Constructions of Optimal and Almost Optimal Locally Repairable Codes

Toni Ernvall
Turku Centre for Computer Science, Turku, Finland
\& Department of Mathematics and Statistics
FI-20014 University of Turku, Finland
(e-mail: tmernv@utu.fi)

Thomas Westerbäck and Camilla Hollanti
Department of Mathematics and Systems Analysis
Aalto University, P.O. Box 11100
FI-00076 Aalto, Finland
(e-mails: \{firstname.lastname@aalto.fi\})

Abstract

Constructions of optimal locally repairable codes (LRCs) in the case of $(r+1) \nmid n$ and over small finite fields were stated as open problems for LRCs in [I. Tamo et al., "Optimal locally repairable codes and connections to matroid theory", 2013 IEEE ISIT]. In this paper, these problems are studied by constructing almost optimal linear LRCs, which are proven to be optimal for certain parameters, including cases for which $(r+1) \nmid n$. More precisely, linear codes for given length, dimension, and all-symbol locality are constructed with almost optimal minimum distance. 'Almost optimal' refers to the fact that their minimum distance differs by at most one from the optimal value given by a known bound for LRCs. In addition to these linear LRCs, optimal LRCs which do not require a large field are constructed for certain classes of parameters.

I. Introduction

A. Locally Repairable Codes

In the literature, three kinds of repair cost metrics are studied: repair bandwidth [1], disk-I/O [2], and repair locality [3], [4], [5]. In this paper the repair locality is the subject of interest.

Given a finite field \mathbb{F}_{q} with q elements and an injective function $f: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n}$, let C denote the image of f. We say that C is a locally repairable code ($L R C$) and has allsymbol locality with parameters (n, k, r, d), if the code C has minimum (Hamming) distance d and all the n symbols of the code have repair locality r. The j th symbol has repair locality s if there exists a set

$$
\left\{i_{1}, \ldots, i_{s}\right\} \subseteq\{1, \ldots, n\} \backslash\{j\}
$$

and a function f_{j} such that

$$
f_{j}\left(\left(y_{i_{1}}, \ldots, y_{i_{s}}\right)\right)=y_{j} \text { for all } \boldsymbol{y} \in C .
$$

LRCs are defined when $1 \leq r \leq k$. By a linear LRC we mean a linear code of length n and dimension k.
In [6], Papailiopoulos et al. establish an information theoretic bound for both linear and nonlinear codes. With $\epsilon=0$ in [6, Thm. 1] we have the following bound for a locally repairable code C with parameters (n, k, r, d) :

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2 \tag{1}
\end{equation*}
$$

A locally repairable code that meets this bound is called optimal.

B. Related Work

As mentioned above, in the all-symbol locality case the information theoretic trade-off between locality and code distance for any (linear or nonlinear) code was derived in [6]. Furthermore, constructions of optimal LRCs for the case when $(r+1) \nmid n$ and over small finite fields when k is large were stated as open problems for LRCs in [7]. In [7] it was proved that there exists an optimal LRC for parameters (n, k, r) over a field \mathbb{F}_{q} if $r+1$ divides n and $q=p^{k+1}$ with p large enough. In [8] and [9] the existence of optimal LRCs was proved for several parameters (n, k, r). Good codes with the weaker assumption of information symbol locality are designed in [10]. In [3] it was shown that there exist parameters (n, k, r) for linear LRCs for which the bound of Eq. (1) is not achievable.

C. Contributions and Organization

In this paper, we try to build good codes with all-symbol locality, when given parameters n, k, and r. As a measure for the goodness of a code we use its minimum distance d. Also, we prefer codes with simple structure, and the property that the construction does not require large field size. Moreover, we give some constructions of optimal LRCs, including cases for which $(r+1) \nmid n$, as well as constructions over small fields. Although codes in the case $(r+1) \nmid n$ are already constructed in [8] and [9], the benefits of our construction are that it uses only some elementary linear algebra and it is very simple.

Section Π studies the largest achievable minimum distance of the linear locally repairable codes. We show that with a field size large enough we have linear codes with minimum distance at least $d_{\text {opt }}(n, k, r)-1$ for every feasible triplet of parameters (n, k, r). In Subsection II-A, we give a construction of such an almost optimal linear locally repairable code. In Subsection II-B, we analyze the minimum distance of our construction and derive a lower bound for the largest achievable minimum distance of the linear locally repairable code. Moreover, we prove that our construction results in optimal LRCs (including cases of $(r+1) \nmid n)$ for specific parameter values.
In Section [II] we give some constructions of optimal LRCs for certain classes of parameters which do not require a large field. Namely, for certain values of (r, d), we give
constructions of optimal (n, k, r, d)-LRCs for which the size of the field does not depend on the size of k and n.

