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ABSTRACT

Many methods have been developed for monitoring network traffic,
both using visualization and statistics. Most of these methods focus
on the detection of suspicious or malicious activities. But what they
often fail to do refine and exercise measures that contribute to the
characterization of such activities and their sources, once they are
detected. In particular, many tools exist that detect network scans or
visualize them at a high level, but not very many tools exist that are
capable of categorizing and analyzing network scans. This paper
presents a means of facilitating the process of characterization by
using visualization and statistics techniques to analyze the patterns
found in the timing of network scans through a method of continu-
ous improvement in measures that serve to separate the components
of interest in the characterization so the user can control separately
for the effects of attack tool employed, performance characteris-
tics of the attack platform, and the effects of network routing in the
arrival patterns of hostile probes. The end result is a system that
allows large numbers of network scans to be rapidly compared and
subsequently identified.

Keywords: information visualization, security visualization,
graph visualization, clustering, wavelets, scalograms, network
scans, cyber forensics, adversary characterization

1 INTRODUCTION

Scanning a network is a very common first step in a network in-
trusion attempt. The process of scanning a network is usually per-
formed in order to determine what exists on a network. For exam-
ple, if an attacker is looking for web servers, then he or she would
attempt to connect on TCP/UDP port 80 to every possible IP ad-
dress within a certain range. For each of these attempted connec-
tions, if there is a web server using port 80 with that IP address, it
will probably respond. However, if there is nothing at that address,
or if there is a computer that is not running a web server, there will
be no response. There are scans going on continuously on the In-
ternet, ranging from productive activity such as web crawlers, to
malicious activity such as worms [14]. Being able to differentiate
between such activity is one of the reasons that it is desirable to be
able to categorize and identify the source of a scan. Many visual-
ization tools exist to detect scans [4, 3], but they are often incapable
of performing any sort of classification.

An attacker can do several things to attempt to make such a
scan anonymous, such as coming from different source addresses or
scanning destination addresses in a random order. In fact, it is even
possible to perform a scan indirectly, by using a fake source address
so the scan looks like it is coming from a different computer. De-
nial of service and worm propagation attacks can also produce scan
like behavior, and since they do not need the target to respond, they
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often fake their source addresses as well. The port number is also
not sufficient for categorizing scans, because a malicious scan can
often be run on the same port number as a benign one. For exam-
ple, both a web crawler and a worm that targets webservers would
both target port 80. Therefore, some other metric must be used for
categorization purposes.

Variations in arrival time of the scanning connections can be used
to classify such an attacker. However, the chaotic nature of these
variations makes direct comparison both unwieldy and unreliable.
What were needed were measures sufficient to identify characteris-
tic patterns despite pointwise distortions and differences. In order
to accomplish this, some visualization concepts have been devel-
oped for viewing individual scans, and some statistical concepts
have been developed that are useful for comparisons between scans.
What is discussed here is a means to combine these concepts along
with a graph visualization method to allow for rapid comparison
and identification of large numbers of network scans.

1.1 Related Work

The work presented in this paper has evolved from the scan charac-
terization work of Bryan Parno and Tony Bartoletti [12], but there
are several other systems that share some similarities. The con-
cept of using visualization in order to characterize attacks, scans
in particular, has been explored in [2], which uses a parallel co-
ordinates system to display scan details. Mirage [6] is a modular
visualization tool designed to handle generic comparisons of multi-
dimensional data. It utilizes many visualization techniques such as
clustering, parallel coordinates, and scatter plots to display trends in
the data to the user. Each of these techniques is encapsulated in its
own panel, and these panels can be added, removed, and configured
dynamically by the user. Because of its generality, it could easily be
used to analyze scans by comparing scan fingerprints. PortVis [10]
uses a drill-down approach to display hourly network traffic statis-
tics summarized by port for datasets as large as entire weeks. It
uses a grid-based method of displaying values for each port, where
each point in a grid is colored based on some metric. Since the data
it deals with is at a high level of abstraction, it is good at detecting
anomalous activity, but not at investigating the details of such activ-
ity. NVisionIP [8] and SeeNet [1] also use grid-based visualization,
where each axis of the grid corresponds to network addresses, and
the color of each point in the grid corresponds to a network statis-
tic for the addresses corresponding to its two indices. Then, activity
such as network scans show up as lines in this plot, which are easily
recognizable. The Spinning Cube of Potential Doom [9] extends the
grid-based visualization techniques to a three dimensional volume,
where the axes represent source ip, destination ip, and port. Then,
port scans and network scans can both show up as distinctive lines,
but in different directions. Several of the techniques used in these
systems are also in our methods, such as grid based visualizations,
graph based visualizations, and a combination of an overview with
a detailed view. But what differentiates our method from prior sys-
tems such as these is a cyclic interaction between the overview and
the detailed view.



