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ABSTRACT

Modern software systems require the support of automatic program
analyses to answer questions about their correctness, reliability, and
safety. In recent years, symbolic execution techniques have played
a pivotal role in this field, backing research in different domains
such as software testing and software security. Like other powerful
machine analyses, symbolic execution is often affected by efficiency
and scalability issues that can be mitigated when a domain expert
interacts with its working, steering the computation to achieve the
desired goals faster. In this paper we explore how visual analytics
techniques can help the user to grasp properties of the ongoing
analysis and use such insights to refine the symbolic exploration
process. To this end, we discuss two real-world usage scenarios
from the malware analysis and the vulnerability detection domains,
showing how our prototype system can help users make a wiser use
of symbolic exploration techniques in the analysis of binary code.

Index Terms: Human-centered computing—Visualization—Vis-
ualization application domains—Visual Analytics; Security and
privacy—Software and application security—Software reverse engi-
neering

1 INTRODUCTION

Analyzing software programs is hard. To seek answers regarding
aspects such as determining software defects, understanding the
semantics of a code portion, verifying when a certain program prop-
erty holds, or checking whether a bug may represent a vulnerability
are complex tasks and the use of machine analyses to reason over
software is not only desirable, but nowadays unavoidable.

In the realm of program analyses well in vogue in recent years,
symbolic execution techniques back hundreds of research works and
industrial applications in many security and software testing scenar-
ios [9]. In the context of cybersecurity research, symbolic execution
has gained popularity as a powerful means to analyze programs
in order to, e.g., discover vulnerabilities, bypass authentication or
protection schemes, or understand their internals.

A prominent success story is the DARPA Cyber Grand Challenge,
held in 2016, where autonomous systems competed with each other
in discovering, patching, and exploiting vulnerabilities in never-
seen-before software. Symbolic execution played a crucial role
in the competition, supporting prominent participating tools in the
software analysis endeavor. By exploring multiple execution paths
in a program, the technique can apply, in principle, a number of
decidable analyses looking for, e.g., certain classes of pointer bugs
that may be exploited by an attacker.

In spite of the flexibility of the technique, which stems from
maintaining a detailed view of the machine state across multi-path
executions and using satisfiability modulo theory (SMT) solvers to
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reason over symbolic inputs, symbolic execution is fraught with
many pitfalls that limit its practical applicability. Most prominently,
it can be severely affected by the combinatorial explosion of the
execution space deriving, e.g., from branches in the program. The
state space explosion can slow down the analysis process to the
point where no answer is found for any realistic resource budget [9].
While these issues already appear in software testing applications,
the situation gets even worse in several security scenarios.

For starters, the code to be analyzed is typically available in bi-
nary form only, making it harder for security analysts to interpret the
results of symbolic execution, but also for analysis systems as they
cannot access semantic information that gets typically lost during
compilation (e.g., types, array bounds). The analyst may also be
seeking deeper answers: let us consider vulnerability detection sce-
narios, where analyses focus not only on detecting bugs, but also on
checking if they are exploitable, allowing for instance an attacker to
hijack the control flow of the program. As if it were not enough, the
analysis of untrusted code such as malware samples generally incurs
an additional complexity layer, having to face adversarial code often
fraught with obfuscated operations and anti-analysis techniques that
can mislead symbolic execution or SMT solver reasoning.

Being able to effectively monitor the actions performed by a
symbolic execution engine and steer it away from uninteresting code
regions is of paramount importance in security applications where
purely automated analyses are likely to fail. Unfortunately, to date
the interaction with existing engines is mainly based on lengthy
textual information that provides feedback on the different active
execution branches and their computation states, imposing a heavy
burden on the analyst.

Contributions. In this paper, we explore how a Visual Ana-
lytics approach can assist security analysts in the complex task of
monitoring and steering analyses based on symbolic execution, al-
lowing them to deal with complex explorations that would be too
cumbersome to address using conventional textual information. In
particular, the contributions of the paper are the following:

• it introduces a novel visual analytics environment targeted
at shedding light on different aspects of the exploration per-
formed by a symbolic execution engine when analyzing a
program during an experiment;

• it explores several analytical and visual solutions to assist the
user in understanding which program parts have been explored
by the symbolic engine, pinpointing branches that led to a large
number of states and the inputs involved in decision points;

• it lets analysts leverage the visual feedback to steer the compu-
tation by prioritizing the execution towards promising paths;

• it presents two usage scenarios on using the solution for the
analysis of complex malware and software vulnerabilities.

2 APPLICATION DOMAIN

Technique. Symbolic execution is a program analysis tech-
nique for program property verification and has seen hundreds of
applications in software testing and software security research. The
idea underpinning this technique is to have a program take symbolic
rather than concrete input values, supporting the exploration of mul-
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Figure 1: Introductory example: code and control flow graph (left) and symbolic execution tree (right).

tiple possible executions at once. Each path followed by a symbolic
execution engine represents a well-defined class of inputs.

Let us consider the example provided in Figure 1 where a function
nzsum is meant to check whether for two given 8-bit unsigned
integers x and y their sum is different from zero, for instance to be
used safely in a division. Symbolic execution can catch subtle errors
and bugs that happen unsurprisingly often in the development of
software: the proposed code fragment naively checks whether either
argument is non-zero, assuming it as a sufficient condition for their
sum to be non-zero as well. However the developer did not consider
integer overflows that can happen when the low-level representation
cannot hold some values that are possible at run time. While in the
C specification these errors lead normally to undefined behavior, the
binary code generated for it by a compiler is likely to wrap around
the upper limit of the data type. In this example, using two numbers
that would ‘sum’ to 256 (e.g., 120 and 136) on a larger destination
would give 0 in the uint8 t representation used to hold the result.

