendering methods, or adding new input devices).

3 SCENERY

With scenery, we provide a flexible framework for developing
visualization prototypes and applications, on systems ranging
from desktop screens, VR/AR headsets (like the Oculus Rift or
HTC Vive), to distributed setups. scenery is written in Kotlin,
a language for the JVM that requires less boilerplate code and
has more functional constructs than Java itself. This increases
developer productivity, while maintaining 100% compatibility
with existing Java code. scenery runs on Windows, Linux,
and macOS (G4). scenery uses the low-level Vulkan API for
fast and efficient rendering, and can fall back to an OpenGL
4.1-based renderer3.

scenery is designed around two concepts: A scene graph
for the scene organisation into nodes, and a hub organizing all
subsystems — e.g. rendering, input, statistics — and enables
communication between them. scenery’s application archi-
tecture is depicted in Fig. 1. scenery’s subsystems are only
loosely coupled, meaning they can work fully independent
of each other. The loose coupling enables isolated testing of
the subsystems, and thereby we can reach 65% code cover-
age at the moment (the remaining 35% is mostly code that
requires additional hardware and is therefore harder to test in
an automated manner).

2See arivis.com/en/imaging-science/imaging-science,
fei.com/software/amira/, and imaris.oxinst.com

3The Vulkan renderer uses the LWJGL Vulkan bindings (see
lwjgl.org), while the OpenGL renderer uses JOGL (see jogamp.org).

4 HIGHLIGHTED FEATURES

4.1 Realtime rendering on the JVM — G5

Historically, the JVM has not been the go-to target for realtime
rendering: For a long time, the JVM had the reputation of
being slow and memory-hungry. However, since the HotSpot
VM has been introduced in Java 6, this is less true, and state-
of-the-art just-in-time compilers like the ones used in Java
12 have become very good at generating automatically vec-
torized code4. The JVM is widely used, provides excellent
dependency management via the Maven or Gradle build tools,
and efficient, easy-to-use abstractions for, e.g., multithreading
or UIs on different operating systems. Additionally, with the
move to low-overhead APIs like Vulkan, pure-CPU perfor-
mance is becoming less important. In the near future, Project
Panama5 will introduce JVM-native vectorization primitives
to support CPU-heavy workloads. These primitives will work
in a way similar to those provided by .NET.

Another convenience provided by the JVM is scripting: Via
the JVM’s scripting extensions, scenery can be scripted using
its REPL with third-party languages like Python, Ruby, and
Clojure. In the future, GraalVM6 will enable polyglot code
on the JVM, e.g. by ingesting LLVM bytecode directly [3].
scenery has already been tested with preview builds of both
GraalVM and Project Panama.

4.2 Out-of-core volume rendering — G2

scenery supports volume rendering of multiple, potentially
overlapping volumes that are placed into the scene via ar-
bitrary affine transforms. For out-of-core direct volume ren-
dering of large volumes (G2) we develop and integrate the
BigVolumeViewer library, which builds on the pyramidal image
data structures and in-memory caching of large image data
from BigDataViewer [25]. We augment this by a GPU cache
tier for volume blocks, implemented using a single large 3D
texture. This cache texture is organized into small (e.g., 323)
uniformly sized blocks. Each texture block stores a particu-
lar block of the volume at a particular level in the resolution
pyramid, padded by one voxel on each side to avoid bleeding
from neighboring blocks during trilinear interpolation [2]. The
mapping between texture and volume blocks is maintained
on the CPU.

To render a particular view of a volume, we determine a
base resolution level such that screen resolution is matched
for the nearest visible voxel. Then, we prepare a 3D lookup
texture in which each voxel corresponds to a volume block
at base resolution. Each voxel in this lookup texture stores
the coordinates of a block in the cache texture, as well as its
resolution level relative to base, encoded as a RGBA tuple.
For each (visible) volume block, we determine the optimal
resolution by its distance to the viewer. If the desired block is
present in the cache texture, we encode its coordinates in the
corresponding lookup texture voxel. Otherwise, we enqueue
the missing cache block for asynchronous loading through
the CPU cache layer of BigDataViewer. Newly loaded blocks
are inserted into the cache texture, where the cache blocks
to replace are determined by a least-recently-used strategy
that is also maintained on the CPU. For rendering, currently
missing blocks are substituted by lower-resolution data if it

4For this project, we have measured the timings of performance-
critical parts of code, such as 4x4 matrix multiplication. Compared to
hand-tuned, vectorized AVX512 code, the native code generated by
the JVM’s JIT compiler is about a factor of 3-4 slower.