Figure 1: The whole process, from data collection to display with a
feedback loop. Raw network data gets filtered into isolated scans,
which are then used to create sets of fingerprints The fingerprints are
used to create an overview, from which scans can be selected to be
viewed in detail. Then, user input can be fed back into the overview
for future reference.

2 METHODOLOGY

Visualization often tends to be a cyclical process, where each it-
eration provides more insight into the data being shown. A typical
example of this process occurs with any type of overview plus detail
visualization. Patterns in the overview tend to direct what the user
chooses to view in more detail, and the detailed view can provide
insight on regions of the overview, and direct how the user cogni-
tively views and manipulates the overview. This process creates a
feedback loop which can lend itself well to visualizing the relation-
ships between large numbers of objects, such as network scans.

The methodology that is shown in this paper is based on these
concepts as they are applied to viewing large numbers of network
scans. Figure 1 shows the entire process from data collection to
the visualization feedback loop. The first step involves filtering the
original network stream into isolated network scans, in order to vi-
sualize them. At this point, the scans can be directly visualized
individually, but when dealing with large numbers of scans, this is
unfeasible. So, once the scans are isolated, in order to automat-
ically compare them, fingerprints are generated to be fed into an
overview visualization. This overview of the relationships between
the scans and the detailed view of individual pairs of scans for com-
parison purposes compose an overview plus detail feedback loop.
As described before, the overview allows the user to drill down into
certain areas, by showing them in the detailed view. However, un-
like most overview plus detail visualizations, ours allows the user to
bias the overview in a manner reflecting the cognitive insight gained
from looking at the detail view. This enhances the feedback loop
by allowing information gained by viewing the details of network
scans to be reflected back in the overview.

2.1 Data Filtering

When dealing with large networks, such as a class B network with
nearly 65536 possible addresses, the process of scanning the ad-
dress space is not feasibly doable by hand, and unless it is done
rapidly, it can take a long time to complete. Thus, many scans are
performed quickly and noisily using an automated tool or script.
This kind of activity can be easily and automatically detected by
monitoring a network stream for connections to many destinations
in a small space of time. When a certain threshold of destinations
per unit time is detected, it is usually a trivial task to extrapolate for-
wards and backwards in time to extract the entire scan. Of course,
it is possible to miss a scan if it is being performed at a rate lower
than the threshold, and at the other extreme, it is possible to cate-
gorize normal traffic as a scan if the threshold is too low. However,

there has also been work done in the area of using visualization to
detect patterns such as network scans in the network traffic, such
as PortVis [10]. Once a scan is detected with a visualization tool
or even a different statistical method, it can be extrapolated and ex-
tracted from the network stream in the same manner as the ones
detected with a threshold.

2.2 Scan Data

This extraction process creates a set of individual network scans,
consisting of a single source, a destination port, and pairs of des-
tination addresses and packet arrival times. Once these scans are
isolated, it is desirable to compare and contrast them, so that the
sources can be categorized by factors other than IP addresses or
port numbers. While IP addresses and port numbers can be helpful
for categorization purposes, IP addresses can be spoofed and ma-
licious scans can be run on the same ports as benign ones. It was
determined experimentally that looking at the packet timing and
sequencing information could provide good metrics for doing this,
because timing and ordering can be influenced in different ways by
many factors which are directly related to classification. Some of
these factors that can alter the arrival time of a packet are the tool
or tools used to generate the scan, the attacker’s hardware, the at-
tacker’s operating system, and even router delays. Therefore, each
scan has been reduced to a collection of pairs of destination ad-
dresses and times. Not every scan hits the entire network space,
and some scans hit destinations more than once, so there is not nec-
essarily exactly one time for any given destination.

