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Figure 1: An overview of our classification system for the PCAP data. The system classifies the PCAPs and provides an
explanation of the classifications based on the Class Activation Map technique (CAM). In the upper part (1) is a list of the packets
that have been classified by our model. The columns of the tables are based on the extracted information of the PCAP files and
two of them such as probability and predicted class are returned by the model. The packet details view (2) represents extracted
information from the protocol headers. The CAM (3) represents the explanation of the corresponding PCAP classification.
Each grid in the CAM represents a byte of the selected packet. The colors illustrate the impacting bytes that led to this class
prediction, ranging from blue representing no relevance to red representing maximum relevance. The selected packet is illustrated
additionally in plain text and hex representation (4).

ABSTRACT

The classification of internet traffic has become increasingly impor-
tant due to the rapid growth of today’s networks and application
variety. The number of connections and the addition of new ap-
plications in our networks causes a vast amount of log data and
complicates the search for common patterns by experts. Finding
such patterns among specific classes of applications is necessary to
fulfill various requirements in network analytics. Supervised deep
learning methods learn features from raw data and achieve high accu-
racy in classification. However, these methods are very complex and
are used as black-box models, which weakens the experts’ trust in
these classifications. Moreover, by using them as a black-box, new
knowledge cannot be obtained from the model predictions despite

*e-mail: igor.cherepanov@igd.fraunhofer.de
†e-mail: alex.ulmer@igd.fraunhofer.de
‡e-mail: jonathan.geraldi.joewono@igd.fraunhofer.de
§e-mail: joern.kohlhammer@igd.fraunhofer.de

their excellent performance. Therefore, the explainability of the
classifications is crucial. Besides increasing trust, the explanation
can be used for model evaluation to gain new insights from the
data and to improve the model. In this paper, we present a visual
and interactive tool that combines the classification of network data
with an explanation technique to form an interface between experts,
algorithms, and data.

Index Terms: Human-centered computing—Visualization—
User interface design——Interpretability—Network Classification—
Convolutional Neural Networks

1 INTRODUCTION
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The constant growth of connections and appearance of new appli-
cations in our networks remains Network Traffic Monitoring and
Analysis (NTMA) as an important research in supporting the per-
formance of networks [15]. There is a great variety of approaches
that help experts to satisfy network requirements such as Quality of
Service (QoS), network security and resource consumption. Starting
from the tools that record network data [10, 23], solutions that help
an expert to filter the specific data interactively [44, 48] and finally,
automatic systems that detect anomalies or classify the captured
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network data [3]. The use of deep learning (DL) models beneficially
eliminated the need to manually search for features in the network
data for classification. DL models learn features from the given raw
data and approaches that use different architectures of DL models
outperformed all former proposed classifiers [4, 15]. The severe
drawback of these models is that they are very complex, which is
caused by highly complex nonlinear functions that are not inter-
pretable. This is why they are called black-box models. Although
these models reach a high accuracy but are not understood by experts
which can lead to limited use [38]. The reasons for this are low trust
and bad interpretability of the model’s decisions. Therefore, the
explainability of the decisions of a model is essential, as shown by
multiple studies [11, 13, 19]. Besides trust, another important aspect
is the evaluation of the model by the expert during the development
phase. Explainable decisions can help to find and correct errors of
the model and to improve it, as a model can make false decisions
based on misleading data features [42]. For these reasons, it is
important to provide an explanation of predictions to an expert in
addition to the classification.

In this paper we combine classification of network data, adopt an
explanation technique for the classification model and integrate it
into an interactive web-based interface. Our system represents an
interface between experts, algorithms, and data, and therefore plays
an important role in fostering trust in classification methods [6].
Moreover, the expert might extract new insights from the data based
on the classification and its explanation. This also allows a better
evaluation of the model’s performance. We apply a spatial domain
attention mechanism, named Class Activation Map (CAM) [49], into
a convolutional neural network (CNN) model to classify packets
sent over a network and explain the models prediction. While this
method originates from the computer vision field, we adopt it to
PCAP data. Finally, we present the application class predictions and
CAMs to the expert for further investigation. Our main contributions
are:

• A web-based visual interface that classifies PCAPs.

• Investigation of the most impactful bytes in a PCAP file for a
predicted application class.

• Acquisition of new knowledge about PCAP classification with
CNN based on the explainability of the classification.

The paper is structured as follows. In Section 2, we discuss the re-
lated work on network traffic monitoring and analysis, classification
of network files and interpretable DL methods. Section 3 describes
the users, data, tasks and the design requirements. Our explainable
AI system and its visualization are presented in Section 4. In Section
5, we demonstrate a usage scenario on a benchmark dataset. Section
6 explains our evaluation methodologies and the results. Finally,
Section 7 concludes our paper with discussion and future work.

2 RELATED WORK

We group the related work to our approach into three categories.
First, network traffic monitoring and analysis is discussed. Then we
look at research for classification of network data. Interpretable DL
methods finish the related work section.

