
Visualizing Comparisons of Bills of Materials
Rebecca Jones* Lucas Tate†

Pacific Northwest National Laboratory

ABSTRACT

The complexity of distributed manufacturing and software develop-
ment coupled with the increasing prevalence of cyber and supply
chain attacks necessitates a greater understanding of the hardware
and software components that comprise equipment in critical in-
frastructure. When a vulnerability in a single software library can
have disastrous consequences, being able to identify where that li-
brary may exist in equipment or software becomes a prerequisite for
protecting the overall infrastructure. This need has sparked a large
effort around the development and incorporation of bill-of-materials
(BOM) into security, asset management, and procurement practices
to aid in mitigating, and responding to future attacks. While much
of the current research is devoted to creating BOMs, it is equally
important to develop methods for comparing them to answer ques-
tions, such as: How has my software changed? Are two pieces of
equipment equivalent? Does this piece of equipment that just arrived
match my historical information? In this work, we demonstrate how
BOMs can be represented by graph structures. We then describe
how these structures can be fed into a graph comparison algorithm
to produce a novel interactive visualization that allows us to not only
identify differences in BOMs but show exactly where they are in the
product.

Index Terms: Security and Privacy—Formal Methods and Theory
of Security—Security Requirements; Human-centered computing—
Visualization—Visualization Techniques—Graph Drawings

1 INTRODUCTION

Protecting critical infrastructure from cyber attacks, natural disasters,
and other disruptions is a priority of the U.S. Government. Critical
infrastructure includes providing electricity to homes and businesses,
supplying natural gas for heating, and producing renewable energy
sources. A loss of these services, as seen in the Solarwinds supply
chain attack in 2020 [40], Texas snowstorm of 2021 [28], and the
Colonial Pipeline cyber incident of 2021 [29]. In May 2021, the
President of the United States issued an executive order to improve
the country’s cyber security [42]. As part of that order, every piece
of software sold to the U.S. government must be accompanied by
a software bill of materials (SBOM). A BOM is a detailed list of
the components in the system and can describe hardware, software,
operations, and Software as a Service (SAAS). The information
in the BOM can be used to identify obsolete software as well as
highlight potential susceptibility to publicly reported vulnerabilities
[12]. Due to the mandate, industry has been exploring the generation
of BOMs for their products.

The construction of BOMs today remains an inexact science for
numerous reasons [45]. Some of that variation results from a lack
of standardization. A primary reason for this is that there are cur-
rently competing formats and standards. BOMs also vary greatly
depending on whether they were produced by a first-party such as

*e-mail: rebecca.d.jones@pnnl.gov
†e-mail: lucas.tate@pnnl.gov

the author/manufacturer with complete knowledge or by a third-
party with incomplete knowledge. A current lack of mature tooling
also increases the difficulty of reliably reproducing BOMs, particu-
larly when looking at hardware BOMs which are often constructed
manually. Recorded names or strings can vary widely due to con-
vention, transcription, or spelling errors. Other differences can arise
based on varying levels of completeness or depth (was every inte-
grated circuit and stop accounted for, or every resistor soldered to
the board recorded?). Beyond hardware or software components, the
relationships linking them together can also be defined in a variety
of ways. Relationships can be be implied by a nesting structure,
described explicitly, represented by a diagram, or possibly even
omitted altogether.

Variation can also describe actual differences in composition,
and that is exactly what BOMs are designed to capture. These dif-
ferences could be alternative components that were used because
they were cheaper, or even a component that had to be replaced
because it’s been operational for 15 years. Other differences might
describe variations across a family of products or even the presence
of counterfeiting. While comparing the competing standards is out
of the scope of this paper, the inherent variability in BOMs necessi-
tates tools that allow us to perform comparisons. The focus of our
research is to provide an interactive visual comparison that effec-
tively communicates how two BOMs may be similar or dissimilar to
provide valuable insight and help to narrow subsequent analysis.