II. Constructing Almost Optimal Codes

A. Construction

In this subsection we will give a construction for linear locally repairable codes with all-symbol locality over a field \mathbb{F}_{q} with $q>2\binom{n}{k-1}$, given parameters (n, k, r) such that $n-$ $\left\lceil\frac{n}{r+1}\right\rceil \geq k$. We also assume that $k<n$ and $n \not \equiv 1 \bmod r+1$. Write $n=a(r+1)+b$, where $0 \leq b<r+1$. We will construct a generator matrix for a linear code under the above assumptions. The minimum distance of the constructed code will be studied in Subsection II-B

Next we will build $A=\left|\frac{n}{r+1}\right|$ sets $S_{1}, S_{2}, \ldots, S_{A}$ such that each of them consists of $r+1$ vectors of \mathbb{F}_{q}^{k}, except for S_{A} that shall consist of $n-(A-1)(r+1)$ vectors of \mathbb{F}_{q}^{k}.
First, choose any r linearly independent vectors $\mathbf{g}_{1,1}, \ldots, \mathbf{g}_{1, r}$. Let $\mathbf{s}_{1, r+1}$ be $\sum_{l=1}^{r} \mathbf{g}_{1, l}$. These $r+1$ vectors form the set S_{1}. This set has the property that any r vectors from this set are linearly independent.

Let $1<i \leq A$. Assume that we have $i-1$ sets $S_{1}, S_{2}, \ldots, S_{i-1}$ such that when taken at most k vectors from these sets, at most r vectors from each set, these vectors are linearly independent. Next we will show inductively that this is possible by constructing the set S_{i} with the same property.

Let $\mathbf{g}_{i, 1}$ be any vector such that when taken at most $k-1$ vectors from the already built sets, with at most r vectors from each set, then $\mathbf{g}_{i, 1}$ and these $k-1$ other vectors are linearly independent. This is possible since $\binom{n}{k-1} q^{k-1}<q^{k}$. Write $\mathbf{s}_{i, j}=\sum_{l=1}^{j} \mathbf{g}_{i, l}$ for $j=1, \ldots, r$.
Suppose we have j vectors $\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}$ such that when taken at most k vectors from the sets $S_{1}, S_{2}, \ldots, S_{i-1}$ or $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, with at most r vectors from each set $S_{1}, S_{2}, \ldots, S_{i-1}$ and at most j vectors from the set $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, then these vectors are linearly independent.

Choose $\mathbf{g}_{i, j+1}$ to be any vector with the following two properties: When taken at most $k-1$ vectors from the sets $S_{1}, S_{2}, \ldots, S_{i-1}$ or $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, with at most r vectors from each set $S_{1}, S_{2}, \ldots, S_{i-1}$ and at most j vectors from the set $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, then $\mathbf{g}_{i, j+1}$ and these $k-1$ other vectors are linearly independent. Require also the following property: when taken at most $k-1$ vectors from the sets $S_{1}, S_{2}, \ldots, S_{i-1}$ or $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, with at most r vectors from each set $S_{1}, S_{2}, \ldots, S_{i-1}$ and at most j vectors from the set $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j}, \mathbf{s}_{i, j}\right\}$, then $\mathbf{s}_{i, j+1}$ and these $k-1$ other vectors are linearly independent. This is possible because there are at most $\binom{n}{k-1}$ different possibilities to choose, each of the options span a subspace with q^{k-1} vectors, and since q is large we have $2\binom{n}{k-1} q^{k-1}<q^{k}$. Notice that $\mathbf{s}_{i, j+1} \in V$ (where V is some subspace) if and only if $\mathbf{g}_{i, j+1} \in-\mathbf{s}_{i, j}+V$.
To prove the induction step we have to prove the following thing: when taken at most $k-1$ vectors from sets $S_{1}, S_{2}, \ldots, S_{i-1}$ or $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j+1}\right\}$, with at most r vectors from each set $S_{1}, S_{2}, \ldots, S_{i-1}$ and at most j vectors from
the set $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, j+1}\right\}$, then $\mathbf{s}_{i, j+1}$ and these $k-1$ other vectors are linearly independent. Let $h \leq j, \mathbf{v}$ be a sum of at most $k-1-h$ vectors from the sets $S_{1}, S_{2}, \ldots, S_{i-1}$ with at most r vectors from each set, and let $m_{1}<\cdots<m_{h}$ be indices in ascending order. We will assume a contrary: We have coefficients $c_{m_{1}}, \ldots, c_{m_{h}} \in \mathbf{F}_{q}$ such that