2.3 Scan Fingerprints

Direct comparisons of these datasets is not always useful because
similar patterns from the same source could even be completely
different for every value. For example, say an attacker scans ev-
ery other destination of a network, then a day later scans the other
destination addresses that were skipped in the first scan. The scans
would exhibit nearly identical traits, but a direct comparison would
say that they were completely different. Therefore, some more
complicated form of pattern matching must be performed, such as
comparing fingerprints of the scan. Since fingerprints are often
much smaller then the original data, this can have the added ef-
fect of reducing the size of the data being compared by an order of
magnitude. However, one has to be cautious in selecting the func-
tion used to generate such fingerprints, or else the distinguishing
features of the patterns being observed will be lost in the reduction
process.

2.4 Feedback Loop

Many cyclic visualization methods require the user to remember
insights learned from low level semantic views of the data in order
to aid interpretation of higher level semantic views. In order to
improve upon this cyclic process, the capability was added to allow
the user to record cognitive insights gained from the detail view into
the set of relationships shown in the overview. This allows the user
to feed knowledge back into the system, which is useful for keeping
track of large numbers of cognitive insights. Repeated iterations of
this feedback loop will refine the overview of the data, making it
easier to understand. And by saving this refined relational data,
future datasets containing the same scans or different views of the
same dataset can recall the user defined feedback, allowing the user
to more rapidly understand the data.

3 A SCAN VISUALIZATION SYSTEM

The two primary visualizations needed to implement this method-
ology are an overview showing the relationships between network



Figure 2: The interface of the scan visualization system: Both the
high level and the low level views are presented in a single screen so
the user can go back and forth easily.

scans, and a detailed view showing individual scans. Since the fi-
nal goal for the overview is to visualize the relationships between
network scans, it was determined that showing these relationships
directly in a graph visualization would be somewhat intuitive. Then
the relationships can be shown spatially using a force directed algo-
rithm to place similar scans next to each other. This requires that the
scans be compared statistically in order to automatically determine
the strength of the relationship between any two scans. Also, for the
detailed view, there are many different metrics based on timing that
can be shown, but the scans are of a fixed size network, consisting
of 65536 consecutive IP addresses. So it makes sense to use a grid
based visualization of fixed size and let the color at each point in the
grid represent the currently desired metric. In order to implement
these visualization concepts, a system was developed in C++ using
wxWidgets and OpenGL. As is shown in Figure 2, it presents both
the high level overview and the low level detailed view simultane-
ously, so that the user can go back and forth between them rapidly.
The user can select scans from the overview to be viewed in pairs
in the detail view. And the user can use a standard slider to al-
ter the numerical measure of the similarity between scans, which
is then reflected in the overview graph. Thus, it presents an inter-
active view of the data, allowing the user to iteratively refine an
understanding of the data.

3.1 Data Modes

The raw scan data is composed of arbitrary pairs of destination ad-
dresses and times. In order to generate a more useful visualization,
various transformations were performed to show different aspects
of the data. This created a set of derived metrics which can be
shown in the detail visualization. For example, one simple metric
is to record the time of the first connection attempt to each address.
Some more complex metrics are defined as follows:

• m20: f(a) = N(v), the number of visits per unique address

• m21: f(a) = tFirst - tLast, the revisit-span for each address

• m22: f(a) = tFirst - E(tFirst), time deviance for first probes

• m23: f(a) = tLast - E(tLast), time deviance for last probes

• m24: f(a) = d(tFirst), time delta on sequential addresses, first
probe

• m25: f(a) = d(tLast), time delta on sequential addresses, last
probe

(a) Similar scans have similar patterns

(b) Dissimilar scans have dissimilar patterns

Figure 3: Visualization of individual scans shows patterns that can
easily be compared by eye. These particular images show the arrival
time of the first connection attempt to each address, with blue being
early in the scan, red being late in the scan, and black being an
address that had no connection attempt.

3.2 Displaying Individual Scans

One half of the feedback loop is a detailed view technique for dis-
playing a single scan. One such technique is displaying the scan in a
256x256 grid, where the x and y coordinates are the third and fourth
bytes of the destination IP addresses scanned (“c” and “d” in the
address a.b.c.d), and the color represents various metrics based on
statistical information regarding the arrival time at that IP address.
This allows an entire class B network to be shown in a single im-
age. Many existing visualization tools use similar methods, such as
PortVis [10] and NVisionIP [8], and some even extend this concept
to three dimensions, such as the Spinning Cube of Potential Doom
[9]. As can be seen in Figure 3, some scans exhibit similar patterns,
while others exhibit quite different patterns when displayed in this
manner. The color gradient used in this image is simply a blue to
red gradient, where blue is early in the scan, red is late, and black
was an address with no activity. The other color gradient used is
a blue to black to red, where blue indicates a negative value, black
indicates a zero value, and red indicates a positive value. This tends
to work well when there are negative values, as in the deviation
from expected time metric. Another possible technique is to plot
ip versus arrival time and contrast it to the line that corresponds to
the linear expected arrival times, but this does not tend to scale very
nicely to the large number of connections in any given scan.