Current BOM comparison methods include using Excel or propri-
etary software such as Oracle Apps1, Unisoft2, ERPNext3. These
tools are limited in the types of BOMs they accept and the data
displayed, which does not necessarily include visualizations. Often,
set comparisons are used, which lose the information of how the
hardware or software is connected. They also focus on evaluating
the differences between BOM versions and not necessarily distinctly
different BOMs.

To account for the relationships between objects, we convert a
BOM into a graph, which we can then easily compare and visualize.
Traditional graph comparisons focus primarily on the structure of
the graph but fail to take advantage of other information available
within a BOM. To compare BOMs accurately, we need a method
that allows us to incorporate important component information such
as names, hashes, or versions, as well as structural information
describing how those components fit together. We create a mapping
that describes how the objects/components in one graph map to
the components/objects in the other graph based on a depth-first
search algorithm. When constructing the mapping, we can choose
which information we want to consider (e.g. name, hash, name and
hash) as well as whether the mapping should utilize exact or fuzzy
matches. Fuzzy matching can be useful in instances where names or
strings might have spelling or transcription errors, and can suggest
where nodes in the graphs might have intended to reference the same
component. Once constructred, the mapping is then used to combine
the BOM graphs into a single merged graph.

1https://docs.oracle.com/cd/A60725_05/html/comnls/us/

bom/bomtas12.htm
2https://www.unisoft-cim.com/bom-comparison-method-1.

html
3ERPNext

ar
X

iv
:2

30
9.

11
62

0v
1

 [
cs

.H
C

]
 2

0
Se

p
20

23

https://docs.oracle.com/cd/A60725_05/html/comnls/us/bom/bomtas12.htm
https://docs.oracle.com/cd/A60725_05/html/comnls/us/bom/bomtas12.htm
https://www.unisoft-cim.com/bom-comparison-method-1.html
https://www.unisoft-cim.com/bom-comparison-method-1.html
https://docs.erpnext.com/docs/v12/user/manual/en/manufacturing/bom-comparison-tool

1.1 Outline
In this paper, we will demonstrate our method for comparing BOMs
and show how visualizing this approach can help analyze BOM
differences. We will start out by discussing BOMs and how they
can be represented as graphs, as well as current research in Sect. 2.
Sect. 3 contains the method for combining BOMs, and Sect. 4
demonstrates the visualizations in two different examples. Lastly,
we’ll end with our conclusion in Sect. 5.

2 BACKGROUND

A bill of materials (BOM) is a list of all parts needed to produce a
product. For each part in the finished product, the BOM can store
various attributes like version, manufacturer, vendor, hash, package
URL (PURL), and location. At this time, there is no single industry
standard for generating BOMs. SBOMs have received more atten-
tion and presently, the three most widely used open source standards
are CycloneDX [30], Software package data exchange (SPDX) [41],
and Software identification (SWID) tags [11]. In addition to in-
cluding information on the components, some BOMs also contain
information on how the components are connected. This can be
a separate document like a drawing or a list of relationships. The
relationships in a BOM are important for identifying vulnerabilities,
since connections may exacerbate or nullify a vulnerability.

2.1 Bill of Materials as Graphs
Many of the BOM comparison tools listed in Sect. 1 use set compar-
isons on the BOM objects. This results in a loss of information about
how the components in the BOM are connected and is why relation-
ships are needed in a BOM. For instance, a 12-pin port appearing in
two hardware BOMs could be connected to different circuit boards
in the actual products. There is also no guarantee that objects in
BOMs have the same names, unique ids, or other metadata. This
emphasis on needing connections naturally leads to representing
BOMs as graphs.

Figure 1: Visualization of an open-source Saas BOM. Created using
Cytoscape [34].