2.1 Network Traffic Monitoring and Analysis
The field of NTMA has been proven to be a significant topic and has
gained attention in the past years. As many networks of different
architectures and services have to be monitored regularly to maintain
their performance and to fulfill various requirements such as Quality
of Service (QoS), traffic security and network data balance. Differ-
ent NTMA techniques have been proposed recently in academia as
well as in industry [15]. NTMA techniques can be categorized into
two groups: active and passive methods [3, 28]. In active methods,

test traffic is generated based on planned samples and injected into a
network to learn about the condition of the network. Then various
performance metrics are used to measure such characteristics as
packet loss ratio and latency in the network in real-time. Passive
methods do not generate artificial traffic but focus on monitoring and
the analysis of actual network traffic, particularly in post-event situa-
tions. In such scenario, the experts have to capture the data sent over
a network, called packet captures (PCAPs), using packet sniffing
tools [10,23] and apply various proposed approaches of NTMA such
as network traffic classification, traffic prediction, fault management
and network security, to satisfy the requirements for network man-
agement, troubleshooting and performance [3, 15]. The proposed
approaches cover different research areas. Some approaches are
based on information visualization and visual analytics, which help
the experts to analyze the data and find complex patterns and abnor-
mal behavior in networks [20]. As the collected data grows very
fast in size, these tools allow to filter the data for the most relevant
parts through interaction by the experts. Ulmer et al. [44] proposed
NetCapVis, that is a web-based progressive visual analytics system
where the user can upload PCAP files and interact with the data
and reduce it to a subset based on such attributes as IP addresses,
ports, time etc. Our approach is based on this interface, which is
complemented by automatic classification with a neural network and
the visualization of the CAM to support the explainability of the
predictions.

2.2 Classification of Network Files

The main goal of traffic classification is to identify and name differ-
ent groups of packets using the information available at the network
level. Identification of a packet class can be done by predefined rules.
One of the oldest method of classifying a packet is to query its port
number and service name in the register of the Internet Assigned
Numbers Authority (IANA) [2]. Port-based classifiers label packets
by means of the extracted port number from the TCP and UDP head-
ers which is assumed to be associated with a particular application.
The IANA register functions as a dictionary for this classification.
This type of classifier is often used in firewalls and access control
lists due to the fast port extraction from packets [32, 36]. However,
these methods have weaknesses, some applications can use dynamic
port assignment, hide themselves behind a port numbers already as-
signed to trusted applications and thus bypass a certain prediction of
a class [9]. In addition, the number of applications is rapidly chang-
ing and growing. For all these reasons, more advanced approaches
for traffic classification are required to classify modern network
traffic. There are classification techniques based on payload inspec-
tion, also known as deep packet inspection (DPI). These techniques
are built on the analysis of information contained in the payload of
packets at the application layer and exploit both packet header and
payload for application classification. They use predefined patterns
starting from the protocol and port numbers, then regular expres-
sions as unique patterns for each protocol and scanning the payload
looking for a specific indication, which might refer to a specific
application. nDPI is one of such open-source tools [14]. Alcock et
al. [5] compared the three leading DPI tools L7 Filter, libprotoident
and tstat. In their work it was shown that L7 performs poorly, al-
though it has been used in the research community as ground truth
for the traffic classification. DPI and libprotoident showed signifi-
cant better performance. The advantage of libprotoident was that it
used a minimal amount of payload data. With constantly changing
applications it is difficult to keep a high prediction accuracy, as many
patterns need to be regularly updated. For this reason, it becomes
very challenging to maintain the recognizable patterns in the payload
and find patterns for new applications.

In recent years DL algorithms have become popular technique
in many fields. In network analysis, DL bypasses the problem of
searching for patterns in the headers and payloads manually by the



experts. The DL models extract hidden knowledge on large datasets
in the training phase. The first proposed paper with a DL approach
was published by Wang [1]. In their paper, an Artificial Neural
Network (ANN) was applied together with a Stacked Autoencoder
(SAE). A stacked autoencoder has multiple hidden layers that form
a bottleneck in the middle. This means that the hidden layers first be-
come smaller and then increase in dimension again. An autoencoder
is a special type of neural network that is trained to reconstruct its
input into its output. After training, the SAE was extended with a fur-
ther layer and finetuned for corresponding multiclass classification.
In this work, SAE usually performed better than the ANN network.
Lotfollahi et al. [29] also compared a SAE model with a 1D Convo-
lutional Neural Network (CNN), called Deep Packet, for classifying
encrypted traffic. CNN is an architecture of neural networks that
contains convolutional hidden layers which include a set of indepen-
dent multiple filters (also called kernels) that perform convolution
operations. The authors used the UNB ISCX VPN-nonVPN dataset
to evaluate the performance of the presented method. Deep Packet
outperformed all previous approaches on this dataset, including two
classical ML algorithms, namely k-NN and C4.5. Their evaluation
showed that 1D-CNN outperformed the SAE. Montieri et al. [4]
compared models of different DL architectures and also showed that
the 1D-CNN performs best. The CNN is designed to automatically
and adaptively learn spatial dependencies in data and since a packet
is considered as a one dimensional sequence, a 1D-CNNs fits best.
These reasons supported the decision to use a 1D-CNN model in our
work. Another reason to use this model is the possibility to extend it
with a property to interpret the predictions of the model.

2.3 Interpretable Deep Learning Methods

DL has become mainstream due to extremely good performance,
but it is also known that these models are very complex and diffi-
cult to interpret. DL models are often used as black-box models.
Interpretability can make potential properties easier to identify with
the help of expertise that can be exploited for further purposes. It
might help experts determine the root cause and find an appropri-
ate solution. Interpretability does not improve the performance of
a model, however, it is an important part of formulating a highly
reliable and trustworthy system [6, 11]. Moreover, to build trust in
DL, interpretability is required and this is an essential factor in many
areas. One of the approaches to make DL models interpretable is
to visualize which elements from a sample a hidden neuron is most
sensitive to. A method proposed by Zhou [49] called Class Activa-
tion Map (CAM) can be applied to explain the predictions made by
a CNN model. Since a CNN consists of many convolutional layers,
the CAM method can exploit the feature map (also called activation
map) contained in the filters. A filter contains important features for
classification. Using the Global Average Pooling (GAP) transforma-
tion from the last hidden layer, feature maps are transformed into
a single number by averaging, thus producing the weights that are
then used to create the resulting CAM. The advantage of CAM is
that it is computationally cheap in comparison to other xAI methods
such as SHAP and LIME. Moreover, the CAM is calculated directly
on the resulting trained model, in contrast to methods LIME and
SHAP that propose an explanation by learning an interpretable ap-
proximated model locally around the prediction [31,38]. DL models
are more complex and the interpretability analysis of the simpler
approximated models may not be consistent with the original model.