3.3 Side by Side Comparisons

Being able to compare two patterns is one of the primary tasks that
are very useful to the process of pattern matching. In order to sim-
plify this task as it relates to network scan characterization, two
256x256 panels were used so that scans could be compared side by
side. When any scan is selected in the overview, it and its neighbors
are placed in a pair of lists. Each of these lists has a corresponding



(a) Similar scans have similar wavelet scalograms

(b) Dissimilar scans have dissimilar wavelet scalograms

Figure 4: Wavelet scalograms reduce large complex patterns to
smaller simpler vectors that can be compared. This example was
made using data mode m20, with a black to red gradient, where
black is no probes and red is the maximum for that scan.

256x256 scan display panel, and scans can be selected from either
list, and displayed in the respective scan display panels. In each
panel, scans are displayed using the 256x256 grid-based visualiza-
tion techniques. Then, the user can view them and if the fingerprint
comparison process is not an accurate representation of the similar-
ity of the two scans, the user can then bias the weight correspond-
ing edge in the graph. This could occur when the wavelet analysis
missed some feature difference between the two, so they need to
be biased negatively, or when the wavelets amplify minute differ-
ences, so they get labeled as being different, even though they are
quite similar. This process completes the feedback loop back into
the overview graph, which allows the user to progressively refine
the accuracy of the data representation.

3.4 Wavelet Scalograms

The first step in generating an overview of the relationships between
network scans is to statistically compare pairs of scans and get a
quantitative measure on how well they match. The scans are too
chaotic to easily directly compare, but there are several algorithms
utilizing frequency analysis that are useful for handling this kind
of data, such as Fourier transforms and wavelet scalograms. Al-
though network scan patterns can exhibit periodic or quasi-periodic

structure, they often contain gaps, aperiodic aberrations and re-
gions where the relative phase of the periodic structures has shifted,
which are things that Fourier analysis has been found to not handle
well [5].

So, wavelets are used because they are relatively resistant to
phase shifts and noise. That is, similar patterns will have sim-
ilar wavelet scalograms, even if the patterns are shifted slightly
or different parts of the pattern are missing. However, dissimi-
lar patterns should produce different scalograms, as can be seen
in Figure 4. There are several variations on the wavelets used, the
simplest of which is as follows. Given a series of N = 2n items
D0 = (d0,1,d0,2, ...,d0,N), we can calculate recursively:

•

Dk = (dk,1,dk,2, ...dk,2n−k)

= (
dk−1,1+dk−1,2

2 , ...,
d

k−1,2n−k−1
+d

k−1,2n−k

2 )

•

Sk = (sk,1,sk,2, ...sk,2n−k)

= (
|dk−1,1−dk−1,2|

2 , ...,
|d

k−1,2n−k−1
−d

k−1,2n−k |
2 )

• σk = ∑
Sk

2n−k

for 0 < k < n. At each recursion the σ values are the mean of the
corresponding data series, which estimates the variance at each res-
olution. More complicated wavelets can be calculated by changing
the functions used to calculate Dk and Sk. Some of the functions
being used currently are:

• w00:

dk,i =
|dk−1,i+dk−1,i+1|

2

sk,i =
|dk−1,i−dk−1,i+1|

2

• w03: (a.k.a. Haar wavelet)

dk,i =
dk−1,i+dk−1,i+1√

2

sk,i =
dk−1,i−dk−1,i+1√

2

• w04: (mean of 0 and 1
4 phases)

dk,i =
|dk−1,i+dk−1,i+1|

2

sk,i =
|dk−1,i−dk−1,i+1|

2

• w10: (a.k.a. “pointwise” wavelet)
dk,i = � (acts directly on D0)

sk,i =
Σ2k−1

j=0 |(d0,i+ j−d
0,i+2k−1+ j

)|√
2

• w23:

dk,i =
√

d2
k−1,i

+d2
k−1,i+1

sk,i = Tan−1(
dk−1,i+1

dk−1,i
)