$$
\begin{equation*}
\mathbf{s}_{i, j+1}=\mathbf{v}+\sum_{l=1}^{h} c_{m_{l}} \mathbf{g}_{i, m_{l}} \tag{2}
\end{equation*}
$$

If $m_{h} \neq j+1$ then our assumption is false by the definition so assume that $m_{h}=j+1$. If $c_{j+1} \neq 1$ then

$$
\begin{equation*}
\left(1-c_{j+1}\right) \mathbf{g}_{i, j+1}=\mathbf{v}+\sum_{l=1}^{h-1} c_{m_{l}} \mathbf{g}_{i, m_{l}}-\mathbf{s}_{i, j} \tag{3}
\end{equation*}
$$

and again our assumption is false by the definition. So assume that $c_{j+1}=1$. Then we get

$$
\begin{equation*}
\mathbf{s}_{i, j}=\mathbf{v}+\sum_{l=1}^{h-1} c_{m_{l}} \mathbf{g}_{i, m_{l}} \tag{4}
\end{equation*}
$$

and since $h-1 \leq j-1$ the assumption is false by the induction step.

Now, the sets S_{i} consist of vectors $\left\{\mathbf{g}_{i, 1}, \ldots, \mathbf{g}_{i, r}, \mathbf{s}_{i, r}\right\}$ for $i=1, \ldots, a$. If $b \neq 0$ the set S_{A} consists of vectors $\left\{\mathbf{g}_{A, 1}, \ldots, \mathbf{g}_{A, b-1}, \mathbf{s}_{A, b-1}\right\}$. The matrix \mathbf{G} is a matrix with vectors from the sets $S_{1}, S_{2}, \ldots, S_{A}$ as its column vectors, i.e.,

$$
\mathbf{G}=\left(\mathbf{G}_{1}\left|\mathbf{G}_{2}\right| \ldots \mid \mathbf{G}_{A}\right)
$$

where

$$
\mathbf{G}_{\mathbf{j}}=\left(\mathbf{g}_{j, 1}|\ldots| \mathbf{g}_{j, r} \mid \mathbf{s}_{j, r}\right)
$$

for $i=1, \ldots, a$, and

$$
\mathbf{G}_{\mathbf{A}}=\left(\mathbf{g}_{A, 1}|\ldots| \mathbf{g}_{A, b-1} \mid \mathbf{s}_{A, b-1}\right)
$$

if $b \neq 0$.
To be a generator matrix for a code of dimension k the rank of \mathbf{G} has to be k. By the construction the rank is k if and only if $n-A \geq k$, and this is what we assumed.

B. Lower Bound for the Largest Achievable Minimum Distance

In this subsection we will derive a lower bound for the largest achievable minimum distance of the linear codes with all-symbol locality. We will do this by analyzing the construction of Subsection $\boxed{I I}$-A
Let C be a linear code with a generator matrix G. A subset A of the columns of G is called a circuit if A is linearly dependent and all proper subsets of A are linearly independent. A collection of circuits C_{1}, \ldots, C_{l} of C is called a nontrivial union if

$$
C_{i} \nsubseteq \bigcup_{j \neq i} C_{j}, \text { for } 1 \leq i \leq l
$$

To analyze our code construction we will use the following result that was proved by Tamo et al. in [7].

Theorem 2.1: The minimum distance of the linear locally repairable code is equal to

$$
d=n-k-\mu+2
$$

where μ is the minimum positive integer such that the size of every nontrivial union of μ circuits is at least $\mu+k$.
To make the notations clearer we define $D_{q}(n, k, r)$ to be the minimum distance of our code construction for given parameters. To be exact, we have the following definition.