5See openjdk.java.net/projects/panama.
6See graalvm.org.

2

https://doi.org/10.1109/VISUAL.2019.8933605
https://www.arivis.com/en/imaging-science/imaging-science
https://www.fei.com/software/amira/
https://imaris.oxinst.com/
https://lwjgl.org
http://www.jogamp.org
https://openjdk.java.net/projects/panama/
https://www.graalvm.org

© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933605

is available from the cache. Intermittently, tiles may render
at lower resolution or be missing completely. We prioritize
maintaining interactive framerates over rendering the most
complete data. Our technique is a combination of hierarchical
blocking [2, 20] and the missing data scheme of [25].

Once the lookup texture is prepared, volume rendering pro-
ceeds by raycasting and sampling volume values with varying
step size along the ray, adapted to the viewer distance. To
obtain each volume sample, we first downscale its coordinate
to fall within the correct voxel in the lookup texture. A nearest-
neighbor sample from the lookup texture yields a block offset
and scale in the cache texture. The final value is then sampled
from the cache texture with the accordingly translated and
scaled coordinate. With this approach, it is straightforward
to raycast through multiple volumes simultaneously, simply
by using multiple lookup textures. It is also easy to mix in
smaller volumes which are simply stored as 3D textures and
do not require indirection via lookup textures. To adapt to
varying number and type of visible volumes, we generate
shader sources dynamically at runtime. Blending of volume
and mesh data is achieved by reading scene depth from the
depth buffer for early ray termination, thereby hiding volume
values that are behind rendered geometry.

4.3 Code-shader communication and reflection — G3

In traditional OpenGL (before version 4.1), parameter data
like vectors, matrices, etc. are communicated to shaders via
uniforms, which are set one-by-one. In scenery, instead of sin-
gle uniforms, Uniform Buffer Objects (UBOs) are used. UBOs
lead to a lower API overhead and enable variable update rates.
Custom properties defined for node classes that need to be
communicated to the shader are annotated in the class defi-
nition with the @ShaderProperty annotation, scenery picks up
annotated properties automatically, and serializes them. See
Listing 1 for an example of how properties can be communi-
cated to the shader, and Listing 2 for the corresponding GLSL
code for UBO definition in the shader. Procedurally-generated
shaders can use a hash map storing these properties.

For all values stored in shader properties a hash is calcu-
lated, and they are only communicated to the GPU when the
hash changes. Currently, all elementary types (ints, floats,
etc.), as well as matrices and vectors thereof, are supported.

Listing 1: Shader property example

// Define a matrix and an integer property
@ShaderProperty var myMatrix: GLMatrix
@ShaderProperty var myIntProperty: Int
// For a dynamically generated shader: Store ←↩

properties as hash map
@ShaderProperty val shaderProperties = HashMap<←↩

String, Any>()

Listing 2: GLSL code example for shader properties

layout(set = 5, binding = 0)
uniform ShaderProperties {

int myIntProperty;
mat4 myMatrix;

};

Determination of the correct memory layout required by the
shader is done by our Java wrapper for the shader reflection
library SPIRV-cross and the GLSL reference compiler glslang7.
This provides a user- and developer-friendly API (G3).

7See github.com/KhronosGroup/SPIRV-cross and
github.com/scenerygraphics/spirvcrossj for our wrapper, spirvcrossj.

Figure 2: A scientist interactively explores a 500 GiB multi-timepoint
dataset of the development of an embryo of the fruit fly Drosophila
melanogaster in the CAVE at the CSBD using a scenery-based ap-
plication. Dataset courtesy of Loı̈c Royer, MPI-CBG/CZI Biohub, and
Philipp Keller, HHMI Janelia Farm [27].

Furthermore, scenery supports shader factories — classes
that dynamically produce shaders to be consumed by the GPU
— and use them, e.g., when multiple volumetric datasets with
arbitrary alignment need to be rendered in the same view.