To the best of our knowledge, only one approach based on CAM
has been published by Liu [27] in network analysis research. This
work, however, only covered the classification of payload of three
datasets labeled with different attack labels. We, on the contrary,
classify applications of encrypted data traffic and provide the ex-
planation of the classification as an interactive visual web-based
interface.

3 DATA-USER-TASK

In this section, we first describe the structure of PCAP files. We
introduce our targeted user groups and their tasks when working
with PCAPs analysis to derive the requirements for our approach.

3.1 Data
Initially, the tcpdump program was developed to capture and decom-
pose network traces [23]. Later, a library was gathered to capture
traffic using low-level mechanisms in various operating systems and
to read and write network traces, named libpcap [21]. The PCAP file
format is a binary format that supports timestamps with nanosecond
precision. The PCAP files have a general structure, starting with
the global header, followed by zero or more packet records. The
global header is found only once at the beginning and has a fixed
size of 24 bytes. This header contains information about the capture
characteristics, whether the packet records are saved according to
the little endian or big endian depending on the capturing machine,
then the time when this file was captured, the local timezone, the
accuracy of time stamps in the capture, the number of bytes of packet
data actually captured and saved in the file. A packet record is a
container that includes the packets coming from the network. Each
packet record contains packet header and the payload. The packet
header has a length of 16 bytes and includes such information as
timestamp and number of bytes of packet saved in file. The actual
packet data immediately follows the packet header as a binary large
object. Generally, the network data has been captured at the data-link
layer. So it contains the Ethernet header providing information about
the physical connection of the source and destination Media Access
Control address (MAC). Then follows the Internet Protocol (IP) with
today’s version 4 or 6, where the User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP) packets are encapsulated
with varying header lengths. The TCP packets typically consist of
a header of 20 bytes length while UDP packets have an eight byte
header. The nested structure results in one header for each layer at
the start of a packet followed by the payload which carries the data.

3.2 Users
Nowadays, many devices have a network connection and there are
multiple ways to capture raw network traffic between the machines.
This means that this approach can be used by a wide range of users,
who should have knowledge about network to effectively analyze
this data. That is why our approach is directed at network and cyber
analysts. These experts are interested in network troubleshooting,
analysis and finding the cause of anomalies, vulnerabilities and other
suspicious traffic in network. The other group are ML experts and
developers, who design classification models based on raw data from
the network and provide them to the domain experts. In this context,
the expert users of our approach are:

• Network administrators

• Malware analysts

• Cybersecurity professionals

• ML experts and developers

The network experts can benefit most from the proposed visualiza-
tion interface to analyze network data and gain deeper insights from
classifications and the visualization of CAMs to explain the predic-
tions. By using our tool, the classification model can be evaluated
by network experts and through their feedback, ML experts can
improve the correctness of the classification model which is also an
important aspect of trust [11].

3.3 Tasks
Rapid growth of network traffic requires the appropriate manage-
ment of network resources. It is often the case that networks are



asymmetrically structured, since the download stream is typically
larger than the upload stream. Therefore, recognizing different types
of network applications utilizing the network has become impor-
tant. Consequently, accurate traffic classification gained importance
and has become one of the requirements for advanced network
management tasks such as adequate resource allocation. Traffic clas-
sification also identifies user behavior and predicts traffic categories,
which supports network management. ML models provide strong
performance in the classification task [4, 29]. However, a model
should not be used as a black-box model but should also provide
important keys that help cybersecurity experts make decisions and
extract security rules. With our approach we are not only going
to classify PCAPs but also explain the classification by letting the
user interactively inspect the prediction scores for each byte. This
allows to extract new knowledge from the data to make appropriate
decisions for management and security tasks. Moreover, by using
the model and classification explanation the network experts can
provide feedback which the model can be evaluated with. In case of
an identified potential for improvement, the ML experts can perform
modifications to the model and data features, e.g. such as masking
the IP addresses in the PCAPs, to improve the classification model
performance and correctness. Moreover with our explainable AI ap-
proach we strengthen the trust of the user in automatic classification
system as the model decisions are explained by salient bytes with
different impacting values which provides semantic information of
the specific class affiliation. To build this trust in the system it is
necessary for the user to understand why certain packets are classi-
fied as a specific class. Based on the related work and our previous
experience of NetCapVis [44], we identified the following tasks:

T1: View classified PCAP data and examine the explanation of the
prediction.

T2: Locate relevant features from impacting bytes in PCAP for
specific applications.

T3: Compare differences in patterns of classified PCAPs for the
same and distinct application classes.

T4: Evaluate strengths and weaknesses of the AI model based on
the predictions.

3.4 Design Requirements
Based on the user tasks we derived several requirements for our
approach. In summary, the requirements are:

R1: Show classified PCAPs with its prediction certainty and allow
to filter them (T1).

R2: Show explanation for each classification by its impacting fea-
ture bytes to extract new knowledge from data and strengthen
the trust of the user for automatic classification (T2, T3, T4).

R3: Show details of a single packet and link the selected informa-
tion between the CAM visualization, packet details view and
plain and hex representation of the selected packet (T2, T4).

4 EXPLAINABLE AI SYSTEM AND VISUALIZATION

First, the details of the preprocessing phase and the architecture of
the proposed CNN and CAM are discussed. Then the web-based
interactive interface is described, which enables experts to interact
with the classified data and analyze it.