Definition 2.1: If our construction covers parameters (n, k, r) over \mathbb{F}_{q}, then define $D_{q}(n, k, r)$ to be the minimum distance of such a code. If our construction does not cover parameters (n, k, r) over \mathbb{F}_{q}, then define $D_{q}(n, k, r)$ to be zero.
For the largest achievable minimum distance under the assumption of information symbol locality, we mark to be

$$
d_{\text {opt }}(n, k, r):=\max \left\{n-k-\left\lceil\frac{k}{r}\right\rceil+2,0\right\} .
$$

The reason for this kind of definition is that if $n-k-\left\lceil\frac{k}{r}\right\rceil+2 \leq$ 0 then it is impossible to have a code for parameters (n, k, r).

Since the assumption of all-symbol locality is stronger than the assumption of information symbol locality, we know that

$$
\begin{equation*}
D_{q}(n, k, r) \leq d_{\mathrm{opt}}(n, k, r) \tag{5}
\end{equation*}
$$

In [3] it was proved that there exists triplets (n, k, r) such that the inequality 5 is strict. So the natural question arises: What is the relationship between $d_{\text {opt }}(n, k, r)$ and $D_{q}(n, k, r)$? Next we will study this question.

First we need a small straightforward lemma.
Lemma 2.2: Suppose $n-\left\lceil\frac{n}{r+1}\right\rceil \geq k$. Then $\frac{k}{r} \leq \frac{n}{r+1}$.
Proposition 2.3: Suppose $q>2\binom{n}{k-1}, k<n, n-\left\lceil\frac{n}{r+1}\right\rceil \geq$ k, and $n \not \equiv 1 \bmod r+1$. Then

$$
D_{q}(n, k, r)=d_{\mathrm{opt}}(n, k, r)
$$

if $r+1$ divides n, and

$$
D_{q}(n, k, r) \geq n-k-\left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor-\left\lfloor\frac{n}{r+1}\right\rfloor
$$

otherwise.
Proof: The construction of Subsection II-A gives a generating matrix \mathbf{G} for a linear code. It is clear that the code it generates has the all-symbol repair locality r.

By Theorem 2.1 its minimum distance is $n-k-\mu+2$ where μ is a minimum positive integer m with the following property: the size of every nontrivial union of m circuits is at least $k+m$.
We remark that there are circuits of at most two types: possibly of size $k+1$ and those corresponding the sets S_{j}. Suppose we have a nontrivial union of m circuits containing a circuit of size $k+1$. Then the size of this union is at least $(k+1)+(m-1)=k+m$.

Consider now only circuits corresponding the sets S_{j}. We have $A=\left\lceil\frac{n}{r+1}\right\rceil$ such circuits. It is easy to see that every
union of such circuits is nontrivial. Write as before $n=a(r+$ $1)+b$ with $0 \leq b<r+1$.
Suppose first that $b=0$. Then $\left|S_{j}\right|=r+1$ for all j. Each union of m circuits has the same size

$$
\left|\cup_{j=1}^{m} S_{i_{j}}\right|=m(r+1)
$$

and $m(r+1) \geq m+k$ if and only if $m \geq \frac{k}{r}$, and hence $\mu=\min \left\{\left\lceil\frac{k}{r}\right\rceil, A+1\right\}=\left\lceil\frac{k}{r}\right\rceil$ by lemma 2.2

This gives that $D_{q}(n, k, r)=n-k-\left\lceil\frac{k}{r}\right\rceil+2$ when $r+1$ divides n.
Suppose now that $b \neq 0$. Then $\left|S_{j}\right|=r+1$ for all j except that $\left|S_{A}\right|=b$. Each minimal union of m circuits contains the circuit corresponding the set S_{A} and hence has the size
$\left|\cup_{j=1}^{m-1} S_{i_{j}} \cup S_{A}\right|=(m-1)(r+1)+b=m r-r+m-1+b$. We have $m r-r+m-1+b \geq m+k$ if and only if

$$
m \geq \frac{k+1+r-b}{r}=1+\frac{k+1-n+\left\lfloor\frac{n}{r+1}\right\rfloor}{r}+\left\lfloor\frac{n}{r+1}\right\rfloor .
$$

Notice also that

$$
\begin{align*}
& {\left[\left.1+\frac{k+1-n+\left\lfloor\frac{n}{r+1}\right\rfloor}{r}+\left\lfloor\frac{n}{r+1}\right\rfloor \right\rvert\,\right.} \tag{6}\\
= & \left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor+\left\lfloor\frac{n}{r+1}\right\rfloor+2
\end{align*}
$$

and hence

$$
\begin{align*}
\mu & =\min \left\{\left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor+\left\lfloor\frac{n}{r+1}\right\rfloor+2, A+1\right\} \tag{7}\\
& =\left\lfloor\frac{n}{r+1}\right\rfloor+2+\left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor
\end{align*}
$$

by lemma 2.2
This gives that
$D_{q}(n, k, r) \geq n-k-\mu+2=n-k-\left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor-\left\lfloor\frac{n}{r+1}\right\rfloor$
when $n \not \equiv 0,1 \bmod r+1$.
As a consequence the above analysis of the construction we have the following theorem.
Theorem 2.4: Suppose $q>2\binom{n}{k-1}$ and $k<n$. Then $D_{q}(n, k, r) \in\left\{d_{\text {opt }}(n, k, r)-1, d_{\text {opt }}(n, k, r)\right\}$.

