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Looking for a Black Cat in a Dark Room:
Security Visualization for Cyber-Physical System Design and Analysis
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ABSTRACT

Today, there is a plethora of software security tools employing visu-
alizations that enable the creation of useful and effective interactive
security analyst dashboards. Such dashboards can assist the ana-
lyst to understand the data at hand and, consequently, to conceive
more targeted preemption and mitigation security strategies. De-
spite the recent advances, model-based security analysis is lacking
tools that employ effective dashboards—to manage potential attack
vectors, system components, and requirements. This problem is fur-
ther exacerbated because model-based security analysis produces
significantly larger result spaces than security analysis applied to
realized systems—where platform specific information, software
versions, and system element dependencies are known. Therefore,
there is a need to manage the analysis complexity in model-based
security through better visualization techniques. Towards that goal,
we propose an interactive security analysis dashboard that provides
different views largely centered around the system, its requirements,
and its associated attack vector space. This tool makes it possible to
start analysis earlier in the system lifecycle. We apply this tool in a
significant area of engineering design—the design of cyber-physical
systems—where security violations can lead to safety hazards.

Index Terms: Human-centered computing— Visualization—Visual-
ization techniques—Graph drawings; Human-centered computing—
Visualization—Visualization systems and tools—Visualization
toolkits; Security and privacy—Systems Security—Vulnerability
management; Security and privacy—Security in hardware—
Embedded systems security

1 INTRODUCTION

Security visualizations have changed the way we view, organize, and
respond to system violations. The study of effective visualizations
for security has led to better mitigation strategies applied in real
time [28]]. Nevertheless, there are two areas where visualization has
made little progress: assessing the security posture of competing
design patterns early in the system’s lifecycle and effective visual-
ization for large amounts of evidence generated at the early design
phase.

This issue was not as critical when systems took years to de-
velop and deploy—where designs went through several rounds of
testing, specifications where clearly defined, and a main architect
took responsibility for the development of the system. Recently,
however, there has been a shift to deploying system’s designed using
commercial-off-the-shelf (COTS) hardware on top of open-source
software, which has the potential of reducing technical debt and
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financial cost. On top of this, non-safety-critical and safety-critical
systems alike are increasingly connected to the internet. (See, for
example, the security and privacy issues surrounding the industrial
internet of things [31].)

For this reason, a significant challenge is the secure design and de-
ployment of cyber-physical systems (CPS), where security violations
can lead to unsafe physical behavior [29]. Effective visualizations in
this area would achieve a higher degree of operational assurance with
respect to security in applications where security violations could
lead to safety hazards, such as medical systems [9]], aviation []1]],
automotive [[19,20L]24]] and electric power [25], to name a few.

Furthermore, the use of systematic and standardized analysis
through effective visualization in the CPS domain provides a com-
mon language between security professionals and system designers,
which is currently limited. The lack of such language in the security
domain can have detrimental effects, including miscommunication
of security requirements to system designers, security applied for the
sake of security (not based on real operational needs), and security
obstructing system requirements.

Additionally, a major problem in applying security as a lifecycle
practice is that the amount of data generated at the design phase is
significantly larger than that used for the analysis of realized systems.
This is because, the inherent incompleteness of information at the
design phase produces a large amount of applicable attack vectors.
Lacking information includes but is not limited to the specific ver-
sions of software, the security patches that will be applied to the
system, and the potential insecurity caused by the coupled system.

Moreover, security data is recorded to be parsed and used by se-
curity professionals. Security analysts are expected to be looking for
specific vulnerabilities and attack patterns to report in a standardized
fashion—making implicit assumptions and using expert knowledge
from previous experiences. The current challenge is to allow system
designers to use security data. This is one way that system security
can be exercised as a lifecycle practice; especially earlier in the
lifecycle where decision effectiveness is highest [22}321[35].

To combat these challenges, we implement a security analyst
dashboard that can be used preemptively from the early stages of a
system’s lifecycle to deployment and operation, where resilience or
hardening defenses might be added.

Contributions. The contributions of this work are:

* We develop an open-source security analyst dashboard that
supports system designers and security analysts alike; in turn,
this provides a common language between the two.