4.1 Infrastructure and Technology
We use a Python backend server with the FastAPI framework [37].
Further, we use packet manipulation functions from the Scapy library
to preprocess the data [7]. Our CNN model and CAM are built and
trained with the Keras library [12]. The frontend application is
implemented in JavaScript and uses React.js [16].

4.2 Data Preprocessing

Processing network packets from a machine learning perspective
is not as straightforward as processing images or other fixed size
data (Section 3.1). The network data is not only nested but also
variable in size, and there are also different protocols (such as UDP
and TCP) on the same network layer or even different versions of
the same protocol (such as IPv4 and IPv6). The real data flow in the
network contains some irrelevant packets that are small and do not
contain any payload. These packets are directly discarded and will
not pass through the neural network model, consequently getting
directly the label None. These are packets such as SYN, ACK, or
FIN, which are used to establish a connection. In neural networks,
the input layer has a fixed size, so the data samples have to be of the
same size. For this reason some preprocessing steps are necessary
which make all packets the same size by eliminating unnecessary
information and padding some headers to the same size. In the first
step, we adapt the TCP and UDP headers to the same length. Since
the UDP header is smaller, we pad zeros to the end of the UDP
segments. Then the Ethernet header contains information about the
physical connections such as the MAC address, which is essential for
forwarding the packets on the network, however it does not conclude
any characterization of application from the network layers above.
The last variable segment is the payload of the packets. The payload
of each packet is cut to 1480 bytes. The reason for this is that almost
all packets are smaller and only a very small part of the packets
contain larger payloads [29]. If the payload is smaller it is filled
with zeros so that all packets are consistent in size. The payload in
computer networks is usually limited to 1500 bytes by the Maximum
Transmission Unit (MTU). In the work of Lotfollahi [29] the PCAP
packets were investigated in size and they stated that approximately
96% of packets have a payload length of less than 1480 bytes. As
a result of the preprocessing steps we get a vector of 1500 bytes
as the input for our proposed NN. Finally, we set the source and
destination IP addresses in the PCAP files to zeros so that the model
does not erroneously make decisions based on IP addresses.

4.3 Neural Network Model

CNNs achieved state-of-the-art results in many areas of pattern
recognition, especially in the area of image recognition [25]. Mon-
tieri et al. [4] also showed that the CNN performs best for network
data. CNN is an architecture of neural networks that are made of
neurons with learnable weights and biases. Ordinary neural net-
works receive a single input vector and transform it through a series
of hidden layers whereby each neuron in a layer is connected to
all other neurons in the previous layer. The neurons of a single
layer function completely independently of each other. In contrast,
CNNs contain convolutional hidden layers which include of a set
of independent multiple filters (also called kernels) that perform
convolution operations. These filters are initialized randomly and
then are learned by the network through backpropagation in the
training phase. These multiple filters slide through the input sample
sequence from beginning to end with respect to its dimensions, map-
ping them sequentially in a feature map (also called activation map)
by performing the dot product with the sub-region of the input sam-
ple sequence. Filters include the parameters such as filter size and
stride. The use of a filter smaller than the input data is intentional,
as it allows the same filter (set of weights) to be multiplied by the
input array multiple times at different points on the input. The filter
is purposely applied to each overlapping part of the input. The stride
denotes the number of units by which the filter moves after each
operation. When performing a standard convolution operation in
multiple layers, the data sequence will continuously shrink. Another
issue is that when the filter moves over the original data sequence, it
uses the edges of the sample less often whereas the middle region
units contribute more. To solve the problems of shrinking output and
data loss, we pad the input with additional borders of zeros called
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Figure 2: Illustration of how a CAM is created for a PCAP. A PCAP is shown passing through the CNN model. After this packet has been
classified, the CAM is also calculated. The predicted class score is mapped back to the previous convolutional layer to create the CAMs. The
resulting CAM is a sum of all convolutional feature maps of the last convolutional layer multiplied by the weights of output layer.

zero padding. In such manner we can obtain the layer’s outputs of
the same spatial dimensions as its inputs. The design of the model,
that we apply, consists of convolutional hidden layers of the same
size as the input, as illustrated in Figure 2. It is possible to use
different dimensions in the convolutional hidden layers, but in the
last layer it is necessary to use the same dimension as the input,
because the features maps of the last layer are used for the CAM
calculation. The CAM has to be in the same size as input data as
it has the function to illustrate impacting values for each byte for
the explanation. For this reason, we maintained each convolutional
hidden layer in the same dimension. We only changed the number
of hidden layers and the number of feature maps in our experiments.
The CNN is designed to automatically and adaptively learn spatial
hierarchies of features. Before the final output layer, global aver-
age pooling on the convolutional feature maps will be performed.
Global average pooling transforms a feature map into a single num-
ber by averaging the numbers in that feature map. The last layer
is a fully connected layer that connects every neuron of resulting
applied global average neurons to every neuron in the last layer that
produces the output. This maps the representation between the input
and the desired categorical output.

4.4 Explainable AI System
The idea of our explainable approach originated from image classifi-
cation in the field of computer vision. The concept was developed
for image data showing the impacting regions of an image for the
predicted class. The proposed approach by Lin [26] using global
average pooling layer after convolutional hidden layers enables
the CNN models to have localization ability. Localization ability
describes the ability to localize the features in the input that was
classified by the CNN. In the case of images, each pixel is consid-
ered as input, in our approach, each byte of a packet is considered
an input, therefore it is also possible to apply CAM for showing
the impacting bytes of a PCAP. The importance of the regions is
calculated by projecting back the weights of the output layer on to
the convolutional feature maps. This technique is called class activa-
tion mapping. A weighted sum of these values is used to generate
the final output (illustrated in Figure 2). Similarly, we compute a
weighted sum of the feature maps of the last convolutional layer to
obtain a class activation map.