Proof: Write $n=a(r+1)+b$ with $0 \leq b<r+1$.
Suppose first that

$$
\begin{equation*}
n-\left\lceil\frac{n}{r+1}\right\rceil+1 \leq k \tag{8}
\end{equation*}
$$

If $r+1$ divides n then the Equation 8 has the form $a r+1 \leq k$ and hence
$n-k-\left\lceil\frac{k}{r}\right\rceil+2 \leq a(r+1)-(a r+1)-(a+1)+2=0$.
So it is impossible to have a code for parameters (n, k, r) and hence $D_{q}(n, k, r)=d_{\text {opt }}(n, k, r)=0$.

If $r+1$ does not divide n then the Equation 8 has the form $a r+b \leq k$ and hence
$n-k-\left\lceil\frac{k}{r}\right\rceil+2 \leq a(r+1)+b-(a r+b)-(a+1)+2 \leq 1$.
Hence $D_{q}(n, k, r) \geq 0 \geq d_{\text {opt }}(n, k, r)-1$.
Suppose then that $n-\left\lceil\frac{n}{r+1}\right\rceil \geq k$. Now we can use Theorem 2.3

If $b=0$ then the claim is true by the Proposition 2.3 .
Assume $b=1$ and \mathbf{G} is a generating matrix of a linear locally repairable code for parameters $(n-1, k, r)$ and minimum distance $d_{\text {opt }}(n-1, k, r)$. Replicate any column in \mathbf{G} and get a generating matrix for a linear locally repairable code for parameters (n, k, r) and minimum distance $d_{\text {opt }}(n, k, r)-1$.

Assume $b>1$. Then

$$
D_{q}(n, k, r) \geq n-k-\left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor-\left\lfloor\frac{n}{r+1}\right\rfloor
$$

and hence

$$
\begin{align*}
& d_{\text {opt }}(n, k, r)-D_{q}(n, k, r) \\
\leq & \left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor-\left\lceil\frac{k}{r}\right\rceil+\left\lfloor\frac{n}{r+1}\right\rfloor+2 \tag{9}\\
\leq & \left\lfloor-\frac{n}{r+1}\right\rfloor+\left\lfloor\frac{n}{r+1}\right\rfloor+2=-1+2=1 .
\end{align*}
$$

So we know that if $d_{\text {opt }}(n, k, r) \geq 2$ then we have a linear locally repairable code for parameters (n, k, r). If $d_{\text {opt }}(n, k, r)=0$ then it is impossible to have a linear locally repairable code for parameters (n, k, r). However, if $d_{\text {opt }}(n, k, r)=1$ then we do not know whether there exists a linear locally repairable code for parameters (n, k, r).

Theorem 2.4 gives a lower bound for the minimum distance. In fact we can say little more in a certain case.

Below, the fractional part of of x is denoted by $\{x\}$, i.e., $\{x\}=x-\lfloor x\rfloor$.

Theorem 2.5: Suppose $q>2\binom{n}{k-1}, k<n,\left\{\frac{k}{r}\right\}<\left\{\frac{n}{r+1}\right\}$, and r does not divide k. Then

$$
D_{q}(n, k, r)=d_{\mathrm{opt}}(n, k, r)
$$

Proof: Write $n=a(r+1)+b$ with $0 \leq b<r+1$. If $b=0$ or 1 then $\left\{\frac{k}{r}\right\} \geq\left\{\frac{n}{r+1}\right\}$ so we may assume that this is not the case.