* We provide important functionality to deal with the large num-
ber of data intrinsically produced when applying security anal-
ysis in the absence of a realized system.

* We present system and operational information lacking from
current security analysis and visualization tools that define
the mission of the system and, consequently, allow tracing
potential security violations to degradation of mission-level
requirements.

978-1-5386-8194-7/18/$31.00 ©2018 IEEE
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Figure 1: Screenshots of the user interface of the proposed security dashboard. The dashboard supports diverse information for better informing

system designers and security analysts alike of the goals of the system (specification), the potential attack vectors that can violate the goals of
the system, and the system attack surface projected over the system topology.
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2 SECURITY ANALYST DASHBOARD
2.1 Domain problem

In the design of complex systems in general—but specifically in
the area of CPS design and analysis—it is important to consolidate
information from a diverse set of stakeholders. These include but
are not limited to the operations staff, end users, and subject domain
experts. System designers and security analysts need to consider
all this information when proposing a possible design solution. Fur-
thermore, it is becoming increasingly evident that system designers
and security analysts require a common language, such that security
considerations are applied proactively during system design and
throughout the system’s lifecycle.

By definition, the amount of information to consider at the design
phase is significantly larger and more complex to navigate compared
to the security analysis of a realized system. This problem is further
extended in CPS by the need to avoid hazardous and unsafe behavior.
In addition to potential system violations; that is, exploitation of
system resources, system designers and security analysts need to
be aware of the requirements, for example, unacceptable losses,
potential hazards, unsafe control actions, and admissible functions
of the system.

To overcome these challenges we propose to collectively analyze
both safety and traditional attack vector artifacts based on a system
topology model, which allows the analyst to provide a thorough and
complete security report. To achieve this effectively, the dashboard
presents and allows for navigating the large number of informational
artifacts generated at the design phase through several graphs. The
two primary means of analysis conducted using the dashboard are:

» Systems-theoretic analysis (top-to-bottom)  Security viola-
tions are emergent properties of the system. Emergent prop-
erties stem from the coupling of subsystems and cannot be
investigated by examining the subsystems individually. This
means that the assessment of individual elements of the whole
system is insufficient to assure safe and secure behavior. Fur-
thermore, security needs to be exercised to the extent necessary
based on the system’s expected service [15]]. Therefore, this
analysis relies on data collected through a structured elicitation
process [|[17]] and is captured in Systems Modeling Language
(SysML) [18]]; a familiar and often used modeling language
to Systems Engineers. The model is then transformed auto-
matically to a graph using GraphML |[|13]16]. The purpose of
using a GraphML metamodel is to allow agnosticism towards
modeling tool or language. The resulting artifacts allow system
and security analysts to reason about defenses and potential
violations in a system’s design without requiring a prototype
realization for testing potential hypothesis on. This, in turn,
allows for quick comparisons of potential designs with respect
to their security posture. While this information is a natural
consequence of good systems engineering, it is often omitted
from security analysis. Consequently, security is applied in a re-
active bolt-on fashion instead of being applied proactively—at
the early stages of system design—and reapplied and assessed
thereafter—up to deployment and operation. By consolidating
this information in a security analyst dashboard we present
the systems and its operational goals as equally important to
traditional attack vector analysis.

* Attack vector analysis (bottom-to-top)  Following the top-
to-bottom analysis there is a crucial stage, where traditional
vulnerability analysis is applied in a model-based setting. By
exploring and filtering the attack vector space it is possible to
construct a defensible evidential trace of potential violations in
the system. This is possible by adding extra design information
in the system model that can map to historically recorded attack
vectors [[12]]. To do this automatically we use techniques from

computational linguistics in conjunction with the exported
GraphML models [11]]. This analysis complements the top-
to-bottom analysis with real attack vectors, evidence, in the
absence of a realized system. By doing so, we are able to reduce
the criticality of elements that might seem crucial using only
systems-theoretic means but are unlikely to be successfully
violated. We note, that this approach could be extended to
private repositories of companies or agencies to extend the
amount of known attack vectors.