4.5 Visualizations and Interactions
Our work builds on the NetCapVis tool by Ulmer et al [44]. It is a
web-based progressive visual analytics system where experts can

upload PCAP files. These PCAP files are progressively uploaded and
showed in the dashboard. It provides different extracted information
from the PCAP files. This information is linked to a timeline. The
user can restrict certain PCAP packets by filtering and then send
them to our classification module. Our module is responsible for the
classification, CAM calculations and visualization of the CAM. Our
interface is divided in to four visualization elements that we will
describe below.

Overview over Packets
In the upper part there is an overview of the selected packets that
have been sent for classification. The overview is represented by a
list that is illustrated in the Figure 1(1). It is possible to manually
set the number of packets that will be displayed. The columns of the
tables are based on the extracted information of the PCAP files and
two of them are filled by the model. The probability and predicted
class are returned by the CNN model. The probability represents
the confidence with which the model predicted the corresponding
class (R1). The predicted class represents the application known
by the model, i.e. this class exists in the training dataset on which
the model is trained. Other information to be found in the list are
extracted from the headers of the packet. These are: timestamp,
source and destination IP address, destination port, which protocol
is used, then the size of the payload, by user defined distinction
whether the packet is an incoming or outcoming one and finally
what type of packet it is. The user has the possibility to select a
packet. After having selected a packet further information appears in
the packet details view, CAM and plain text and hex representation
of the selected packet.

Packet Details
The packet details represent extracted information from the headers
such as Ethernet, IP and TCP/UDP which can be seen in Figure 1(2).
The packet details view is nested with units that can be unfolded.
These details are clickable and are linked to the plain text and hex
representation. The selected field is highlighted in both visualiza-
tions.

Class Activation Map
An example of a CAM is illustrated in Figure 3. We reshape the
obtained calculated CAM in size of 1500 byte into an image-like
vector of a dimension of 15x100 as shown in Figure 3. If the payload
of the packet is shorter than 1480 bytes and was padded to get
this size, it will be shortened back to the original size. CAM is a
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Figure 3: Visualization of an obtained calculated CAM (in two
provided colormaps: bwr and jet) in size of 1500 bytes that is
repshaped into an image-like vector of a dimension of 15x100. A
tooltip illustrates the absolute and relative values of the byte. The
colors represent the impact on the corresponding classification. The
Ethernet header is grayed out. because it does not pass through the
model.

heatmap with the maximum size of 15x100 (columns x rows) grids.
The reason why the CAM is shown as an image-like vector is the
alignment with the plain text and hex representation of a PCAP
packet. The CAM reflects all bytes of a PCAP packet and usually
a packet is not represented as one single row but up to a specific
byte number and then the new row starts below, therefore, we also
used the same logic and represented the CAM in the same way. The
grids in the CAM are linked to the plain text and hex representation
of the corresponding packet. There is also a tooltip when hovering
over a byte in the CAM which illustrates the absolute and relative
impacting values of the corresponding byte. The colors are based
on the aforementioned values which illustrate the impacting bytes
that led to this class prediction (R2). Blue represents absolutely no
relevance and the relevance increases with the increase of the red
color (R2). Since practically all CAM implementations [41, 43, 49]
use a rainbow colormap to denote their relevance feedback, we have
used the same colormap for our technique. This is despite the fact
that the values of such a quantitative attribute with a minimum and
maximum are typically easier to see with a sequential or a divergent
colormap. The colormap was also mentioned up during the expert
interviews and we added a divergent colormap which is selectable
in parallel by the user. The ethernet header is grayed out because it
does not pass through the model.

Packet Representation

The plain text and hex representation are shown in Figure 1(4). In
this visualization, the packets are shown in plain text and hex rep-
resentations and are linked to all other visualizations. The selected
elements in the packet details and CAM visualization are highlighted.
For example, when the IP address is selected in the packet details,
the corresponding 4 bytes are highlighted, the same applies to the
selected bytes in the CAM (R3).

5 USAGE SCENARIO

This scenario shows a possible usage of our proposed tool, which
may help experts to get new insights through the classification and its
explanation by the CAMs. The expert can strengthen his confidence
for the classification as the CAMs indicate the decision making
process of the model. Another important aspect is the verification of
the model. By the explainability of the classifications the expert can
consider exactly which features have led to this class, thus they can
verify the model and in case of wrongly learned features. ML expert
can then improve the model by the elimination of these features. An
example of such elimination is masking the IP addresses in PCAP
files so that the model does not erroneously make decisions based
on IP addresses.

After recording network data, the experts can use the functions of
NetCapVis [44] to filter the data by IP addresses, ports and time to
relevant parts and send the remaining packets to our classification
model. Then the remaining packets will be classified by the model
and the CAMs are calculated for each packet. Afterwards, the user
has the possibility to view the predicted application classes for each
packet and take a deeper look at the model decisions through the
CAM visualization. The classification of the packets is performed
batchwise in the background. The predicted classes will be updated
batchwise one after the other in the backend’s database and later in
the overview of all packets in the frontend. The classified applica-
tions with the prediction probability are shown to the expert (T1).
The expert can focus on a specific class. By looking at the CAMs
of multiple number of packets, the expert might detect a certain
pattern of this class (T2). The patterns show the expert the bytes that
categorize this class (T3). Through the examination of the content
in the impacting bytes, the expert can extract new knowledge for
this application class and create certain rules in his network such as
blocking, prioritization of packets of this class. If these extracted
features appear suspicious for the classification (e.g. IP address),
these should be masked and eliminated from the training data and
the model should be retrained (T4).