• w24: (a.k.a. “Absolute Slope Product”)

dk,i =
|dk−1,i+dk−1,i+1|

2
sk,i = |dk−1,i+1 −dk−1,i| ∗ |dk−1,i+3 −dk−1,i+2|

• w29: (a.k.a. “Slope Sign”)

dk,i =
dk−1,i+dk−1,i+1

2

sk,i =







−1 if dk−1,i > dk−1,i+1

1 if dk−1,i < dk−1,i+1

0 if dk−1,i = dk−1,i+1

Averaging with the quarter phase function, as in w04, adds com-
plexity, but can be useful when the other methods would miss some-
thing, or classify something incorrectly. For example, a square
wave could show up as a spike in a completely different frequency
if the phase is off. But with the quarter phase averaging, a similar
but more consistent pattern is shown even when the phase changes.



Figure 5: A graph of 681 nodes, showing clusters. Generated from
data mode m20 and wavelet w04, with a geometric mean comparison
and a 70% cutoff. The force directed layout causes scans with similar
scalograms to end up next to each other.

3.5 Wavelet Comparisons

The next challenge is taking the multidimensional wavelet signa-
tures and measuring how well they match with a single number
to be used as an edge weight. This can be done in many differ-
ent ways, such as taking the arithmetic mean of the relative differ-
ences, the geometric mean of the differences, or the inverse of the
Euclidean distance between the two signatures. The methods cur-
rently used are calculated as follows. Let a = (a1,a2, ...,an) and
b = (b1,b2, ...,bn) be the scalograms corresponding to two nodes,
then the weight w of the connection between them is:

• Arithmetic: w = ∑
n
i=1

1− |ai−bi |
ai+bi

n

• Geometric: w = n

√

∏
n
i=1(1−

|ai−bi|
ai+bi

)

• Geometric(no root): w = ∏
n
i=1(1−

|ai−bi|
ai+bi

)

• Inverse Euclidean: w = 1

1+
√

∑
n
i=1(ai−bi)2

• Inverse Euclidean2: w = 1
1+∑

n
i=1(ai−bi)2

Different methods can be more or less effective with different
wavelet and data mode combinations. For example, the arithmetic
and geometric means are calculated relatively, so they are more ef-
fective when there are large changes in the wavelets relative to the
average value. However, if the wavelets tend to have large average
values, and the relative changes are small, then one of the Euclidean
functions would likely work better.

3.6 Overview Graph of Scan Relationships

A graph visualization was developed in order to provide a high level
view of a large set of scans. In the graph, each node represents a
scan, and the connection between any two nodes is weighted ac-
cording to the wavelet comparison between them, with 0% being
completely different and 100% being identical. Since this is a com-
plete graph, a cutoff was added to simplify the graph – any connec-
tion where the nodes match less than some threshold is dropped.
Then by using the LinLog force directed layout [11], nodes with
higher match percentages attract each other more than nodes that
do not match as well. So nodes that correspond to the same source
cluster together. This effect can be clearly seen in Figure 5, which
shows a graph of 681 scans. Additional information can also be

Figure 6: Clusters contain scans with a general pattern. A represen-
tative example from each selected cluster is shown.

shown in the color of the nodes. Any given node can be colored ac-
cording to destination port, mean scan rate, elapsed time, or number
of probes. While these do not directly affect the clustering, often
after the clusters have formed, patterns can be seen in the data, such
as clusters that are all one value or that have a smooth gradient in
one metric.