2.2 System & specification models

As systems become more complex, how does one know what se-
curity needs exist (e.g., what should or should not be secured) if
one does not know what the system needs to do (or must not do)?
Visualization can help answer this question, but this begs a further
question: what must be visualized? One answer comes from the prin-
ciples of systems engineering, which attempts to design and manage
complex systems through the development of system requirements,
understanding how the system should behave functionally, and cre-
ating an interacting set of components (i.e., an architecture) that
achieves these behaviors. In the context of security, one must define
what the system should not do, in addition to requirements capturing
what the system should do.

Taken together, these artifacts—(1) system requirements, (2) func-
tional behavior, and (3) architecture—result in a specification. This
specification then forms the intellectual basis for visualization; that
is, what should be visualized and why. For example, an analyst in-
vestigating a particular component might be able to visualize the
components it interacts with (via the architecture), the kinds of be-
haviors these components give rise to (via the functional diagrams),
and ultimately the expected service that the component is critical to
(via the requirements).

This is especially important in assessing the security posture
of CPS, because of the tight integration of digital control with the
physical environment. The specification should capture what impact
can result from the violation of digital components and how that
impact is reflected in the physical world.

Therefore, the model includes all important attributes that are
necessary for a holistic consequential security analysis. That is, it
includes the specification, the admissible behaviors, and the sys-
tem topology that implements the admissible behaviors. To use the
model with the dashboard we transform the SysML definitions of the
requirement diagrams and internal block diagrams to graphs. The
system topology graph is transformed to a directed graph £ = (V, E),
where the vertices, V(X), are the assets of the embedded CPs and
the edges, E, a dependence relationship between system assets (Fig-
ure (1| ®). The specification is transformed to a directed hierarchical
constrained layout graph, S = (V, E), such that the different levels
are independent and V (§) the unacceptable losses, potential hazards,
safety constraints, and critical components of the system topology
graph, ¥ (Figure[Tal @).

Normally, such a specification is captured in tables. However,
to fully leverage the specification the analyst should be able to
immediately see the relationships that exist between different types
of information. This is especially the case when the analyst wants
to examine the impact of either a specific attack vector applicable
to critical system elements or when assuming that element will be
violated, based on the analyst’s previous experience.

2.3 Attack vector datasets

In addition to the construction of models for describing the require-
ments, functions, and topology of the system we use open datasets
to describe attack patterns, weaknesses, and vulnerabilities. These
datasets have the additional benefit of having a hierarchical tax-
onomy. Specifically, the datasets used by the security dashboard
are MITRE Common Attack Pattern Enumeration and Classification
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Figure 2: Screenshot of the dashboard showing the completed mis-
sion specification, including a chain of violations in the event that
the Imagery Application Processor is violated through an attack
vector.

(CAPEC) [2], MITRE Common Weakness Enumeration (CWE) [4]],
and NIST National Vulnerability Database (NVD) [7], which re-
cently took control of MITRE Common Vulnerabilities and Expo-
sures (CVE) [3].

In general, attack patterns associate with weaknesses and vulnera-
bilities can abstract to weakness classes. Given this intrinsic relation-
ship between the databases it is possible to represent the attack vector
space as a combined undirected attack vector graph AV = (V,E),
where V(AV) the total collection of entries of the datasets and E
the intra-related edges within each dataset and inter-related edges
between dataset entries (Figure [[b]®). This provides an intuitive
basis for exploring, filtering, and categorizing entries visually.

A significant concern in visualizing these datasets as a graph is the
number of entries in each dataset. To date, there are approximately
one hundred and fourteen thousand entries in total, most of which
are from NVD. Therefore, even though NVD is extensive and required
to be thorough with the analysis at the fidelity of the model, most of
them can be abstracted to classes of weaknesses as defined in CWE.
By utilizing this abstraction the number of total entries is reduced to
the size of the CAPEC and CWE datasets (around twelve hundred all
together). Therefore, at the worse-case scenario the starting attack
vector graph the analyst has to consider is significantly smaller but
equivalently descriptive without including all CVE entries.

Whilst a graph of this size can become overly complex and dif-
ficult to navigate, it is a natural design choice for the attack vector
space associated with a system. This is because a graph representa-
tion precisely captures the neighborhoods of attack vectors related to
the system. To manage this complexity we add intuitive interactivity
and filtering functionality such that the analyst can quickly narrow
down the results to what is relevant (Section [2.4).