Figure 1 also reports the symbolic execution tree that a symbolic
execution engine would explore for the considered function. This
representation naturally describes the inner working of a generic
engine. If we associate each node with an explored instruction, a
node can have more than one children when a conditional statement
is met. The engine analyzes the condition evaluated by such an
instruction and explores two possible alternate paths: one where the
condition is met and one where it is not. In the symbolic jargon
the executor is said to fork two different states, then proceeds by
exploring both. At each step the engine maintains a state made of:

• the current assignments of values to variables and memory,
which make the so-called symbolic store σ ;

• the sequence of branching decisions taken along the current
path, captured by logical formulas that make the path con-
straints π;

• the current instruction ρ that the engine is about to execute.
When the value of a variable i cannot be determined to a unique

value by static code analysis (for instance because it is a program
input or an input-derived computation) the symbolic engine assigns
it with a symbol αi. A symbol can initially assume any value allowed
by the underlying data type representation, while path constraints
refine it as the execution advances. When a symbolic execution of
the proposed example begins, we can see an initial state where σ

contains two symbols αx and αy to represent the input arguments
for the function, ρ points to line 1, and π is empty. For the sake of

int x = input();

for (int i = 0;

i < x; i++) {

// loop body

}

... ...
Figure 2: Path explosion due to a symbolic loop.

presentation states are labeled with a letter, starting with A for the
initial one.

As in state A the engine is about to perform an assignment to
variable safe with value 0 no new symbol is required, and the
exploration advances to line 2. State B would then see a symbolic
store σ updated with a concrete assignment of 0 to safe (we use
s for short in the tree). Observe that line 2 encodes a branching
decision on the value of x, which is currently captured by αx. The
engine thus forks two states to reflect the possible outcomes: state
C sees π updated with a path constraint for condition αx > 0 being
satisfied, while state D sees the negated condition1added to its π .
From now on both states will capture different classes of inputs for
the original variable x.

The engine can ideally explore C and D in parallel, or in a practi-
cal implementation proceed according to a path scheduling strategy .
For state C the engine assigns safe with 1 and advances to line 6
in state E where the assert instruction is executed. From there it
eventually reaches state H that is also a leaf as it corresponds to a
return statement. From state D the engine considers two alternate
worlds: state F where αy > 0 is added to π and safe becomes 1,
and state G where αy = 0 is chosen instead. State F leads to state
I where the assert statement at line 6 is traversed without errors,
eventually reaching the return statement in state L. State G fails
instead the assert statement since safe is 0, and the engine aborts
the execution path.

A user of a symbolic engine can query it to see if at a given
set of program states—say the leaves H and L that correspond to
return instructions—a program property, e.g., x+ y > 0 holds
for any inputs that the corresponding paths can take. Note that
the engine is aware of the architectural implications from having
both variables represented using 8-bit locations during compilation.



While the desired property always holds for state I, the engine can
produce counterexamples for an x86 architecture for state L, e.g.,
x = 120 and y = 136. To reason over inputs a symbolic engine
typically relies on an SMT (Satisfiability Modulo Theories) solver:
such solvers can answer questions about logical predicates on the
program state as they can take complex logical formulas involving
several theories (e.g., integers, reals, bit vectors). SMT solvers can
enumerate concrete assignments for the symbolic values that satisfy
a predicate for the current π . Symbolic executors also invoke SMT
solvers to see for a given branching condition if both outcomes are
feasible, in order to rule out unfeasible executions.

Challenges. The symbolic exploration depicted in Figure 1
covers a rather simple example. While from a theoretical point
of view symbolic execution is both complete and sound for any
decidable analysis, several factors undermine its effectiveness in
practical scenarios. We can name three frequently occurring main
challenges: (a) path explosion, (b) hard-to-solve constraints, and (c)
inaccurate modeling of the execution environment.

Figure 2 shows an exemplifying scenario for path explosion. The
exploration of the code fragment results in a symbolic loop since
the number of iterations is potentially unbounded: as the value of
symbolic input x is initially unconstrained (i.e., its value or bounds
are unknown a priori), the engine forks at each iteration yielding an
extremely large number of states (up to 231 +1 in the worst case).

Real-world programs may contain several variants of this scheme,
making exhaustive symbolic explorations unfeasible in practice. For
this reason users typically define a budget of time and memory for
a symbolic exploration, and choose a (oftentimes domain-specific)
scheduling strategy for paths to prioritize the exploration of states
likely to be more interesting for the user’s goal, hoping answers
(e.g., counterexamples) might be obtained within the chosen budget.

Hard-to-solve constraints are also likely to be encountered when
analyzing complex programs: in the presence of certain code pat-
terns, the complexity of constraints accumulated in π becomes hard
enough for an SMT solver that query times increase appreciably.
For instance, in programs implementing cryptographic or hashing
functions a solver may be very slow or even unable to terminate
its reasoning on the satisfiability of constraints. SMT solvers in-
cur in fact difficulties when analyzing non-linear operations, and
for certain theories the decision problem is undecidable in general,
leaving heuristics as the only hope for looking up satisfying value
assignments.

Another crucial and more frequent source for hard constraints is
represented by memory accesses to a symbolic destination. Sym-
bolic executors may in fact generate long and complex constraints
to encode the uncertainty over memory operations involving input-
dependent pointers that are symbolic. A common strategy in this
case is to perform concretization: the engine restricts the set of
values that a symbolic input may assume typically to a single con-
crete value, trading better scalability for the possibility of missing
interesting behaviors and states in the exploration.