We simulated an analysis scenario of a network expert to show
how classification of PCAPs and their explainability can be exploited.
We analyzed a predicted application class by taking the CAMs of
100 PCAPs that were classified with a confident probability (>90%)
with the same application class and calculated an average CAM from
these corresponding 100 CAMs to determine the defining patterns
of this class. We did that for all classes in the dataset (T3). After
that, we recorded the impacting bytes of each class which were
represented through the corresponding calculated average CAM
of this class. Table 1 illustrates significant bytes of each class we
extracted. We mapped the bytes to the units of the corresponding
protocol (T2). Figure 4 represents the resulting average CAMs of
the classes: vimeo, scp, spotify and gmail. The red grids represent
the most impacting bytes. The expert can directly see which of
them influenced the classification and take a look at these bytes
(T2). Some classes such as ICQ and AIM show classification impact
in source and destination port, others illustrate more complicated
patterns such as vimeo and scp where also the bytes from the payload
are involved. However, these impacting bytes are at the beginning
of the payload, which is probably a not encrypted header of the
application.

For this experiment, we used the ISCX VPN-nonVPN dataset,
which is well known in network classification studies [22, 29, 45].
Since the dataset is very unbalanced (class FTPS has 7872K samples
whereas class AIM has only 5K samples), we adjusted the classes
by using random undersampling [35] to approximately the same
amount circa 5k per class, similarly as in the work of Lotfollahi
et al. [29]. We created an 1D-CNN model constructed with the
following feature map dimensions in the hidden layers: 16, 32, 64,
64, 64, 64, 64, 128, with stride size of 1 and kernel size of 7. We
trained a model 20 epochs on this dataset and achieved a competitive



(a) vimeo (b) scp (c) spotify (d) gmail

Figure 4: Representation of four CAMs for vimeo, scp, spority and gmail application classes. Each of these four CAMs represents an average
CAM of 100 CAMs of the same class. The purpose of these average CAMs is to crystallize the patterns of corresponding classes (Sect. 5).

Table 1: Summary of impacting bytes for each application class extracted using the average CAMs for the corresponding class (Sect. 5).

Application Impacting Bytes (Protocol fields) Protocol

aim 1-5 (source/destination ports) TCP
email 0-16 (source/destination ports, sequence/acknowledgment numbers) TCP
facebook 8-12 (length, header and data checksum) UDP
FTPS 9-18 (acknowledgment number, data offset, res, flags, window size) TCP
gmail 13-19 (data offset, res, flags, window size) TCP
hangout 6-7, 12-14 (source/destination ports, acknowledgment number) TCP/UDP
ICQ 4-5 (source/destination ports), payload bytes TCP/UDP
netflix 8-16 (acknowledgment number, data offset, res, flags) TCP
SCP 21-25 bytes from payload TCP
skype 11-16 (acknowledgment number, data offset, res) TCP/UDP
spotify 6-9 (sequence number), payload bytes TCP
vimeo 1-6 (source/destination ports), payload bytes TCP
voipbuster 6-7 (header and data checksum), 12-14 from payload UDP
youtube 1-4 (source/destination ports) TCP

performance F1-Score: 0.98, recall: 0.98, precision: 0.98.

6 EVALUATION

To evaluate our approach, we performed two evaluations: one for
the models we used, and one for visual interface.

First, we performed a quantitative evaluation where we tested
eight models with different numbers of hidden layers and differ-
ent kernel sizes. In this section, we describe the construction of
these models and an overview of the performance by measuring the
precision, recall and F1-score.

Second, we individually interviewed experts, in order to evaluate
our tool and receive feedback for improvement. Three tasks were
created for the experts with a real dataset and we let the participants
solve these tasks. While they were working independently with
the data we asked them questions related to the given tasks and the
CAM. Finally, we asked them to fill out a system usability scale
(SUS) form [8] .

6.1 Model Evaluation
There are datasets of different applications in PCAP format files
available as open-source. However, some of the records in these
datasets are outdated, which means that there are outdated appli-
cations that are no longer in use, such as ICQ or AIM chat as can
be seen in the ISCX dataset [18]. For the evaluation of our system
with the experts, we focused on the more modern and popular appli-

cations. To create a representative dataset of real-world traffic, we
proceeded in the identical manner as the ISCX VPN-nonVPN dataset
was created by ISCX. Similarly, we created accounts for users Alice
and Bob to use services like Youtube, Telegram, etc. Moreover, we
collected the PCAP packets in different IP versions namely in IPv4
and IPv6 respectively for each class. Table 2 represents the number
of collected PCAP packets and the corresponding application class.
PCAP packets of different IP version did not belong in the same
class but were separated into two distinct classes. This means that
for each application in Table 2 there are two classes. The PCAP
packets were recorded between January 11, 2022 and May 3, 2022
at different times of the day. We obtained an unbalanced dataset
with 3,263,732 samples and 30 classes within.

To evaluate the performance of our models, we used the recall
(Rc), precision (Pr) and F1-Score (F1) metrics. The F1-score com-
bines the precision and recall metrics into a single metric. The
F1-score has been designed to work well on imbalanced data [17].
These metrics are mathematically described as follows:

Pr =
T P

T P+FP
,Rc =

T P
T P+FN

,F1 =
2∗Pr ∗Rc

Pr+Rc
(1)

Where TP, FP and FN stands for true positive, false positive and false
negative, respectively. We constructed eight models with different
numbers of hidden layers. The parameters such as stride and padding
were the same for these models. The stride was 1 and padding was



Table 2: Our collected dataset of 15 different applications using
different IP version. The PCAP packets were recorded between
January 11, 2022 and May 3, 2022 at different times of the day. In
sum there are 3,263,732 packets in this dataset.