Additionally, by using this data, the analyst supplements a spec-
ulative what-if analysis with specific pieces of evidence that such
violations are possible in the system. This information can then be
used to inform the rest of the stakeholders to decide further applica-
ble defensive requirements.

2.4 Visualization & interaction design

Compared to real-time monitoring visualization tools, dashboards
used for in-depth analysis require a sophisticated set of interactiv-
ity functions to facilitate effective exploration of diverse types of
data [23]. For example, by examining the system topology the an-
alyst is also informed about either the specification or the attack

vector space. This makes the individual data dynamic with respect
to each other and not just static complementary views.

Towards that goal, the main frame of the security analyst dash-
board organizes the information in three main panes:

* System topology (X). The system topology graph is a visu-
alization of the design under analysis. It also contains security
specific information, including the attack surface of the sys-
tem [27]]; that is, the elements that a potential intruder can enter
from based on found recorded historic attacks at the entry point
of the element (indicated by red vertices). Additionally, given
a specific element to violate, we draw the path of the potential
exploit chains that can lead to its violation; that is, all paths
from any element of the attack surface to the chosen element,
where attack vectors have been found for the full path—both
for the vertices and edges in that path—which is indicated by
yellow vertices and edges (Figure[3]®). Using this visualiza-
tion the analyst can gather insights about the security posture
of the system without having to investigate individual attack
vectors. Simply by using visual cues it is possible to gain quick
ideas about where and how to add defenses or apply resilience
techniques.

* Specification (S). The specification graph provides a view
to the expected service from the position of its requirements;
that is, reiterated from before, the unacceptable losses, the
potential hazards the system might have during deployment
and operation, and the safety constraints. which define its
overall mission, its control actions, the functionality necessary
to achieve its mission, and finally, the critical system elements
that in the case of violation will lead to the violation of other
necessary system functions.

The layout of the graph is custom; it defines constraint inter-
vals based on the category of the vertices: (1) the mission-level
requirements, (2) the functional requirements, and (3) the el-
ements of the system topology structure that are part of the
specification. By doing so, it shows the specification as a natu-
ral visual hierarchy, with the mission at the top, the function
in the middle, and the structure at the bottom. An important
action available in the specification graph is seeing at any level
what violations happen above or below it. For example, an an-
alyst can click on a structural element and see what functions
and mission requirements are also violated, which allows him
to understand the degree of mission degradation that occurs in
that instance (Figure[2).

Attack vector space (AV). The attack vector graph shows
all the attack vectors that could potentially violate any given
component in the system topology. Moreover, this graph vi-
sualizes the inter-related and intra-related connections that
are intrinsic between the vertices because of the hierarchical
nature of the datasets; that is, CAPEC, indicated in red, and
CWE, indicated in blue. The entries of CVE are abstracted to
their corresponding CWE classification. This achieves a signifi-
cantly lower number of vertices to visualize and explore with
no significant loss of information. Right-clicking on a given
vertex that has consumed CVE vertices will give the option to
reveal the nearest neighbors, including the specific CVE entries,
indicated in yellow. Additionally, to indicate how important
a given CWE entry in the attack vector space is the sizing is
controlled by how many CVE entries it has consumed. The at-
tack vectors are matched automatically using another tool that
also produces GraphML files [11]], which implements a search
algorithm to determine which attack vectors could be relevant
to the system topology. The vertex positioning is based on the
Frutcherman-Reingold force layout algorithm. It follows, that
the graph layout produces clusters of similar attack vectors
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Figure 3: Screenshot of the dashboard showing exploit chains in the system topology graph (®) and filtering of the attack vector space per
component; in this case NMEA GPS (®), which allows the user to produce reportable evidence of potential violation in the system topology.

and, therefore, whole clusters can either be further examined
by zooming in or completely removed (Figure@). Finally,
the analyst can double-click on the attack vertices to see all
further information in a pop-up window if needed.

All three main panes share actions; that is, most interactive func-
tions present in the dashboard project to the other panes. For example,
clicking on a vertex in the structure of the specification, selects the
same element in the system topology graph and filters the attack
vector space only for the attack vectors applicable to that vertex.

An extra but equally important pane in the security analyst dash-
board is the bucket (Figure@). The bucket is used as a collection
of attack vectors that the analyst wants to further investigate over
the system topology or report to the stakeholders.