Finally, environment modeling is another compelling issue in
symbolic execution. Reasoning over the possible outcomes of the
program interactions with the operating system and other compo-
nents of the software stack (e.g., libraries) is all but trivial. As
symbolically executing library and kernel code would lead to hardly
governable path explosion phenomena, executors often implement
models that succinctly capture the effects over a symbolic state of ex-
ecuting a library or system call. However, models are hard to develop
and easy to get wrong [9]. Also, they often perform concretizations
that can lead an executor to miss interesting states.

Applications. Despite the above-mentioned scalability chal-
lenges that symbolic execution has to face, this program analysis has
seen an extensive usage and adoption in several application scenarios
over the last three decades. Introduced as a technique for generating

test cases [25, 29], it has been used in several research and industrial
projects targeted at detecting software bugs [12, 15, 20].

In a 2012 journal article [20] Microsoft provided one compelling
example of its effectiveness in software testing, revealing how their
symbolic executors (which have been running 24/7 in the testing
process of many Microsoft products since 2008) found about one
third of the bugs related to file inputs when developing Windows 7.

Symbolic execution in the last few years has also gained in popu-
larity in the software security domain. In particular, two of the most
prominent applications have been vulnerability detection [36, 40]
and bug exploitation [5, 14]. Recently symbolic execution has also
proved to be valuable in reverse engineering tasks over malicious
software [8] and their communication protocols [10]. Remarkable
evidence of the importance of this technique in the software security
community was observed in 2016 during the DARPA Cyber Grand
Challenge where symbolic execution was at the core of most of the
cyber reasoning systems participating in the competition [37]. The
systems ran however in the DECREE environment, a stripped-down
software stack that is a strong testing bed for binary reverse engineer-
ing, exploitation, and patching, but not very representative of the
complexity and entanglements from a realistic fully fledged software
stack. Due to space limitations, we refer the interested reader to
recent surveys [9, 35] for further uses in software security.

3 RELATED WORK

Visualization techniques have helped in several research problems
from the software visualization and code execution analysis domains,
e.g., static and dynamic code analysis [6, 18, 21], trace analysis and
results explanation [7], and performance analysis [2], being some
of them tailored to the cyber-security domain (e.g. analysis of
malware [33], static analysis of vulnerabilities [4], writing ROP ex-
ploits [3]). However only a few works [13, 22–24] have investigated
visual solutions when performing symbolic explorations.
vsdb [22] and its follow-up SED (Symbolic Execution Debug-

ger) [23] aim at supporting users in debugging sessions over pro-
grams available in source form (Java). Both tools build on the
observation that a symbolic exploration can start from an arbitrary
program point, treating as symbolic any memory contents that would
be otherwise available if execution had started from the standard
entry point. The tools support the insertion of breakpoints in the
symbolic exploration and can visualize the symbolic execution tree
using nodes containing source code lines. Additionally, they can
produce concrete values for the symbolic store of one or more paths
and show the resulting heap configurations [28].

Two added features make SED more appealing to users. Firstly,
the use of program slicing [41] to highlight which statements con-
tributed to the value hold by a variable in a given symbolic state,
making it easier for a user to understand the dynamics of a bug.
Secondly, it allows users to provide specifications over functions
and basic blocks for two uses. Specifications can help the symbolic
engine skip portions of code that may lead to path explosion, but
also encode properties that users may want to verify over the states
encountered during the exploration. Although our work shares sev-
eral traits with vsdb and SED, our application context is different:
we target symbolic exploration of binary code, which can be more
challenging than source-level analysis for a variety of reasons [9],
and consider larger and more complex programs in our experiments
when dealing with path explosion. As we will detail in the next
sections, we propose alternative representations of the symbolic
execution tree and visually encode several exploration features into
the CFG (Control Flow Graph) for the code.

The Symbolic Execution Visualizer (SEViz) [24] targets Pex, a
symbolic execution-based test generation tool from Microsoft for
.NET code. After generating new test inputs with Pex, SEViz can

1In the domain of unsigned numbers αx ≤ 0 simply becomes αx = 0.



visualize the symbolic execution tree encoding several kinds of infor-
mation through the shape, border, and color of the nodes. Examples
include using an ellipse to highlight SMT solver invocations to rea-
son on the node, a double border to indicate that a corresponding
source line was found, while a red-colored leaf indicates that the
path ended with an exception or other error. Unlike our work, SEViz
does not address the problem of keeping the representation of the
symbolic tree compact, which may not be ideal in large explorations.

To overcome this limitation [13] proposes the PexViz viewer,
which takes the extreme approach of visualizing path explorations
through a Variant Control Flow Graph (VCFG) that displays only
every branching condition and the entry point as nodes. Although
more compact, a VCFG hides most program instructions as it hinges
on the implicit assumption that the user has a good knowledge of
the program semantics at each step. However, this is not typically
the case with the domains we target, and can be difficult in general
over binary code due to the loss of high-level information during
compilation. A more crucial difference is that SEViz and PexViz
do not provide users with means to affect the exploration, as their
intended usage is typically as inspection tools.

Of a different flavor is Derailer [32]: for security assessments
of Web applications, it uses symbolic execution to identify when
and how their data gets exposed. The user inspects and evaluates
the identified conditions for security concerns, then Derailer points
out missing security checks in sensitive areas. [32] pursues different
goals than ours: symbolic execution is the key to obtain exposure
data involving specific APIs, but scalability and other concerns
typical of a general usage are out of scope. Yet we mention it as one
of the few cases where users deal with data (indirectly) derived from
a symbolic exploration.