Suppose first that $n-\left\lceil\frac{n}{r+1}\right\rceil \geq k$. By studying the Equation 9 again we notice that

$$
\begin{align*}
& d_{\mathrm{opt}}(n, k, r)-D_{q}(n, k, r) \\
\leq & \left\lfloor\frac{k}{r}-\frac{n}{r+1}\right\rfloor-\left\lceil\frac{k}{r}\right\rceil+\left\lfloor\frac{n}{r+1}\right\rfloor+2 \tag{10}\\
= & \left\lfloor\left\{\frac{k}{r}\right\}-\left\{\frac{n}{r+1}\right\}\right\rfloor+1=0
\end{align*}
$$

Suppose then that $n-\left\lceil\frac{n}{r+1}\right\rceil+1 \leq k$. Since $\left\{\frac{k}{r}\right\}<\left\{\frac{n}{r+1}\right\}$ we know that $r+1$ cannot divide n and hence we have $a r+b \leq$
k. It is impossible that $a r+b=k$. Indeed, then we would have $\left\{\frac{k}{r}\right\}=\left\{\frac{b}{r}\right\}>\left\{\frac{b}{r+1}\right\}=\left\{\frac{n}{r+1}\right\}$. Hence $a r+b<k$ and

$$
\begin{align*}
d_{\mathrm{opt}}(n, k, r) & =\max \left\{n-k-\left\lceil\frac{k}{r}\right\rceil+2,0\right\} \\
& \leq \max \left\{1-\left\lceil\frac{b+1}{r}\right\rceil, 0\right\}=0 \tag{11}
\end{align*}
$$

and hence $D_{q}(n, k, r)=d_{\text {opt }}(n, k, r)$.

III. Constructing Optimal LRCs over \mathbb{F}_{4}

In this section we give some constructions of optimal LRCs over the field of four elements \mathbb{F}_{4} for certain values of (r, d). Our LRCs will be described in the setting of matrices with different operators as entries.

A. Matrix Representation

We represent the elements of \mathbb{F}_{4} as $\{00,01,10,11\}$, such that the addition of elements in \mathbb{F}_{4} can be considered as bitwise addition without carry (e.g. $01+11=10$). In our construction of optimal LRCs over \mathbb{F}_{4} we will use the operators $\alpha, \alpha^{2}, \beta$, $\beta^{2}, \beta^{3}, 1$ and 0 on \mathbb{F}_{4} to \mathbb{F}_{4} defined as

$$
\begin{aligned}
& \alpha(00)=00, \quad \alpha(01)=10, \quad \alpha(10)=11 \quad \alpha(11)=01, \\
& \alpha^{2}(00)=00, \quad \alpha^{2}(01)=11, \quad \alpha^{2}(10)=01 \quad \alpha^{2}(11)=10, \\
& \beta(00)=01, \quad \beta(01)=10, \quad \beta(10)=11 \quad \beta(11)=00, \\
& \beta^{2}(00)=10, \quad \beta^{2}(01)=11, \quad \beta^{2}(10)=00 \quad \beta^{2}(11)=01, \\
& \beta^{3}(00)=11, \quad \beta^{3}(01)=00, \quad \beta^{3}(10)=01 \quad \beta^{3}(11)=10, \\
& 1(00)=00, \quad 1(01)=01, \quad 1(10)=10 \quad 1(11)=11, \\
& 0(00)=00, \quad 0(01)=00, \quad 0(10)=00 \quad 0(11)=00 .
\end{aligned}
$$

A code C is represented by a $k \times n$ matrix F. The entries of the matrix are the operators $\alpha, \alpha^{2}, \beta, \beta^{2}, \beta^{3}, 1$ and 0 . The code C consists of the following codewords
$C=\left\{\boldsymbol{y} \in \mathbb{F}_{4}^{n}: y_{j}=F_{1, j}\left(x_{1}\right)+\ldots+F_{k, j}\left(x_{k}\right)\right.$ for $\left.\boldsymbol{x} \in \mathbb{F}_{4}^{k}\right\}$.
B. Optimal LRCs over \mathbb{F}_{4}

Let A and B be the following matrices

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & \alpha & \alpha \\
0 & \alpha^{2} & \alpha^{2}
\end{array}\right)
$$

For $i \geq 1$, let $F_{i}^{1}(3,3)$ be the $(i+1) \times(i+1)$-block matrix

$$
F_{i}^{1}(3,3)=\left(\begin{array}{c|c|c|ccc}
A & & & & B \\
\hline & \ddots & & & \vdots & \\
\hline & & A & & B & \\
\hline & & & 1 & \alpha & \alpha^{2}
\end{array}\right),
$$

where the entires of the empty blocks are 0 -operators and the first i diagonal blocks are A-blocks.
Theorem 3.1: The matrix $F_{i}^{1}(3,3)$ defines a locally repairable code C over \mathbb{F}_{4} with parameters $(n, k, d, r)=(4 i+$ $3,3 i+1,3,3)$ for $i \geq 1$.