4 CASE STUDIES

Much can be learned from simply drilling down into the clusters
that are generated automatically. For example, in the graph shown
in Figure 6, there are several clusters, both large and small, that
have distinctive characteristics which can easily be seen in the rep-
resentative examples shown. Starting with the one in the upper
right of the figure, the first cluster’s representative example shows
a mostly continuous scan from low numbered to high numbered
IP addresses, but with some speckled areas where some addresses
were missed. Continuing clockwise, the next example is a represen-
tative of three separate clusters that showed a similar pattern under
this data mode, which is a region around the top and the right of
the grid display in which there were no connection attempts. The
next cluster is the single largest cluster, and it corresponds to a sim-
ple continuous scan of nearly the entire subnet. However, there are
still occasional addresses to which no connection was detected. The
next cluster is of scans which cover only part of the address space,
usually about half. However, this cluster extends towards the clus-
ter containing the complete scans, and the closer one gets to this
cluster, the larger the region of the subnet that the scan covers. The
example second to the left shows a cluster that consists of only two
scans, each covering about half of the address space in an interest-
ingly spaced pattern. Also of interest is that both of these scans
actually originated from the same source address, hinting that there
is a very strong correlation between them. The final representative
scan shows one of the many scans that ended up isolated from all
the other scans. As can be seen in the representative image, the pat-
terns in these isolated scans can be quite different from the patterns
found in clustered scans. This essentially shows how the first half
of the feedback loop works, which is the way most overview plus
context visualizations work. The user can start with the overview
graph and then drill down to detailed views of the scans to gain un-
derstanding about the clusters in the graph. The feedback loop can
be used to regurgitate this information back to the graph, but this



task can be aided by starting with a wavelet that gives a good initial
relationship graph.

Looking at different data modes or different wavelet functions
can reveal many interesting patterns. Figure 7 and Figure 8 shows
what happens to the graph visualization when different data modes
or different wavelets are used for the initial layout. Wavelets w04
and w10 act somwhat similar in their clustering in both data modes:
In all four of those combinations, the graph produces one large clus-
ter, and several smaller clusters. These wavelets seem to primarily
distinguish nodes mostly by large scale patterns which is indicative
of causes such as the tool used to generate the scan. This could be
due to the Euclidean distance metric being overwhelmed by large
changes at a certain frequency. That is, large scale differences in
the pattern are likely inducing large differences in a single value of
the scalograms, which is overpowering the smaller changes in other
positions of the scalogram that could be caused by factors such as
routing delays. For example, when scans in the graph of m20 with
w04 are viewed, it can be seen that scans that are near the begin-
ning of the tail are complete, while scans near the end contain only
about half the address space. The difference between data modes
m20 and m22 when viewed under these wavelets is that data mode
m20 shows a smooth gradient between these extremes, while data
mode m22 isolates clusters of a particular type better. Wavelet w19
is essentially the same as w04 and w19 for data mode m22, but for
data mode m20, it creates a snake-like pattern of clusters, where the
ends are completely different, but there are intermediate values in
between. This is probably indicative of a particular factor that is
being measured, because each scan in the cluster is similar to scans
next to it, but not to scans in the same cluster but on different ends.
Unlike the previous graphs though, this snake-like pattern is not
due to coverage of the address space, since each concentrated clus-
ter contains both scans that cover the whole space and scans that
cover only fractions of it. In the combination of wavelet w23 and
data mode m20, the resulting graph is somewhat similar to the ones
generated by w04 and w10, in that there is one large cluster, one
medium sized cluster, and several smaller clusters, and they arrange
themselves such that another tail pattern emerges. Also, when the
individual scans are viewed, it can be seen that this is caused by the
coverage of the address space again. When used with data mode
m22 though, wavelet w23 creates a graph where there are multi-
ple snake like clusters, implying that there are groups of scans that
cluster together based on unique patterns, but smaller timing factors
are probably stretching the clusters out. That is, the overall cluster
structure is probably still caused by large differences such as choice
of scanning tool, but the position inside the cluster could correlate
to timing factors such as hop count. The spread out cluster effect
shows up even more strongly, however, in wavelet w24. In both
data modes, wavelet 24 creates a pattern where there is a strong
cluster in the middle and a trail of nodes that are progressively less
similar to the nodes in the middle. When the definition of wavelet
w24 is considered, it becomes apparent that this tail-shaped pattern
correlates to more or less chaotic data. A large portion of the scans
are very straight forward, they start at the first address and proceed
to the last address, then possibly repeat this sequence a few times.
These scans correspond to the nodes in a large dense portion of the
graph, while nodes that do not follow this pattern end up farther
away from this point. Of particular interest is how in data mode
m22, the stretching of the cluster that wavelet w24 generates cor-
responds to the scan rate, as can be seen in the gradient of color
through the structure. This makes sense, since the faster a scan
is run, the more small deviations due to hardware or router delays
affect the timing. Wavelet w29 provides the most interesting and
unique graphs in both data modes. In mode m20, the wavelet di-
vides the graph quite strongly in two, and then it divides each half
more weakly into three. This nearly partitions the graph into 6 sep-
arate clusters all of about the same size, although the cluster on the