4 THE VISUAL ANALYTICS SOLUTION

Scenario. In order to provide the reader with some context on
what motivated our work, in the following we describe common us-
age patterns for security researchers when using symbolic executors.
A subject of interest for an exploration could be the verification of
some program property as in the introductory example of Section 2,
but also the identification of inputs that let a software reach specific
program points as in typical code analysis and reverse engineering
activities.

The user would typically set up the engine by choosing some
heuristics first: those can prioritize paths during the search (using
general-purpose strategies like BFS, DFS, and random search, or
also domain-specific ones), control the concretization process of
symbolic values when deemed necessary, and model specific as-
pects of the surrounding software environment (e.g., specifying API
models). The user would then choose a resource budget for the
exploration, made of a temporal duration and a maximum memory
occupancy, as forking and maintaining new states increases the foot-
print of the engine. Choosing a budget is necessary due to likelihood
of incurring path explosion problems.

When the user begins the experiment, there is typically no inter-
action with the symbolic engine. The latter is used essentially as
a black-box system that produces some statistics and log files for
the explored paths. Occasionally the user may be lucky enough to
get counterexamples or satisfying inputs on a first attempt, but in
practice it is more likely that the exploration has to start over with
different choices of heuristics and low-level parameters. Understand-
ing what needs to be changed is left to the user, but this can be non
trivial as the user has very limited information on what happens
internally in the engine.

Our visual analytics solution aims at providing the user with ac-
tionable information for figuring several details from an exploration.

Architecture. Our system targets the analysis of programs avail-
able in binary form, the natural target of many security research

applications, but with some adaptations it could also apply to sym-
bolic executors that work on source code. A back-end component
is coupled with angr [37]—a very popular engine among security
experts—for the analysis of the symbolic states and uses JSON to
exchange data, while the front-end is agnostic to the underlying
engine and builds on D3.js [11] and dagre [1] as technologies.

Usage. Our solution assists users in visualizing characteristics
and distribution of program states, and lets them alter parameters
of the exploration either to affect the continuation of the current
analysis, or to start a new one when major changes are required.

The first mode is useful when the user believes that live tuning
of the current exploration settings could help the engine reach the
desired goal, avoiding the repetition of analysis work otherwise
needed for a new exploration to reach the current point with the
updated settings. The second mode constraints a new exploration
based on insights obtained under the current settings, useful for
instance when the user realizes that those have led the engine to
overlook possibly interesting states.

The visualizations in our prototype encode three main aspects of
an execution that in turn can yield actionable insights to the user:

• program locations that see (intense) state forking activity,
which typically leads to rapid exhaustion of the budget;

• symbolic data involved in branching decisions, useful to figure
out the dynamics behind state forking activities;

• program inputs and code points where symbolic data origi-
nates.

By actionable insights we mean that we support the user in refin-
ing the exploration in two ways:

• controlling control flow graph (CFG in what follows) edges
and blocks that the executor traverses, with different policies;

• placing constraints in the symbolic data generation process,
either to refine the admissible ranges that the engine shall
consider, or to drive concretization policies for hard-to-solve
constraints.

As we will detail throughout Section 4.2, these actions update our
visualizations by presenting how the symbolic exploration would be
affected had the user-specified criteria been put in place from the
beginning. Changes can affect two dimensions: symbolic tree nodes
that would still be part of the exploration (we present the subtree
that matches the desired criteria) and effects on code coverage (we
update the visualizations associated with the code under analysis).

For function identification we use the analysis and disassembler
components of radare2, but other reverse engineering frameworks
could be used as well. CFG nodes embody a standard definition of
basic block: a sequence of instructions with a single point of entry
and that ends with a control transfer instruction. CFG edges encode
such transfers.

4.1 Back-end Component
The back-end component of our visual analytics solution deals with
two main aspects: i) extracting the internal state of the underlying
symbolic execution engine; and ii) controlling the exploration, e.g.,
applying rules—for the continuation of the current exploration or
a new one—that reflects the settings specified by the user in the
front-end.

Concerning the internal state of the symbolic execution engine,
the component collects:

• the CFG of the code under analysis;
• the nodes of the symbolic tree;
• the source and nature of symbolic data (e.g., file access,

command-line argument, etc.);
• locations in which symbolic data is used for branching deci-

sions;



Figure 3: Overview of SymNav visual component. (A) The Symbolic Tree Environment containing: (a1) the Focus Tree, (a2) the Context Tree,
(a3) the interactive table for tree encoding and (a4) the Parallel Coordinates visualization of paths. (B) The Control Flow Graph Environment
representing the control flow graph of the function under analysis divided in: (b1) the main view, (b2) the timeline and (b3) the legend of the
encoding. (C) The Steering Environment containing: (c1) the Symbolic Tree Filters Pane and (c2) the Data Filters Pane.

The component computes two kinds of analytical information: i)
cumulative statistics for an exploration path, including (but not lim-
ited to) the number of visited CFG nodes, the number of constraints
in π , and the number of memory pages in use; and ii) prediction
on coverage loss and tree size reduction when pruning paths using
exploration control features. The latter may provide actionable infor-
mation to the user and is available for every edge and node visited
in the current exploration.