Proof: Let $f: \mathbb{F}_{4}^{3 i+1} \rightarrow \mathbb{F}_{4}^{4 i+3}$ denote the mapping given by the matrix $F_{i}^{1}(3,3)$. Now, f is injective, because

$$
\begin{align*}
& y_{4 j-3}=x_{3 j-2}, y_{4 j-2}=x_{3 j-1}, y_{4 j-1}=x_{3 j} \text { and } \tag{12}\\
& y_{4 i+1}=x_{3 i+1},
\end{align*}
$$

for $1 \leq j \leq i$ and $f(\boldsymbol{x})=\boldsymbol{y}$. Since f is injective and $F_{i}^{1}(3,3)$ is a $(3 i+1) \times(4 i+3)$-matrix it follows that $(n, k)=(4 i+$ $3,3 i+1$).

The code C has repair locality $r=3$, since from the fact that $1(x)+\alpha(x)+\alpha^{2}(x)=00$ for $x \in \mathbb{F}_{4}$ we may deduce that

$$
y_{4 i+1}+y_{4 i+2}+y_{4 i+3}=00
$$

for $f(\boldsymbol{x})=\boldsymbol{y}$. Moreover, we have that

$$
y_{4 j-3}+y_{4 j-2}+y_{4 j-1}+y_{4 j}=00
$$

for $f(\boldsymbol{x})=\boldsymbol{y}$ and $1 \leq j \leq i$.
Let $d(\boldsymbol{u}, \boldsymbol{v})$ denote the distance between $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{F}_{4}^{m}$. Suppose \boldsymbol{w} and \boldsymbol{x} are two elements of $\mathbb{F}_{4}^{3 i+1}$ such that $d(\boldsymbol{w}, \boldsymbol{x}) \geq$ 3 . Then, by (12), we deduce that $d(f(\boldsymbol{w}), f(\boldsymbol{x})) \geq 3$.

Suppose \boldsymbol{w} and \boldsymbol{x} are two elements of $\mathbb{F}_{4}^{3 i+1}$ such that $d(\boldsymbol{w}, \boldsymbol{x})=1$. We note that every row of $F_{i}^{1}(3,3)$ has at least three entries a, b and c with operators $1, \alpha$ or α^{2}. In particular, this yields that the coefficients a, b and c of $f(\boldsymbol{w})$ differ from these coefficients of $f(\boldsymbol{x})$, and hence $d(f(\boldsymbol{w}), f(\boldsymbol{x})) \geq 3$.

Suppose \boldsymbol{w} and \boldsymbol{x} are two elements of $\mathbb{F}_{4}^{3 i+1}$ such that $d(\boldsymbol{w}, \boldsymbol{x})=2$. Let a and b be the index of the two coefficients in which \boldsymbol{w} and \boldsymbol{x} differ. Assume that row a and row b of $F_{i}^{1}(3,3)$ are in different horizontal blocks. Then there are at least three columns e, g and h of $F_{i}^{1}(3,3)$ such that one of the entries (a, e) and (b, e) is the 0 -operator and the other one is the 1 -operator, this property also holds for the entries (a, g), (b, g) and $(a, h),(b, h)$. Consequently, $d(f(\boldsymbol{w}), f(\boldsymbol{x})) \geq 3$ when the rows a and b are in different horizontal blocks.

Now, suppose that row a and row b are in the same horizontal block of $F_{i}^{1}(3,3)$, i.e. row a and b are rows in a submatrix of the following form

$$
(\mathbf{0}|A| \mathbf{0} \mid B)
$$

It is easy to check by hand that if

$$
y \neq y^{\prime}, z \neq z^{\prime} \text { and } 1(y)+1(z)=1\left(y^{\prime}\right)+1\left(z^{\prime}\right)
$$

then

$$
\begin{aligned}
& 1(y)+\alpha(z) \neq 1\left(y^{\prime}\right)+\alpha\left(z^{\prime}\right), \\
& 1(y)+\alpha^{2}(z) \neq 1\left(y^{\prime}\right)+\alpha^{2}\left(z^{\prime}\right), \\
& \alpha(y)+\alpha^{2}(z) \neq \alpha\left(y^{\prime}\right)+\alpha^{2}\left(z^{\prime}\right) .
\end{aligned}
$$

for $y, y^{\prime}, z, z^{\prime} \in \mathbb{F}_{4}$. As a consequence of this fact and since there are two pair of entries $\{(a, g),(b, g)\}$ and $\{(a, h),(b, h)\}$ in $F_{i}^{1}(3,3)$ such that one of the entries in each pair is the 0 operator and the other entry is the 1 -operator, we deduce that $d(f(\boldsymbol{w}), f(\boldsymbol{x})) \geq 3$. Hence $d \geq 3$ for the code.