4.4 Custom rendering pipelines — G3

In scenery, the user can use custom-written shaders and as-
sign them on a per-node basis in the scene graph. In addition,
scenery allows for the definition of fully customizeable ren-
dering pipelines. The rendering pipelines are defined in a
declarative manner in a YAML file, describing render targets,
render passes, and their contents. Render passes can have
properties that are adjustable during runtime, e.g., for ad-
justing the exposure of a HDR rendering pass. Rendering
pipelines can be exchanged at runtime, and do not require a
full reload of the renderer — e.g., already loaded textures do
not need to be reloaded.

The custom rendering pipelines enable the user/developer
to quickly switch between different pipelines, thereby en-
abling rapid prototyping of new rendering pipelines. We hope
that this flexibility stimulates the creation of custom pipelines,
e.g., for non-photorealistic rendering, or novel applications,
such as Neural Scene (De)Rendering [21, 34].

4.5 VR and preliminary AR support — G1

Recent reviews, e.g., [32], summarize how the use of VR/AR
can lead to improved perception and navigation. Motivated
by these observations, scenery supports rendering to VR head-
sets via the OpenVR/SteamVR library and rendering on dis-
tributed setups, such as CAVEs or Powerwalls — addressing
G1. The modules supporting different VR devices can be ex-
changed quickly and at runtime, as all of these implement
a common interface. The use of Vulkan in turn enables im-
proved rendering performance compared to older APIs.

In the case of distributed rendering, one machine is desig-
nated as master, to which multiple clients can connect. We use
the same hashing mechanism as described in Section 4.3 to de-
termine which node changes need to be communicated over
the network, use Kryo8 for fast serialization of the changes,
and finally ZeroMQ for low-latency and resilient network
communication. A CAVE usage example is shown in Fig. 2.

We have also developed an experimental compositor that
enables scenery to render to the Microsoft Hololens.

8See github.com/EsotericSoftware/Kryo.

3

https://doi.org/10.1109/VISUAL.2019.8933605
https://github.com/KhronosGroup/SPIRV-cross
https://github.com/scenerygraphics/spirvcrossj
https://github.com/EsotericSoftware/Kryo

© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933605

Figure 3: Agent-based simulation with 10,000 agents collectively
forming a sphere.

4.6 Remote rendering and headless rendering
To support downstream image analysis and usage settings
where rendering happens on a powerful, but non-local com-
puter, scenery can stream rendered images out, either as
raw data or as H264 stream, which can be saved to disk or
streamed over the network via RTP. All produced frames are
buffered and processed in a separate coroutine, such that ren-
dering performance is not impacted.

scenery can run in headless mode, creating no windows,
enabling both remote rendering on machines that do not have
a screen, e.g., in a cluster setup, or easier integration testing.
Most examples provided with scenery can be run automati-
cally (see the ExampleRunner test) and store screenshots for
comparison. In the future, broken builds will be automatically
identified by comparisons against known good images.

5 EXAMPLE APPLICATIONS

5.1 VR control of microscopes
We have used scenery to study VR control and visualization
for state-of-the-art volumetric microscopes. In one study with
8 microscopy experts we found that users reported an im-
provement compared to current 2D controls, due to enhanced
perception in VR. We also investigated whether users tend
to suffer from motion sickness during use of our interfaces.
We found an average SSQ score [16] of 6.2 ± 6.7, which is
very low, indicating that users tolerated VR rendering of live
microscopy data and interaction with it well. The interface
used in the study is shown in Supplementary Video 1.

5.2 Agent-based simulations
We have utilized scenery to visualize agent-based simulations
with large numbers of agents. By adapting an existing agent-
and physics-based simulation toolkit [12], we have increased
the number of agents that can be efficiently visualized by a
factor of 10. This performance improvement enables previous
studies of swarms with evolving behaviors to be revisited
under conditions that may enable new levels of emergent
behavior [8, 11]. In Figure 3, we show 10,000 agents using
flocking rules inspired by [26] to collectively form a sphere.

5.3 sciview
On top of scenery, we have developed a plugin for embed-
ding in Fiji/ImageJ2 [29] — sciview, fulfilling G5. We hope
it will boost the use of VR technology in the life sciences, by
enabling the user to quickly prototype visualizations and add
new functionality. In sciview, many aspects of the UI are au-
tomatically generated, including the node property inspector

Figure 4: Out-of-core dataset of a D. melanogaster embryo visualised
with scenery/sciview. The image is a composite of three different
volumetric views, shown in different colors. The transfer function on
the left was adjusted to highlight volume boundaries. Dataset courtesy
of Michael Weber, Huisken Lab, MPI-CBG/Morgridge Institute.

and the list of Fiji plugins and commands applicable to the
currently active dataset. sciview has been used in a recent
lightsheet microscopy pipeline [6]. In Supplementary Video
2, we show sciview rendering three overlaid volumes from a
fruit fly embryo, a still frame of that is shown in Figure 4.