bottom right seems to be close to splitting more. This overall pat-
tern is probably due to the limited number of values encountered in
the m20 data mode. Because the data mode consists of very sim-
ple data, and the wavelet performs a large amount of simplification,
the graph created from their combination exhibits a fairly simple
and regular pattern. And finally, the combination of m22 and w29
produces a graph with many separate clusters, which each consist
of very similar scans. This implies that this particular combina-
tion of data mode and wavelet is categorizing scans according to a
wider variety of unique patterns than the other combinations. This
is probably because this particular wavelet scalogram function ig-
nores magnitude, so no one frequency can dominate the scalogram.
Thus, the large scale frequencies that dominated wavelets such as
w04 and w10 are unable to dominate in this w29, so other frequen-
cies can affect the graph more.

Other interesting patterns can be seen just by coloring the nodes
differently. In Figure 9, the 5 most scanned ports have been colored
according to the given legend. Of interest here is how even though
the port was not taken into consideration by the clustering algo-
rithm, there are clusters of almost exclusively port 445 or port 139.
For example, the large cluster in the lower right contains the major-
ity of scans on port 139, and no scans on any other port. Similarly,
many of the clusters on the left side of the graph are exclusively
port 445, so there were several classes of scans running on that port
exclusively. This indicates that there were particular kinds of scans
that targeted individual ports, which suggests that these scans were
not made by a generic scan tool. Had these scans been made by
a generic scan tool, there would be scans on different ports with
similar timing, such as can be seen in the cluster at the top of the
graph. But, each of the clusters of interest contain scans on only a
single port, so it is more likely that they were generated by worms,
since worms generally run on only one port. The reason the clus-
ters of scans on port 445 do not form a single cluster like the one
on port 139 could be due to different variations of a worm, differ-
ent source systems, different delays over the network, or entirely
different worms that just happen to target the same port.

There are many patterns that can be seen with the human eye
which even wavelet w29 can not distinguish. This is where allow-
ing the user to bias the edge weights can prove useful. In Figure 10
a single cluster has been isolated out of the graph of data mode m22
and wavelet w29. In it, there were found to be several different pat-
terns that can be easily distinguished by viewing them. So pairs of
scans were selected from the graph, viewed side by side, their edge
weights biased according to how similar they looked, and the graph
was updated according to the new weights. This process was per-
formed on each pair of nodes in the cluster. The end result was that
the cluster was split into three separate clusters, each corresponding
to one kind of pattern. This shows how one can successfully utilize
the feedback loop to refine the graph to give a better representation
of the underlying data.

5 FUTURE WORK

As it is right now, these techniques would likely make a useful tool
for categorizing network scans, but there are still several improve-
ments that can be made. There are some other factors that could be
useful to visualize besides the wavelet scalograms. It could be ben-
eficial to visualize or at least factor in relationships involving other
features, such as the actual source IP addresses or the TCP/UDP
ports involved.

5.1 Clustering

In order to simplify the graph, it would be good to collapse clusters
of nodes that match well enough (over some threshold) into a single
larger node. Clustering has been shown to be a useful and effective



(a) m20 and w04: Almost everything is positioned in one cluster, but with

a tail leading away from the center due to scans that didnt cover the entire

address space.

(b) m22 and w04: Several clusters of different sizes, but many isolated

nodes.

(c) m20 and w10: One primary cluster with two tails trailing off. (d) m22 and w10: One large cluster, two smaller clusters, and one weak

cluster at the bottom.

(e) m20 and w19: A large snake-like structure running through 4 major

concentrated clusters.

(f) m22 and w19: A concentrated cluster with a tail, and 2 other clusters.

Figure 7: Variations in data mode and wavelet function. Each graph uses an inverse Euclidean squared comparison function, has a 70% cutoff,
and consists of 878 scans. Node coloration is based on a log scale of the mean scan rate.



(a) m20 and w23: 2 Main clusters, but with a tail running down from them

due to address space coverage.

(b) m22 and w23: Several clusters, some stretched into snake-like forms.

(c) m20 and w24: Almost everything forming a snake-like clustering pat-

tern.

(d) m22 and w24: A strong snake-like pattern which corresponds to scan

rate.

(e) m20 and w29: A partition of the graph into 6 regions. (f) m22 and w29: The graph is split into many separate clusters.