Application Size (IPv4) Size (IPv6)

Big Blue Button 122672 150474
Email 66564 52041
Facebook Video 111950 62030
FTPS+SFTP 103701 50589
Google Meet 90214 55059
Amazon Prime Video 123329 174930
Reddit 119221 157737
Telegram Files 42252 41187
TikTok 128739 138929
Twitch 105531 138029
Vimeo 129652 177734
Youtube 139248 179525
Zoom 53029 114624
Instagram 69872 153085
Facebook Feeds 117894 93891

Table 3: Evaluation of 8 different models with varying kernel size
and amount of hidden layers, trained and evaluated on our dataset
(Table 2). The performance is measured in F1-score.

Model Kernel size Epochs
1 2 3 4 5 6 7 8 9 10

model1

3 0.87 0.94 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98
5 0.91 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
7 0.94 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
9 0.95 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

model2

3 0.95 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98
5 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
7 0.96 0.97 0.96 0.96 0.97 0.98 0.96 0.98 0.96 0.96
9 0.96 0.95 0.97 0.95 0.96 0.95 0.96 0.95 0.96 0.95

set so that the dimension of the hidden layers was the same as the
dimension of the input. The models were trained using the categor-
ical cross entropy as loss function [47] and Adam optimizer [24].
Each model was trained and evaluated against the independent test
set that was extracted from the dataset (80% of data was used for
training and 20% for testing).

• model1 is constructed with the following feature map dimen-
sions in the hidden layers: 16, 32, 64, 128

• model2 is constructed with the following feature map dimen-
sions in the hidden layers: 16, 32, 64, 64, 64, 64, 64, 128

The end of each network is identical, after the last convolutional layer
follows GAP and a fully connected layer that has an output of 30
units. Our intention was to design the final convolutional layer with
a sufficient number of feature maps, because these maps produce the
resulting CAM. These feature maps are weighted and a sufficient
number of weighted maps provide a more precise explanation.

We tested whether the performance of the models with different
sizes of kernels differs as well as how the number of hidden layers
affects the performance. We observed that both networks perform
reliably. The smaller network (model1) achieves slower solid per-
formance, which might be due to the smaller number of learnable
parameters. We also observed that very large filters tend to perform
a bit poorer. The results are represented in the Table 3.

6.2 Expert interviews
We interviewed three network experts. These experts have expe-
rience in the field of network analysis from 5 to 20 years, while
only two of them had experience of 5 years in the field of machine

learning. First, we explained the purpose of our web-based interface,
then we showed the functionality of our tool, namely how to upload
the dataset and view the classification results. Then we explained, on
which data the model was trained and what applications it can rec-
ognize. Finally, we explained what the CAM represents and showed
how to interact with the elements of the interface. Afterwards, the ex-
perts were able to use the tool themselves with a real PCAP dataset.
We prepared three tasks for the experts to test whether these tasks
could be solved. The experts had to determine the solutions on their
own without any help. The tasks include searching for a packet
based on certain information such as predicted application class or
probability of classification (T1). Lastly, the tasks include interact-
ing with the CAM, which provides the expert with an explanation of
the classification. In the CAM, the experts had to pick out the most
significant bytes (T2). During this testing phase, we encouraged the
experts to express their thoughts and any questions that came up.
In the questionnaire, the experts had to fill in the solutions of the
three aforementioned tasks, then eight questions about the CAM on
a Likert-scale [39, 40] and open field questions. Finally, we asked
them to fill out a SUS questionnaire. At the end, we had an informal
discussion about possible improvements and whether our design
requirements were achieved. Detailed information about tasks and
questionnaire can be found in the sublimated material.

Results

The three tasks were solved correctly by all experts. The experts
were able to find the correct packets and locate specific details of
these packets considering the CAM and the predicted classification.

We asked the experts whether they have already used such classifi-
cation systems. They mostly use the well-known Wireshark tool [10]
in their analysis. The experts have not used any tools for PCAP anal-
ysis so far that can predict specific applications based on neural
networks. However, they consider this kind of classification very
useful for their analysis. When asked whether the experts consider
automatic classification of packets to be useful, they all answered
with the highest rating.

We also asked if the trust in an automatic classification exists
without explanation. The experts have been skeptical and answered
that they first have to use a classification system for a while to build
trust.

The CAM has not only the task to explain a classification and
make it understandable but also to increase the trust for the predic-
tion. Responding to this, experts said that it builds trust through
explanation, as the CAM allows the details to be analyzed through
the most significant bytes and it does not provide a black-box pre-
diction like other systems. However, all experts said that they would
have to work with the tool for a longer period of time to further
strengthen the trust.

We asked the experts to formulate the purpose of CAMs with their
own words. The experts described it as the identification of relevant
bytes or packet positions of a particular application classification.
With this we found out that they were able to understand the benefit
of CAMs after a short introduction and solving three tasks. Finally,
we asked if the CAM might help to obtain new insights from the
PCAP files. They agreed with this because they sort out irrelevant
parts of the packet during the analysis anyway and the CAM can
directly indicate which parts of a packet seem important for the
application.

Then we asked if a grid structure representing a heatmap is a suit-
able visualization. The experts said that the heatmap visualization is
intuitive and fits within the alignment of plain text and hex represen-
tation. One expert suggested to change the color map, which was
done afterwards. We added a divergent color map (also known as
ratio, bipolar or double-ended [34, 46]) for the CAM visualization.
The divergent color map allows us to quickly identify whether CAM
values are near most impacting, complete irrelevant for the class or



something in between.
The open questions and the discussion after the evaluation brought

up helpful suggestions and triggers for further research. In the
following we summarize the improvement feedback.