6 CONCLUSIONS AND FUTURE WORK

We have introduced scenery, an extensible, user/developer-
friendly rendering framework for geometric and large volu-
metric data and demonstrated its applicability in several use
cases. Compared to previous solutions, scenery combines the
aspects of virtual reality rendering and control, with out-of-
core rendering of multiple volumetric datasets in the same
view, and enables the user to design their own prototypes
and applications. To our knowledge, scenery is also the first
framework using Vulkan on the JVM. Although scenery has
undergone significant development, it is still relatively early
in development compared to more mature tools and does not
possess the breadth of features that are present in some al-
ternative frameworks. However, this limitation is relaxed by
compatibility with Fiji/ImageJ2, which provides a wide range
of image processing capabilities.

In the future, we will introduce better volume rendering
algorithms (e.g. [14, 17]) and investigate their applicability
to VR settings. Furthermore, we are looking into providing
support for out-of-core mesh data, e.g. using sparse voxel oc-
trees [18, 19]. On the application side, we are driving forward
projects in microscope control (see Section 5.1) and VR/AR
augmentation of laboratory experiments.

7 SOFTWARE AND CODE AVAILABILITY

scenery, its source code, and a variety of examples are avail-
able at github.com/scenerygraphics/scenery and are licensed
under the LGPL 3.0 license. A preview of the Fiji plugin
sciview is available at github.com/scenerygraphics/sciview.

ACKNOWLEDGEMENTS

The authors thank C. Rueden, M. Weigert, R. Haase, V. Ulman,
P. Hanslovsky, W. Büschel, V. Leite, and G. Barbieri for addi-
tional contributions, L. Royer, P. Keller, N. Maghelli, and M.
Weber for allowing use of their datasets, and I. Tsakpinis and
K. Burjack from the LWJGL community for their support. This
work was supported by the European Regional Development
Fund, project number CZ.02.1.01/0.0/0.0/16 013/0001791.

4

https://doi.org/10.1109/VISUAL.2019.8933605
https://github.com/scenerygraphics/scenery
https://github.com/scenerygraphics/sciview

© 2020 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: 10.1109/VISUAL.2019.8933605

REFERENCES

[1] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Ktter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel. KNIME: The Konstanz
Information Miner. Springer Berlin Heidelberg, pp. 319–326, 2001.

[2] J. Beyer, M. Hadwiger, T. Möller, and L. Fritz. Smooth mixed-
resolution gpu volume rendering. In Proceedings of the Fifth
Eurographics / IEEE VGTC Conference on Point-Based Graphics,
SPBG’08, pp. 163–170. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2008. doi: 10.2312/VG/VG-PBG08/163-170

[3] D. Bonetta. GraalVM: metaprogramming inside a polyglot sys-
tem (invited talk). In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Meta-Programming Techniques and Reflection,
pp. 3–4, 2018. doi: 10.1145/3281074.3284935

[4] A. Bria, G. Iannello, L. Onofri, and H. Peng. TeraFly: real-time
three-dimensional visualization and annotation of terabytes of
multidimensional volumetric images. Nature Methods, 13:192
194, 2016. doi: 10.1038/nmeth.3767

[5] F. d. Chaumont, S. Dallongeville, N. Chenouard, N. Herv, S. Pop,
T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. L.
Montagner, T. Lagache, A. Dufour, and J.-C. Olivo-Marin. Icy: an
open bioimage informatics platform for extended reproducible
research. Nature Methods, 9:690, 2012. doi: 10.1038/nmeth.2075

[6] S. Daetwyler, U. Günther, C. D. Modes, K. Harrington, and
J. Huisken. Multi-sample spim image acquisition, processing
and analysis of vascular growth in zebrafish. Development,
146(6):dev173757, 2019.