Specifically, the bucket contains a table where each row is an
attack vector containing the attack name, a description, and what
component(s) it potentially violates. The rows are color coded the
same way as the attack vector graph to allow for visually identifying
between datasets. The bucket is an essential part of the dashboard as
it allows for the analyst to collect attack vectors based on experience
and, therefore, preemption and mitigation have to be considered
by the stakeholders. As an additional feature, the attack vectors in
the bucket can be selected and projected in the system topology;
that is, constructs the edges to the components the attack vector can
violate. This feature can provide further insight; for example, the
analyst might have chosen the attack vector from filtering based on
a specific component but when projecting it to the system topology
finds that it can also violate several other components (Figure ).

2.4.1 Data filtering

When dealing with a large amount of data—as is the case with the
attack vector graph, AV—it is important to implement effective fil-
tering techniques. To that end, there are several options for filtering

data, the most direct of which is using filter bars. In the security ana-
lyst dashboard there are two filter bars: one located within the attack
vector graph pane (Figure [2|®) and one located within the bucket
pane (Figure@). Options to filter include the attack database iden-
tification number, name, description, by the components in which it
violates, or all of the above. Additionally, the search criteria supports
regular expressions (RegEx) to filter attack vectors efficiently. The
filter bar also implements the option to show only the attack vectors
visible in the bucket; that is, all attack vectors that the analyst has
deemed important for further evaluation.

The system topology graph can also be used to quickly filter
the attack vectors by a specific system topology element vertex
or a set of vertices (Figure 3| ® & ®). This way, the analyst can
utilize the three main panes, by examining the criticality from the
systems-theoretic analysis and then producing evidence to support
that the violation has recorded attack vectors. The analyst can then
sort through and explore that space normally, since the number of
attacks to consider is significantly lower. Finally, the analyst can
choose potential attacks to add to the bucket as reportable artifacts
to system designers and other stakeholders.

2.4.2 Model & artifact manipulation

While the model is predominantly constructed by Systems Engineers,
it is useful for analysts to be able to manipulate the model’s attributes,
such that they can constrict the attack vector space. This is because
the attributes of the system topology model define the fidelity of
the model itself with respect to the corresponding attack vector
space. Indeed, changing the attributes of the model is equivalent to
changing the system design itself. Such minor changes can either
show further recorded historic attacks or, on the other end of the
spectrum, reduce the amount of attacks. Clearly, this mechanism can
be used for quick checkups that can then be changed in the model
itself or discussed with the system designers as viable alternatives
to the current design of the system topology. An example of such

2018 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)



Camera

Imagery Application Processor

Wl\-FI

Imagery Raflio Module

ZigBee

FCS Radia Module Differential Pressure Sensor

Absolute Pressure Sensor

Primary Application Processor

Safety Switch Processor

Control Surface
Accelerometer Gyroscope Magnetometer
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a selected number of attacks vectors from the bucket. Hovering
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action could be the change from one specific instance of a sensor
to another. This presumes that a sensor with a smaller attack vector
space is more secure than one with a larger attack vector space.

However, being informed about the general attack vector on the
class of the sensor, for example, GPS, is also important. Attack
vectors applicable to a specific GPS that do not match with a different
GPS implementation might still be viable. Model-based security
analysis is an iterative learning experience, allowing circumspection
about how a system might (mis)behave in response to different attack
vectors. Through this mechanism we attempt to bring what-ifs into
security analysis.

An additional action important to an analyst is to manipulate
the attack vector space directly—through interactive functions like
deleting or potentially adding vertices to the attack vector space—to
include information from personal domain-expert experience. This
is because, given the model-based setting, the search results may
contain attack vectors that do not necessarily apply to the system.
For example, certain attributes might produce weaknesses related to
Embedded Java, but the analyst knows that no software on board the
Cps will run Embedded Java. In this case, it is useful for the analyst
to remove such vertices from the attack vector graph. For that reason,
the dashboard implements the ability to delete any number of attack
vectors by selecting them directly from the graph.