Figure 8: More variations in data mode and wavelet function. Each graph uses an inverse Euclidean squared comparison function, has a 70%
cutoff, and consists of 878 scans. Node coloration is based on a log scale of the mean scan rate.



Figure 9: Coloring the nodes based on ports can reveal interesting patterns. In this example, there are several clusters that contain only one
port. Namely, the cluster on the bottom right is exclusively port 139, and the the clusters up the left side and the one in the very center are all
exclusively port 445. Such patterns are likely caused by worms.

tool in the process of discovering security events in unlabeled data
[13], but not much has been done to use it in the process of charac-
terizing such events. Once collapsed, being able to zoom inside of
the node to view the internal structure would be useful. However,
if the user biases one or more of the internal connections enough
that a node or group of nodes falls below the threshold, then the
collapsed node would somehow have to be able to split. And vice
versa, if the user biases the connection between two separate nodes,
they would somehow need to automatically combine into a single
collapsed node. The difficulties in this concept lie in choosing an
algorithm to collapse closely knit clusters of nodes and choosing
how to calculate the relationships between a collapsed node and
other nodes for layout and display purposes. One possible algo-
rithm that is being considered is Kohonen’s self organizing map
algorithm [7].

5.2 Frequency Weighting

Often times, the patterns of interest are focused at a particular fre-
quency level in the wavelet scalograms. Algorithmic choices of the
attacker can affect low frequencies quite a lot, but modifying high
frequency patterns is nearly impossible algorithmically. Similarly,
routing protocols are designed to delay traffic as little as possible, so
they would not alter low frequency patterns much, but they would
likely create high frequency patterns. Therefore, patterns corre-
sponding to tool or tool flag choices would likely occur at lower res-
olution scalogram entries, while patterns due to system limitations
or Internet routing would more likely occur at higher resolution val-
ues in the scalogram. In order to emphasize particular patterns, it
would be beneficial to be able to weight different frequencies, in a
manner similar to the way equalizers balance audio frequencies.

5.3 Machine Learning

Machine learning could also be easily added. There are many
connections in the graph, and if there is a certain feature that the
wavelet comparisons show weakly, or miss entirely, the user would
have to select and bias all of them, unless some sort of intelligent
algorithm does it automatically. However, this is exactly what ma-
chine learning algorithms would be good at. As the user biases
certain relationships, a machine learning algorithm could be used

to bias other similar relationships automatically.

6 CONCLUSIONS

The methods described in this paper combine several existing tech-
niques in order to enable the user to categorize and characterize
network scans more readily then would be possible using any of
the techniques by itself. Utilizing a feedback loop allows the user
to correct any inaccuracies created by the wavelet transformations
and subsequent wavelet scalogram comparisons. The graph based
method, while probably not yet being used to its full potential, pro-
vides a relatively intuitive view of the data, even with large datasets.
Other methods such as parallel coordinates could work too, but
would probably not be as accommodating as the graph based al-
gorithms to some of the operations that it is desirable to perform,
as well as being somewhat less intuitive. The process of creating
the wavelet scalograms out of the original data loses a lot of detail,
as does the process of reducing two multidimensional scalograms
to a single edge weight. Therefore, it was desirable to add a feed-
back loop by allowing users to directly modify edge weights based
on looking at more detailed views of the scans. Also, the methods
used to categorize these scans do not actually involve anything net-
work specific, so they could also be applied to other fields where
pattern matching in regular data series is desirable.

7 ACKNOWLEDGMENTS

This work has been sponsored in part by the U.S. National Sci-
ence Foundation under contracts ACI 9983641 (PECASE), ACI
0222991, and ANI 0220147 (ITR), ACI 0325934 (ITR), and the
U.S. Department of Energy under Lawrence Livermore National
Laboratory Agreement No. B537770, No. 548210 and No. 550194.
We would like to thank Ellen Raber, Associate Director for the
Safety and Environmental Protection Directorate at Lawrence Liv-
ermore National Laboratory, for generously supporting this re-
search. We would also thank Andrew Brown and Tim Meier, who
have provided network capture support, and Chuck Baldwin for his
encouragement and guidance in the exploration of wavelet analysis.



Figure 10: Sometimes clusters are not as homogeneous as one would
like. By biasing the weights of the edges, such a cluster can split into
several more homogenous clusters. In this example, nodes from one
cluster were compared under datamode m22, and their edge weights
biased according to how similar they were. This split the single cluster
into three separate clusters.
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