Improvement Feedback

There were several suggestions to better highlight important infor-
mation. At the time of the evaluation, the CAM bytes were not
linked to the packet detail tree, but only to the plain text and hex
representation of the packet. Another suggestion was to highlight
the selected grid of the CAM with a frame and in addition frame the
complete packet segment to which this byte belongs. Highlighting
the most important bytes for classification in the packet details tree
would be very helpful for finding the important segments in a packet.

One of the suggestions was to set up the overview similar to
today’s Integrated Development Environment (IDE). That means
that the list of packets are listed on one side with little space usage
with the most significant information such as class and probability.
The rest, using the full height of the screen, is dedicated to CAM
and other packet details such as plain text and hex representation as
well as extracted information from the packets.

A further suggestion was to make certain regions such as header,
payload in the CAM noticeable. The lines of the plain text and
hex representation should match the CAM grids in height, which
increases the readability, since everything is then in the same align-
ment. In the plain text and hex representation the bytes should be
separated with a space because the experts were used to it from Wire-
shark [10]. We asked the experts which applications they consider
interesting for analysis. They mentioned to us: Apple Cloud Ser-
vices, SIP, Webex, MS Teams, Whatsapp (web), Bitcoin, Ethereum,
4Chan, Telnet, SSH, home assistance such as Alexa, Google Home,
Siri etc. and network traffic that contains advertising and also adult
content.

Finally, the SUS questionnaire scored an average rating of 78.
This implies a good user satisfaction [33].

7 DISCUSSION AND FUTURE WORK

7.1 Discussion

Our approach allows experts to see which semantic parts of a packet
influenced the classification. We designed our interface as simple
as possible so that an expert can quickly understand the system
and start directly an analysis. The focus of the explainability is to
increase the confidence in the classifications.

Another important aspect is that experts can evaluate the clas-
sifications. First, the experts might extract new insights from the
classifications that they can apply for their work in network man-
agement as shown in Section 5. Second, the experts might evaluate
the classifications of the model, which is important for the research
community as they can continue to improve their systems on the
basis of these conclusions. An important finding from Section 5 is
that when classifying encrypted data only five application classes
had the impacting bytes from the payload. We showed through the
calculated average CAMs of 100 CAMs of each application class
that the model does not in most cases make the decisions on the
payload bytes of the packets but only learns the properties from the
headers and only few application classes such as spotify, vimeo,
ICQ, SCP, voipbuster showed impacting bytes from the beginning of
the payload which may highly likely unencrypted headers of these
applications or higher protocols. With provided explainability of the
model decisions through the CAMs it is observable that the model
does not make decisions on the encrypted parts of the packets as
has been claimed by using a CNN model as a black-box without
classification explainability in other research works [29]. This shows
how important explainable model decisions are. Therefore, it is nec-
essary to apply more rigorous preprocessing to filter out unencrypted

header information to research if machine learning approaches are
able to classify encrypted data with high accuracy.

Another challenges we encountered was the unbalanced
dataset [18]. The model learned the majority class, so we applied
downsampling of this dataset. For the model training should be
taken into account that there are enough samples of each class and
that the distribution of the classes is homogeneous.

7.2 Future Work
In addition to the evaluation suggestions and our discussed limita-
tions we have the following ideas for future work.
We are going to extend the CAM visualization with a threshold and
display the top n of the most impactful bytes directly and expand the
packet details tree with the segments that these bytes originate from.
One feature that would be useful is the creation of a report of the
entire classification, i.e. to demonstrate to the expert how the distri-
bution of the predicted classes appears in the data and an overview
of the impacting bytes of the corresponding application classes and
its content.
Based on the predicated application classes, clustering methods
could be applied and combined with other extracted features from
the data for visualization purposes. Searching for the similar packets
by filter functions based on the impacting bytes would be useful.
This will allow the user to filter out all similar packets where the
particular bytes have contributed to a specific application class.
We are interested in an exact evaluation of the detected patterns for
specific classes to evaluate the model and to learn which other fields,
that may coincidentally correlate with a class, should be hidden be-
sides the IP and MAC addresses. Since we discovered that all classes
had the impacting bytes in headers and only a few classes had some
impacting bytes additionally in the payload, we are going to train
our models only on the encrypted data, i.e. completely without any
known header information. Currently we create a vector based on
the bytes of a PCAP packet, on which a model is trained. However,
some bytes are not independent, for example, the IP address which
consists of 4 bytes. Our idea is to keep such grouped entities, i.e. to
unite the 4 bytes which represent the IP as one feature for the model.
This way it could be tested if the impacting bytes can be easier to
interpret. Moreover, this would also make it possible to use other
algorithms for classification explanation [30].

8 CONCLUSION

In this paper, we presented a visual interactive tool that serves as
an interface between experts, algorithms, and data. We combine
classification with a CNN model for network data and adopt an
explanation technique to interpret predictions. We summarized the
related work in NTMA, classification of network files and inter-
pretable deep learning methods. We defined four user groups and
their tasks and then derived three requirements for our system. Based
on the requirements we implemented our approach, introduced our
system and demonstrated a usage scenario with a well known dataset
in network analysis. We collected our own dataset with currently
popular common applications. We tested our model with our dataset
and a well-known dataset from the research community [18]. The
performance of our model showed strong results on both datasets.
Then, we interviewed experts and showed that our tool is intuitive to
use and raises trust in automatic classification methods. Through the
interviews we gathered valuable feedback that elicit future research
directions more clear. The reflection and discussion on our work
lead to new ideas which we want to tackle in future.
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