2.5 Replication

To allow replication of our results a version of the current imple-
mentation associated with this paper is hosted on GitHub, including
all helper tools to extract and construct the data requirements in use
in the security analyst dashboard [[14]]. The dashboard utilizes the
Java 8 language framework to allow for crossplatform operation of
the Graphical User Interface (GUI). To create and render the data as
graphs we use GraphStream 1.3 [21].

3 EXAMPLE ANALYSIS

The security analyst dashboard is a natural progression to model-
based security assessment. Before, we used several other visual-
ization and data management tools to varying degrees of success.
None of them could by default provide a single view on the data
requirements imposed by model-based security analysis. Currently

the security analyst dashboard is in use as a research tool to evaluate
different techniques for safety and security in CPS. A use case study
with domain experts would strengthen the results present in this sec-
tion. Unfortunately, this is not currently possible because we have
had difficulty finding interested individuals with such narrow domain
expertise. For this reason, this section presents several workflows
that we as researchers found illustrative in sorting through the data
necessary for a holistic assessment of the system’s security posture.

Specifically, to evaluate the security analyst dashboard we use a
model of a UAS, its mission specification, and its associated attack
vector space. Through its attack vector space we also use the no-
tion of exploit chain and attack surface projected over the system
topology model.

3.1 Systems-theoretic analysis

Emma, a Systems Engineer, is tasked with designing a CPS using
COTS hardware and custom software. As part of the design process
she has constructed a system specification and modeled a system
topology. Additionally, she has run the attack vector analysis tool
and exported all artifacts to use in the dashboard (Figure[Ta). Emma
immediately notices two things. First, that all radio modules are
part of the attack surface—colored in red—and also observes that
all radio modules share the same violated attribute; that is, ZigBee
(Figure[Ta|@). Second, she notices that the imagery radio module
is part of the system specification, meaning that it is a critical part
of the system. Before even starting to use the tool Emma is already
significantly more informed than by just looking at the SysML
model through the visualizations of the information produced by the
security tool.

Emma clicks on the “Imagery Radio Module” vertex on the sys-
tem specification and immediately notices that if it is violated it
would cause all three unacceptable losses (L1, L2, & L3) through
the colored paths from the vertex to the function; that is, “CA4.3
Send Feedback,” all the way up to a subset of safety constraints and
all hazards (H1, H2, & H3).

Emma decides to report this to other stakeholders, including
other security analysts on the team and Systems Engineers about
the possibility of adding defenses if applicable or considering other
resilience mitigation options.

She similarly explores the rest of the interactions and brings to
attention problematic areas based on her expertise. If the solution
is easy she can change the attributes of the system model to further
check if the space changes, for example, instead of using an XBee
which requires the ZigBee protocol, she chooses a different radio
module, which does not produce any attack vectors and therefore
would not be part of the attack surface or she might decide to make
the system redundant and add multiple different types of radio mod-
ules in the event that other radio modules are equally vulnerable. By
doing so, she builds a strong case for changing the current system
topology design that she can report to the rest of the stakeholders.

3.2 Attack vector analysis

Garrett, a security analyst, is not familiar with safety methodologies.
He is, however, intimately familiar with attack vectors; that is, attack
patterns, weaknesses, and vulnerabilities and has extensive experi-
ence in embedded CPS design and implementation. In fact, Garrett
has designed and implemented a UAS before, but had not been aware
of the specific operational goals of the system.

Through that experience Garrett knows that if the “Primary Appli-
cation Processor” is violated there would be full mission degradation.
Since Emma has already brought to his attention the potential impact
of the radio module, he combines the two and examines the possible
exploit chains that the security tool has produced for the “Primary
Application Processor”. By doing so, he quickly finds out that there
are several paths from all radio modules, including the dreaded
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Figure 5: Screenshot of the dashboard showing the completed analysis by both a Systems Engineer and security analyst.

“Imagery Radio Module” to the “Primary Application Processor”
(Figure 3| @).

Garrett is now significantly more concerned than before about the
possibility that if the radio modules are violated a clear and direct
path is possible both through the vertices and the protocols defining
the edges. He is not so much worried about the “NMEA GPS,”
from previous experience and he already has designed hardening
techniques for the Wi-Fi module in the laptop.