Concerning the exploration control, the component allows for
filtering paths, in accordance with how these traverse the CFG or
refining input ranges; such filtering activities can be used for either
resuming the exploration or starting a new one. Refinement capabil-
ities based on CFG nodes, edges, and topology are meant to meet
common execution patterns from programs. Consider for instance
loops that process formatted input fields: those could likely yield
many uninteresting paths for ill-formed data, but enforcing a certain
number of branch outcomes can curtail the exploration to avoid them.
Putting a minimum or maximum threshold on branch traversal may
instead be useful when processing long strings that contain heading
or trailing patterns that are important for the program semantics. In
more detail, we have implemented exploration control means for:

• starting an exploration providing an angr project specification
(including, e.g., starting point for exploration, pre-constraints
on inputs, or custom API models) and a budget (duration and
memory occupancy) or resuming the current one with a new
budget;

• specifying exclusion conditions for paths, e.g.:
– given a CFG node n (or edge e) and a constant k, it

is possible to drop any path in the symbolic tree that
traverses n (or e) fewer than k times, or that does not

traverses it at least k times.
– given a CFG branching node n, and a constant k, and

an outcome b for the branch (taken or not), keep tree
paths that explore n where since the first traversal of n,
either ¬b is never taken or it is after b was taken at least
k times in a row from the first traversal.

– given a CFG branching node n, and a constant k, and an
outcome b for the branch (taken or not), keep a tree path
that explores n either if it traverses it at most k−1 times,
or from the k-th time on b is the only outcome observed
for the branch.

– further refine the symbolic tree such that by restricting
the value of a symbolic data element to a specific range,
paths violating such condition(s) are dropped.

When starting over or continuing an exploration, filters are con-
verted into constraints over symbolic data and/or hints to search
heuristics; filters referring to dynamically generated symbolic data
(e.g., network packets) are not considered when starting a new explo-
ration because such dynamic data is not uniquely identifiable across
different explorations. We observe, however, that this is a recurrent
trait in the symbolic execution practice.

4.2 Visual Component
The SymNav visual component (Figure 3) allows for analyzing the
symbolic tree and driving further computations. The visual solution
has been designed together with four symbolic execution experts
following a user-centered design paradigm [31]. During the first
meeting, the experts described the typical workflow and outlined the
initial user requirements. Four meetings (lasting two hours) followed
in which we proposed different data sketches to validate the design



choices and refine the requirements.
Given the challenges exposed in Section 2, SymNav is composed

of three interactive and coordinated environments, each of them
tailored to a specific analysis workflow and aspects of the symbolic
execution: the exploration of the symbolic execution tree (Symbolic
Tree Environment), the analysis of the CFG (Control Flow Graph
Environment), and the steering of possible analyses on the previous
two environments (Steering Environment).

4.2.1 Symbolic Tree Environment

The Symbolic Tree Environment (Figure 3.A) copes with the explo-
ration of the symbolic execution tree and was the first designed part
of SymNav. Requirements pointed out the need of: a) showing the
hierarchical structure of the symbolic execution tree in a compact
way, highlighting points where symbolic data are used and gener-
ated, b) navigating the symbolic tree preserving the context, and c)
analyzing and pruning the tree according to the characteristics of the
paths.

Due to the high number of states that usually compose the sym-
bolic tree and to the particular focus of the users on states that fork
two (or more, as it may happen with indirect jumps) states, we have
decided to compact the structure of the tree through the aggregation
of the sequences of states without forks (i.e., states with one child)
in single nodes , e.g., the nodes C, E and H of the tree presented in
Figure 1.

The Symbolic Tree Environment shows the symbolic execution
tree along different coordinates, as visible in Figure 3.A. The
high number of nodes pushed us to investigate space-filling tech-
niques [39], exposing the users both to the treemap and the sunburst
methods, and choosing the latter due to user preferences for sunburst
hierarchy representation and traversal (“it better conveys the hier-
archy”) and to the possibility of adding additional information on
leaves. In order to better support the tree exploration, we designed
this environment using the focus+context paradigm [30]. The Focus
Tree (Figure 3.a1) shows the symbolic exploration tree: a sunburst
encodes the first n levels of nodes that are surrounded by a ring
whose elements represent the subtrees from the n-th level nodes (if
they are not leaves). Selecting (clicking) a node updates the view
showing the subtree of the selected node, with it higlighted in green
at the center of the new sunburst. This view is paired with the Con-
text Tree (Figure 3.a2) that represents the whole tree in a classic
sunburst, highlighting the selected node (still in green), the path
from the root to the selected node (traversed path) and its subtree.

For each node of the Focus Tree the color encodes, according to
the user choice, information about either its basic blocks or symbols.

In block mode, the color encodes the basic block that causes the
fork; an interactive table (Figure 3.a3) below the sunburst shows all
the basic blocks that cause at least one fork in the current tree; blocks
are sorted in descending order with respect to the number of forks.
A fork is associated with one or more symbols that are classified
according to their origin (i.e., network, file system, command line,
memory, others). These symbols classes are organized in a matrix
aligned with the table, and the shade of the cell color encodes the
number of symbols of the class involved in the forks on the basic
block. Due to the possible high number of “forking blocks”, the
user can select which basic blocks to show on the tree picking them
from the interactive table, with a dynamic color assignment that will
show their distribution on the Focus Tree (by default, the top-k are
selected). While a node of the tree has a single basic block responsi-
ble for the fork and its encoding is quite straightforward according
to this paradigm, the encoding of the ring elements requires special
attention because each element represents a collection of nodes. If
all the nodes of the subtree fork due to the same basic block, the
element ring is encoded with the color of that block; conversely, up
to k colors encode the top-k list of basic blocks in the subtree sorted
in descending order with respect to the number of forks.