[7] W. Denk and H. Horstmann. Serial Block-Face Scanning Electron
Microscopy to Reconstruct Three-Dimensional Tissue Nanostruc-
ture. PLoS Biology, 2:e329, 2004. doi: 10.1371/journal.pbio.0020329

[8] J. Gold, A. Wang, and K. Harrington. Feedback control of evolv-
ing swarms. In Artificial Life Conference Proceedings 14, pp. 884–
891. MIT Press, 2014. doi: 10.7551/978-0-262-32621-6-ch145

[9] S. Grottel, M. Krone, C. Muller, G. Reina, and T. Ertl. MegaMol -
A Prototyping Framework for Particle-Based Visualization. IEEE
Transactions on Visualization and Computer Graphics, 21:201–214,
2014. doi: 10.1109/tvcg.2014.2350479

[10] M. D. Hanwell, K. M. Martin, A. Chaudhary, and L. S. Avila. The
Visualization Toolkit (VTK): Rewriting the rendering code for
modern graphics cards. SoftwareX, 1:1 4, 2015. doi: 10.1016/j.softx.
2015.04.001

[11] K. Harrington and L. Magbunduku. Competitive dynamics in
eco-evolutionary genetically-regulated swarms. In Proceedings of
the European Conference on Artificial Life 14, vol. 14, pp. 190–197.
MIT Press, 2017. doi: 10.7551/ecal a 034

[12] K. I. S. Harrington and T. Stiles. kephale/brevis 0.10.4, July 2017.
doi: 10.5281/zenodo.822902

[13] J. Huisken, J. Swoger, F. D. Bene, J. Wittbrodt, and E. H. Stelzer.
Optical sectioning deep inside live embryos by selective plane
illumination microscopy. Science, 305:1007 1009, 2004. doi: 10.
1126/science.1100035

[14] O. Igouchkine, Y. Zhang, and K.-L. Ma. Multi-Material Volume
Rendering with a Physically-Based Surface Reflection Model.
IEEE Transactions on Visualization and Computer Graphics, 24:3147–
3159, 2017. doi: 10.1109/tvcg.2017.2784830

[15] D. Jonsson, P. Steneteg, E. Sunden, R. Englund, S. Kottravel,
M. Falk, A. Ynnerman, I. Hotz, and T. Ropinski. Inviwo - A
Visualization System with Usage Abstraction Levels. IEEE Trans-
actions on Visualization and Computer Graphics, PP:1–1, 2019. doi:
10.1109/tvcg.2019.2920639

[16] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal.
Simulator Sickness Questionnaire: An Enhanced Method for
Quantifying Simulator Sickness. The International Journal of Avia-
tion Psychology, 3:203–220, 1993. doi: 10.1207/s15327108ijap0303 3

[17] T. Kroes, F. H. Post, and C. P. Botha. Exposure Render: An
Interactive Photo-Realistic Volume Rendering Framework. PLoS
ONE, 7:e38586, 2012. doi: 10.1371/journal.pone.0038586

[18] V. Kmpe, E. Sintorn, and U. Assarsson. High resolution sparse
voxel DAGs. ACM Transactions on Graphics, 32:1 8, 2013. doi: 10.
1145/2461912.2462024

[19] S. Laine and T. Karras. Effective Sparse Voxel Octrees - Analysis,
Extensions and Implementation.

[20] E. LaMar, B. Hamann, and K. I. Joy. Multiresolution techniques
for interactive texture-based volume visualization. In Proceedings
of the Conference on Visualization ’99: Celebrating Ten Years, VIS ’99,
pp. 355–361. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1999.

[21] O. Nalbach, E. Arabadzhiyska, D. Mehta, H. Seidel, and
T. Ritschel. Deep Shading: Convolutional Neural Networks
for Screen Space Shading. pp. 65–78, 2017. doi: 10.1111/cgf.13225

[22] H. Peng, A. Bria, Z. Zhou, G. Iannello, and F. Long. Extensible
visualization and analysis for multidimensional images using
Vaa3D. Nature Protocols, 9:193 208, 2014. doi: 10.1038/nprot.2014.011

[23] S. Pidhorskyi, M. Morehead, Q. Jones, G. Spirou, and G. Doretto.
syGlass: Interactive Exploration of Multidimensional Images
Using Virtual Reality Head-mounted Displays. 2018.