Garrett wants to filter down to the attack vectors applicable to the
“Imagery Radio Module”, he changes to the attack vector space pane
and double-clicks on the “Imagery Radio Module” on the system
topology pane. He immediately sees the hundreds of attacks get
filtered down to only the relevant ones. He zooms in to see the
names of the attacks without hovering. He further searches and
double-clicks on CWE entries to see the neighboors and the specific
CVE entries. With a few further searches in the filter bar, he has the
worrying attack patterns, weaknesses, and vulnerabilities cataloged
in the bucket.

Additionally, Garrett changes the system topology model slightly
by removing the ZigBee attribute. By doing so, he notices that the
radio modules are not part of the attack surface but they do still have
associated attack vectors.

Garrett can immediately communicate all his findings to Emma
since they both use the same tool by projecting the attacks in the
bucket to the system topology, a familiar pane to Emma, who can
further read and understand those attacks by clicking and seeing
their description in a pop-up window.

Garrett and Emma conjointly present their findings to the rest of
the stakeholders using intuitive and effective visualization techniques
(Figure[5). Thus, they provide the stakeholders with defensible, trace-
able, and actionable evidence for alterations to the current system
design. For instance, the stakeholders might decide to change the
ZigBee radio module completely. Conversely based on the applica-
tion and taking all information into consideration they might decide
that the ZigBee range is too short for a practical attack, which then

they can capture in their mission-level requirements.

4 ALTERNATIVE APPROACHES

To our knowledge there is little to no work merging systems-theoretic
analyses with traditional attack vector analysis for the visualization
of CPs designs.

Connective structural and mission-oriented information is seen in
MITRE CyGraph [30]], which does graph-based analytics and does
implement interactivity. A major deviation from this current work
is that CyGraph is based on more traditional attack graphs [34],
leverages different notions of mission impact, and it mainly targets
traditional networked systems.

In traditional attack vector analysis there exist tools that mine
security data and provide strong search functionality. One such tool
is cve-search [5]], which includes several more low-level security data
repositories, for example, exploit-db []§|] However, cve-search has
limited visualization capabilities and, more significantly, it does not
provide interactivity—an important aspect of an analysis dashboard.

Recently, there has also been interest in the MITRE Adversar-
ial Tactics, Techniques & Common Knowledge (ATT&CK) frame-
work [36,[37]]. This framework allows security analysts to think in
more general terms about consequences by providing different tables
of choices that eliminate consequent choices. However, the current
implementation is not well-suited for the design and analysis of CPS,
because there are no external or operational goals that match the
needs of those systems.

Another approach in the realm of model-based security analysis
leverages topic modeling, which immediately relates system models
to relevant CAPEC entries [8]. This approach can compliment the
search engine that produces the data requirements for the dashboard.

In general, a similar rationale to this paper for visually construct-
ing and presenting models is shown by Walton et al. [38]. In this
work, we target CPS directly and expect the visualizations to be used
from the early stages of the system’s lifecycle and updated often and
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throughout including deployment and operation, while Walton et al.
target deployment specifically.

The BioFabric [26] graph rendering algorithm could compliment
the current view of the attack vector graph to deal with the inherent
large size and complexity. This could potentially allow analysts to
better understand how attack vectors relate to one another, which in
turn provides quicker navigation of applicable attack vectors.

Finally, PERCIVAL [|10] uses similar design choices (i.e., graph
means and projections) to monitor and analyze computer networks.
However, the domain (traditional information technology (IT) sys-
tems versus CPS) and the representation of exploitation (attack
graphs [33]] versus exploit chains) differ. This is important because
the security needs of a traditional IT systems have significantly
different expected consequences.

5 CONCLUDING REMARKS

In this paper we have proposed a merge between the advances in
systems-theoretic security analysis and traditional attack vector anal-
ysis for the design and analysis of CPS. We capture this merge in an
open-source security analyst dashboard and show how the comple-
mentary views can allow security analysis throughout the system’s
lifecycle—from the early-phase and beyond. Additionally, we show
how such a dashboard makes security an attribute in system design
equal to safety and how, by using a single tool, Systems Engineers
and security analysts can communicate effectively. By doing this,
we promote a proactive approach to security engineering, which is
increasingly important in the realm of CPS, where the consequences
of security violations lead to unsafe and uncontrolled behavior.
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