Moreover, since

$$
4 i+3-(3 i+1)-\left\lceil\frac{3 i+1}{3}\right\rceil+2=3
$$

we obtain that C is an optimal $(4 i+3,3 i+1,3,3)$-LRC.
Let D be the following matrix

$$
D=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & \alpha & \alpha \\
0 & 0 & \alpha^{2} & \alpha^{2}
\end{array}\right)
$$

For $i \geq 1$, let $F_{i}^{2}(3,3)$ be the $(i+1) \times(i+1)$-block matrix

$$
\left.F_{i}^{2}(3,3)=\left(\begin{array}{c|c|c|ccc}
A & & & & D & \\
\hline & \ddots & & & \vdots & \\
\hline & & A & & D & \\
\hline & & & 1 & 0 & \beta
\end{array}\right) \beta^{2}\right)
$$

and let $F_{i}^{1}(3,4)$ be the $(i+1) \times(i+1)$-block matrix

$$
F_{i}^{1}(3,4)=\left(\begin{array}{c|c|c|ccc}
A & & & & A & \\
\hline & \ddots & & & \vdots & \\
\hline & & A & & A & \\
\hline & & & 1 & \beta & \beta^{2}
\end{array} \beta^{3} . l .\right.
$$

With similar proof techniques as in Theorem 3.1 we can prove the following two theorems.
Theorem 3.2: The matrix $F_{i}^{2}(3,3)$ defines a locally repairable code C over \mathbb{F}_{4} with parameters $(n, k, d, r)=(4 i+$ $4,3 i+2,3,3)$ for $i \geq 1$.

Theorem 3.3: The matrix $F_{i}^{1}(3,4)$ defines a locally repairable code C over \mathbb{F}_{4} with parameters $(n, k, d, r)=(4 i+$ $4,3 i+1,3,4)$ for $i \geq 1$.
Note that the codes we construct in Theorem 3.2 and Theorem 3.3 are nonlinear since β is a nonlinear operator over \mathbb{F}_{4}.

IV. Future Work

As future work it is still left to find the exact expression of the largest achievable minimum distance of a linear locally repairable code with all-symbol locality when given the length n, dimension k, and locality r of the code. Our goal is to also generalize the constructions given in Section III to other parameters r and d over small fields.

References

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. Inf. Theory, 56(9), pp. 4539-4551, September 2010.
[2] I. Tamo, Z. Wang, J. Bruck, "MDS array codes with optimal rebuilding," 2011 IEEE Int. Symp. Inf. Theory (ISIT), pp. 1240-1244, 2011.
[3] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, "On the locality of codeword symbols," IEEE Trans. Inf. Theory, 58(11), pp. 6925-6934, 2011.
[4] F. Oggier, A. Datta, "Self-repairing homomorphic codes for distributed storage systems," 201 IEEE INFOCOM, pp. 1215-1223.
[5] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, J. Li "Simple regenerating codes: Network coding for cloud storage," 2012 IEEE INFOCOM, pp. 2801-2805.
[6] D. S. Papailiopoulos, A. G. Dimakis, "Locally repairable codes," 2012 IEEE Int. Symp. Inf. Theory (ISIT), pp. 2771-2775.
[7] I. Tamo, D. S. Papailiopoulos, A. G. Dimakis, "Optimal locally repairable codes and connections to matroid theory," 2013 IEEE Int. Symp. Inf. Theory (ISIT), pp. 1814-1818.
[8] W. Song, S. H. Dau, C. Yuen, T. J. Li, "Optimal Locally Repairable Linear Codes," arXiv:1307.1961, 2013.
[9] I. Tamo, A. Barg, "A family of optimal locally recoverable codes," arXiv:1311.3284, 2013.
[10] C. Huang, M. Chen, J. Lin, "Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems," IEEE Int. Symp. on Network Comp. and Appl., 2007, pp. 79-86.