[24] T. Pietzsch, S. Preibisch, P. Tomancak, and S. Saalfeld. ImgLib2:
generic image processing in Java. Bioinformatics, 28:3009–3011,
2012. doi: 10.1093/bioinformatics/bts543

[25] T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak. Big-
DataViewer: visualization and processing for large image data
sets. Nature Methods, 12:481 483, 2015. doi: 10.1038/nmeth.3392

[26] C. W. Reynolds. Flocks, herds and schools: A distributed be-
havioral model. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pp.
25–34. ACM, New York, NY, USA, 1987. doi: 10.1145/37401.37406

[27] L. A. Royer, W. C. Lemon, R. K. Chhetri, Y. Wan, M. Coleman,
E. W. Myers, and P. J. Keller. Adaptive light-sheet microscopy for
long-term, high-resolution imaging in living organisms. Nature
Biotechnology, 34:1267 1278, 2016. doi: 10.1038/nbt.3708

[28] L. A. Royer, M. Weigert, U. Günther, N. Maghelli, F. Jug, I. F.
Sbalzarini, and E. W. Myers. ClearVolume: open-source live
3D visualization for light-sheet microscopy. Nature Methods,
12:480–481, 2015. doi: 10.1038/nmeth.3372

[29] C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E.
Walter, E. T. Arena, and K. W. Eliceiri. ImageJ2: ImageJ for the
next generation of scientific image data. BMC Bioinformatics,
18:529, 2017. doi: 10.1186/s12859-017-1934-z

[30] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Lon-
gair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid,
J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak,
and A. Cardona. Fiji: an open-source platform for biological-
image analysis. Nature Methods, 9:676, 2012. doi: 10.1038/nmeth.
2019

[31] B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisen-
berg. A high-level 3D visualization API for Java and ImageJ.
BMC Bioinformatics, 11:274, 2010. doi: 10.1186/1471-2105-11-274

[32] M. Slater and M. V. Sanchez-Vives. Enhancing our lives with
immersive virtual reality. Frontiers in Robotics and AI, 3:74, 2016.
doi: 10.3389/frobt.2016.00074

[33] W. Usher, P. Klacansky, F. Federer, P.-T. Bremer, A. Knoll, J. Yarch,
A. Angelucci, and V. Pascucci. A Virtual Reality Visualiza-
tion Tool for Neuron Tracing. IEEE Transactions on Visualization
and Computer Graphics, 24:994–1003, 2017. doi: 10.1109/tvcg.2017.
2744079

[34] J. Wu, J. B. Tenenbaum, and P. Kohli. Neural Scene De-rendering.
In Proceedings of the Conference on Computer Vision and Pattern
Recognition, 2017. doi: 10.1109/cvpr.2017.744

5

https://doi.org/10.1109/VISUAL.2019.8933605
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.2312/VG/VG-PBG08/163-170
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1145/3281074.3284935
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.7551/978-0-262-32621-6-ch145
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1109/tvcg.2014.2350479
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.7551/ecal_a_034
https://doi.org/10.5281/zenodo.822902
https://doi.org/10.5281/zenodo.822902
https://doi.org/10.5281/zenodo.822902
https://doi.org/10.5281/zenodo.822902
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1126/science.1100035
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2017.2784830
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1109/tvcg.2019.2920639
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1371/journal.pone.0038586
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1145/2461912.2462024
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
http://dl.acm.org/citation.cfm?id=319351.319432
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1038/nprot.2014.011
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nbt.3708
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1038/nmeth.3372
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.1186/1471-2105-11-274
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.3389/frobt.2016.00074
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/tvcg.2017.2744079
https://doi.org/10.1109/cvpr.2017.744
https://doi.org/10.1109/cvpr.2017.744
https://doi.org/10.1109/cvpr.2017.744
https://doi.org/10.1109/cvpr.2017.744
https://doi.org/10.1109/cvpr.2017.744
https://doi.org/10.1109/cvpr.2017.744

	Introduction
	Related work
	scenery
	Highlighted features
	Realtime rendering on the JVM — G5
	Out-of-core volume rendering — G2
	Code-shader communication and reflection — G3
	Custom rendering pipelines — G3
	VR and preliminary AR support — G1
	Remote rendering and headless rendering

	Example Applications
	VR control of microscopes
	Agent-based simulations
	sciview

	Conclusions and Future Work
	Software and Code Availability