The symbol mode is similar to the block mode but it focuses on
symbols; the interactive table lists all the symbols involved in at least
one fork, sorted in descending order with respect to the number of
forks, giving information about their class and the generation depth.
Being the number of symbols involved in a single fork ≥ 1 all nodes
are encoded with up to k colors corresponding to the top-k list of
symbols sorted in ascending order with respect to the generation
depth.

These visualizations show the topological structure of the tree,
but the design process pointed out the need to explicitly character-
ize the paths that traverse the tree in terms of their characteristics
(e.g., length, number of symbols, number of memory pages, etc).
Due to the multidimensional structure of this information we have
encoded paths using the Parallel Coordinates visualization [26] (see
Figure 3.a4, below the Symbolic Tree Environment). This visual-
ization helps both in identifying relationships and patterns among
dimensions and in dropping out parts of the tree that do not meet
the user’s needs. When Brushing on the axes of the parallel coor-
dinates the tree is pruned accordingly, with reduced color opacity
for dropped parts on both Focus Tree and Context Tree. Finally,
a set of descriptive statistics are presented in the right part of the
environment, listing indicators (selected / total) about number of
nodes, basic blocks, paths and symbols, updated in accordance with
user selections.

4.2.2 Control Flow Graph Environment
While the Symbolic Tree Environment is well suited to explore in
different ways the symbolic execution tree, a real understanding
of the execution paths requires the analysis of the underlying code.
Due to this reason, we have designed the Control Flow Graph En-
vironment (Figure 3.B) to represent the control flow graph of the
inspected functions, enriching it with information grasped from the
symbolic execution engine (i.e., information about the currently
selected nodes, the traversed path, the subtree, or a combination of
them).

Regarding the CFG, we have evaluated nodes-links and matrix-
based representations, choosing the former in light of a) the need to
display complex information at node level, b) the need to support
tasks like following path(s) (see, e.g., [19]), c) evidences collected
from related proposals (see, e.g., [18]) and d) the clear preferences
of our users, collected during project meetings comparing proposed
matrix-based and nodes-links based representations of the same
CFG.

Figure 4: Control Flow Graph Environment. The tooltip shows
additional information on paths, symbols, and constraints. Paths
that cover an edge numerous times define its brightness: the edge
on the left is traversed 21 times by 5 paths, this explains why it is
particularly bright.



We represent basic blocks (identified by their memory address)
using rectangles, while solid directed edges encode their connections.
To better support the navigation of the different functions, the user
can choose to see the functions that were called by the current
one (callees) or the ones that call it (callers). These functions are
represented as small circular icons that recall their roles. Callees
are linked to the basic block that calls them through a dotted edge;
callers were initially linked both to the called basic block and to the
returning basic block, but this encoding confused the users, which
identified it as a loop. After some iterations, we chose to represent a
caller as two distinct circles—one connected to the called basic block
and one to the basic block it returns to—because according to the
users this encoding better represents the execution flow. Selecting a
function reveals its CFG in the main view. A timeline (Figure 3.b2)
is provided to navigate the temporal sequence of inspected functions;
each function is represented with a thumbnail of its CFG, allowing
the user to move back and forth among different portions of the
inspected code.

According to the users’ needs to relate inspected basic blocks to
the symbolic execution, we identify two kinds of information that
should be encoded on the basic blocks: their position in the current
tree and their use of symbols. The border color of the basic block
encodes the position: green indicates that the block is in the currently
selected node in the tree, black that it is in the traversed path or in
the subtree (if at least one of these levels is selected). Moreover, by
mouse-hovering on a basic block all the nodes that contain it are
highlighted in the Symbolic Tree Environment.

We distinguish between the symbols that a basic block uses in
a fork and the symbols that it generates. In particular, a vertical
blue bar on the left of the basic block indicates that the block forks,
being the height of the bar proportional to the number of symbol
occurrences in the forks. Similarly, a vertical green bar on the
right of the basic block indicates that the block generates symbols,
with its height proportional to the number of generated symbols.
These pieces of information are quite relevant because they are
indicators of basic blocks that produce a high number of paths
(symbol occurrences in forks) or that present many input operations
(generated symbols). Finally, by clicking on a basic block the user
can expand it and inspect the contained instructions.

We use the edge visual encoding to convey information about the
symbolic execution: as visible in Figure 4, the thickness of an edge
encodes how many distinct execution paths pass through it, while
the brightness of the edge color encodes how many times execution
paths pass through it; this design choice effectively highlights edges
involved in loops that are very often a target of the user analysis
because they can consume a high portion of the resource budget. An
informative legend (Figure 3.b3) about the visual encoding of edges
(thickness), loops (magma color-scale), forks (dark-blue) and sym-
bols (dark-green) is present in the bottom part of the environment.

Mouse-hovering the elements of the graph triggers a tooltip with
all the associated information: for a basic block, the tooltip shows
information about its occurrences in the portion of the symbolic tree
under analysis, and provides the list of the symbols that it generates
and those it uses in the forks; for a symbol, the node in which it has
been generated is highlighted in the Symbolic Tree Environment and
clicking on it causes the node selection.

Additionally, from the tooltip the user can directly exclude a basic
block from execution (black-listing), necessarily include it in the
execution (white-listing), or ask for a fixed number of basic block
executions. These features are very important when the user needs
to manage the resource budget and, if well administered, can help in
raising the coverage of the symbolic tree. For this reason, the tooltip
shows also the predicted coverage loss and tree size reduction from
applying the filter.

Finally, in the bottom-right corner two shortcuts are provided to
expand/collapse all the basic blocks.

4.2.3 Steering Environment
The Steering Environment (Figure 3.C) has two main goals: present-
ing in a homogeneous way the choices made during the analysis
by the user, and providing suggestions for continuing the analysis
in order to support the steering of the symbolic exploration. This
environment is composed by two panes.

The Data Filters Pane (Figure 3.c2) is designed to guide the user,
suggesting possible elements of interest to steer the exploration. It
analyzes the symbolic trees and provides in an interactive table the
list of its blocks/edges associated with the suggested exclusion/in-
clusion conditions and predictions about coverage loss and symbolic
tree size reduction. The list is sorted in descending order for cover-
age loss (the user aims at maximum coverage) and ascending order
for tree size reduction. In this way the user can steer the symbolic
exploration matching the presented information with the desired
degree of coverage and resource budget allocation, obtaining a form
of guidance in steering the symbolic exploration opposed to a free
exploration.

This activity is supported also by the Symbolic Tree Filters Pane
(Figure 3.c1). It lists the filters currently applied on the symbolic
tree during the analysis in the Control Flow Graph Environment,
and presents them in a unified and more homogeneous way as an
interactive table for both basic blocks and edges (normally these
constraints are scattered in different functions). It also provides the
means for defining the resource budget (duration time and memory
occupancy), and triggering a new exploration (new exploration but-
ton) or resuming the current one (continue exploration button). In
both cases it is possible to apply the current active set of filters to the
exploration. In this way the user can manage the trade-off between
fine-tuning of a symbolic exploration and its resumption (or starting
a new one), having an easy way to apply a constructed set of filters
to an exploration as a base from where to start again the fine-tuning
process. Finally, mouse-hovering on an element in the two panes
highlights it in the rest of the system.

5 USAGE SCENARIOS

This section presents two usage scenarios [27, 38], showing how
SymNav assists a human in making sensible decisions when ap-
plying symbolic execution techniques to the domains of malware
analysis and vulnerability detection. In both scenarios we use BFS
as search heuristic for the exploration, which is also the default one
in angr. The first usage scenario we outline can be followed in the
provided supplemental video.

Netwire. Netwire is a Remote Access Trojan (RAT) malware
family sold on the black market that exhibits a variety of malicious
behaviors, such as logging keystrokes and allowing the attacker to
remotely execute commands on the infected machine. Although
Netwire was employed by cybercriminals to steal payment card
data as recently as in 2016, its variants could be found in the black
market since 2012. The one we considered2 exposes 51 different
commands implementing different functionalities, such as sending
a file to the victim’s computer, taking a screenshot, and stealing
browser credentials.

Due to the large number of commands, it is not trivial for a
malware analyst to understand the exact sequence of instructions
that will lead to the execution of a specific command. In particular,
since the various behaviors of Netwire are triggered by TCP packets,
an analyst is interested in figuring their structure, contents, and
possible dependencies (e.g., if an authentication phase with a remote
counterpart is required).

Symbolic execution has proven useful to reconstruct valid input
packets in such scenarios before [8]. However, due to path explosion
the exploration does not reveal the commands from this sample in a
reasonable time and memory budget, unless some hints are provided

2MD5 hash: 37e922093d8a837b250e72cc87a664cd.



Figure 5: Netwire’s receive loop. The malware inspects the packet
and retries the receive if it is ill-formed.

Figure 6: Netwire’s Focus Tree. The spiral-like shape of the tree
suggests the presence of a loop. Indeed, the malware looks up
patterns in the received packet one byte at a time.

manually. In particular, in our experiments we observed that if we
run angr with no manual assistance for a budget of 12 hours and
64 GB of RAM, it exhausts memory by generating ~10,000 states
that do not execute any of Netwire’s commands. SymNav can help
the analyst steer the exploration in order to extract the sequence
of packets triggering each command without requiring deep prior
knowledge of the sample.

Let us now outline the possible steps an analyst could follow when
using SymNav. Every filtering step is based on the data collected
by the tool’s back-end, after symbolically exploring the analyzed
program. We proceed in small incremental steps; we give the back-
end a time budget of 5 minutes for each symbolic exploration and we
manage to reach every command by spending a total of 20 minutes.

1. We start by selecting the root of the Focus Tree. As a result,
we can observe in the CFG Environment the function in which
the first state fork takes place. If we navigate to its caller, we
can see that its call site is in a loop: this is easily noticeable
as the inbound and outbound edges of the basic block for the
call are visually thick and bright (Figure 5). If we examine
the code, we can see that it encodes a packet processing logic
that advances only upon collecting value 0x41 as header of
a command sequence. If we move the mouse pointer over
the loop’s back edge, we can see that the coverage loss from
excluding paths going through this edge from the symbolic
tree would be zero, with a tree size reduction of 38.18%. This
suggests that excluding it could be beneficial: actually this

operation would remove from the tree all the paths trapped in
the loop due to ill-formed packets with no derived coverage
loss. Therefore, we proceed with this operation and let the
back-end resume the symbolic exploration on the pruned tree.

2. On expiry of the 5-minute budget the front-end displays the
updated symbolic tree. When selecting its root, the CFG
Environment shows as fork point a loop that looks up patterns
in the received packet one byte at a time. The fact that we
are dealing with a loop construct that naturally leads to nested
forking is also reflected by the spiral-like shape of the Focus
Tree (Figure 6). We then notice that the loop generates two
clearly distinguishable groups of paths for the same blocks and
edges; by employing the caller icons to explore where such
paths originate, we reach a function containing numerous basic
blocks. Taking a closer look at its code, we realize that this
function is the command dispatcher, where Netwire parses the
received packets and executes the corresponding commands.

From the CFG Environment we can see that the two path
groups lead to the execution of the same command, leaving the
other 50 unexecuted (Figure 7). From an analyst’s experience,
this could indicate that an authentication phase is required.
Furthermore, we notice that paths from one group traverse a
large basic block containing many calls to interesting APIs
(e.g., GetUserName, GetHostName, etc.), while for the other
group Netwire closes the Internet socket and exits the function.
In light of these findings, we deduce that paths in the first group
have likely gone past the authentication phase. Therefore, we
can reasonably opt to apply an include filter to the first block
traversed only by paths in the first group, and then let the
exploration resume.

3. By examining the updated tree, we realize that the root node
is now forking again in the first function observed in step
1. Navigating back to its caller, we notice that all the paths
leaving the dispatcher go backwards to the function entry block
and eventually the receive loop, waiting for the next command
(Figure 8). From there some paths leave the loop and go back
to the dispatcher, but unfortunately the exploration stops due
to time budget depletion before executing another command.
As a result, we opt to filter the tree by keeping only those paths
that traverse the first block in the dispatcher at least twice. We
then resume the exploration one more time, finally reaching
our end goal: the visualization now helps us identify distinct
blocks related to the execution of each command supported
by the RAT sample. The inspection of each group of blocks
details in fact the structure of every command.

Touch. As a second usage scenario we present the analysis of
a command-line Linux utility, looking for memory-related errors
that could be a security concern. Touch belongs to the GNU Core
Utilities and can modify access and modification dates of files and
directories. We consider the 8.21 release, part of several Ubuntu
LTS releases until 2015. As we have seen in Section 2, symbolic ex-
ecution can reason on complex program properties: we thus encoded
two predicates that the engine evaluates during the exploration. The
first checks whether a symbolic memory pointer can reference multi-
ple dynamically allocated objects: this behavior can be suspicious in
some contexts [16], and captures several heap buffer overflows error.
The second checks whether an address from a non-allocated area
is used as memory operand: this may happen in, e.g., double-free,
invalid-free, or use-after-free errors.

Since Touch can take multiple command-line arguments, in the
symbolic execution practice it is common to use concrete values for
all but one, thus symbolically exploring one option at a time. But
even so in our experiments the symbolic engine generated ~37,000
states, exhausting a budget of 12 hours and 64 GB of RAM without
revealing potentially interesting paths.



Figure 7: Netwire’s command dispatcher. The function executes a different command depending on the value received from the network.

Figure 8: Netwire’s main function. The malware receives a packet
from the network, executes a command in the dispatcher and, fol-
lowing the backward edge, returns in the receive loop waiting for
other commands.

Figure 9: Touch’s paths representation and selection using parallel
coordinates. We filter out paths without malloc or free operations.

(a) (b)

Figure 10: Touch’s CFG Environment. We show the difference
between Touch’s CFG before (a) and after (b) the filtering operation
made with the parallel coordinates.

We thus attempt an exploration in SymNav with the same settings
used for Netwire and after the initial run we can see, by selecting
the root of the Focus Tree, that the first function to cause a state fork
is parseDateTime. The function comprises many basic blocks, but
only some (those closer to the function’s entry point) are covered
by the exploration. From the CFG Environment the user can also
see several loops being explored. As we look for interesting mem-
ory behaviors, we can use the parallel coordinates to filter out for
instance paths that do not perform any malloc or free operations
(Figure 9). This choice proves to be effective, as once the symbolic
tree gets updated we can see that the remaining paths are concen-
trated (and most of them stuck) in a single loop (Figure 10). We
apply an include filter on the CFG edge that enters the loop.

After another exploration round, we see that one block in such
loop gets annotated as a result of the interaction with the back-end.
The predicate for operands falling in non-allocated regions was
actually met in it along some path, resulting in an invalid-free error.
We can ask angr through the back-end to produce a concrete input
assignment that exercises the path: the SMT solver produces a string
--date=TZ=""", where the presence of an extra quote triggers the
error. This vulnerability is also known as CVE-2014-9471.

6 CONCLUDING REMARKS

In this paper we have presented a novel Visual Analytics solution to
assist users in symbolic executions of real-world programs. SymNav
provides a compact representation of the symbolic tree and of the
CFG of each function enriched with information that helps users
identify state forking points and symbolic data responsible for path
explosion. SymNav also lets users apply rules that can refine the con-
tinuation of the current exploration or drive a new one. We presented
two usage scenarios where the computational budget required to
generate the paths relevant for the analysis was reduced significantly
with respect to standard automatic explorations without SymNav.

A few directions could be explored in future work. One open
problem involves the visualization of path constraints: as textual
representations would not help when analyzing real-world programs,
researchers should explore new ways to encode them compactly,
especially if they may appear in possibly distinct large sets of paths.
On the practical side, we could support additional symbolic en-
gines: SymNav could reach a broader audience by implementing a
back-end for the source-level KLEE [12] executor, or for concolic
executors based on QEMU [15] or DBI [17, 34] that mix symbolic
reasoning with concrete executions. We may extend SymNav to
tune low-level aspects of the symbolic exploration, allowing users
to select on-the-fly a different search heuristic for path prioritization
or specify custom concretization strategies from the front-end.
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