A graph is a mathematical object that represents how things
are connected. Each component of the BOM becomes a node in
the graph while the relationships determine the edges. Edges are
created between components when a component possesses some
relationship (e.g. contains, uses, imports, includes, etc.) to another
component. For example, if a software file imports another software
file, then there would be an edge from one file node to the other
file node. A hardware example is when a chip is soldered onto a
circuit board, so there is an edge from the circuit board node to the
chip node in the graph. Fig. 1 shows the graph for an open-source
example SAAS BOM stored in a json file [1]. Each of the nodes
in the graph represent one of the seven services listed in the BOM,
uniquely identified by the “bom-ref”. The edges are created from
the dependencies key. Each entry in contains a “ref” and a “depends
on” key which list the “bom-ref” ids that are connected.

Notice that since there could be duplicated parts in a system, there
could be similar components in a BOM, e.g. multiple chips of the
same type. In a BOM, each component has a unique ID, and different
relationships to distinguish between the different components. Also,
the metadata included in the BOM could be added to the graph as

node attributes, features that are attached to a node. For instance,
each node could have a vender attribute that lists the product vendor.

2.2 Previous Research
As mentioned, a graph is a natural choice to represent a BOM that
contains relationships [8, 18, 33, 43]. Hypergraphs can also be used
to represent certain BOMs [27], although we note that not all BOMs
have the structure needed to created a hypergraph. Graph databases
are relational databases that store node data and relationships, i.e.,
graphs, instead of tables and have been suggested for storing BOM
data [7]. A high profile commercial graph database, Neo4j, is used
by the Army to manage their BOMs [44] quickly and efficiently [17].
In comparing BOMs, previous research has attempted to answer
the question, “How similar are two BOMs?” This has often been
answered with a distance metric [23, 32, 35]. There is some work
that looks at combining multiple BOMs into graphs: aggregating
multiple BOMs into one network to calculate network properties on
the combined graph [9], and demonstrating graph matching methods
to match pairs of BOMs to reduce production time [22].

There is more work on comparing general graphs. Methods for
this include calculating distance metrics which determine how far
apart graphs are in some metric space [4], clustering which looks
at structural differences [6], deep learning [15, 19], and node corre-
spondence algorithms [37]. We use the latter, in which nodes from
one graph are mapped to another graph. This can be done where
the node mapping is already known such as a cut distance [25] or
where the node mapping is not known. When the node mapping
is unknown, it is referred to as an unknown node correspondence,
or UNC. One UNC approach is called alignment, where the map-
ping between graphs is created by optimizing a similarity function
over the graph [24]. Many of the unknown node correspondence
algorithms only use the graph structure and some are restricted to
trees [26, 31]. The node mapping can also include the node features
(in our case BOM metadata) in the similarity score calculation [13].

Visualizing graphs, especially large graphs, is challenging. The
superposition approach overlays the two graphs [16]. This is similar
to our method, in which we merge the two graphs into one and
display the combined graph. Because there is more node metadata
than can reasonably be presented at one time, a useful visualization
for analysis will be interactive and allow users to manually compare
the graphs [2, 20, 21]. Most BOM visualization techniques leverage
tables to display the BOM differences [14, 36]. Often, these are
compared using set comparisons, which leave out information about
relationships, but they can facilitate multiple comparisons at once [3].
Visualizing sets can incorporate structure, but it’s not as easy to
see the differences [39]. SVG is a visualization tool that uses the
Hungarian Assignment algorithm to map nodes and can include
semantics like node attributes [5]. It requires node similarities to be
calculated beforehand while our focus is calculating the mapping.

3 COMBINING TWO BOM GRAPHS

Our method of combining BOMs uses an unknown node mapping,
where each node in one graph is mapped to a unique node in the
second graph, if possible. To do this, we implement a depth-first
search algorithm [38]. Depth first search is a traversal algorithm,
meaning it visits each node in the graph exactly once and runs in
linear time with the number of nodes in the graph. At each node,
a similarity matching is done against the nodes in the other graph.
The matching can be done on any number of node attributes and
can be any string similarity metric, such as exact matching or Jaro-
Winkler [10].

The process is outlined in Fig. 2. First, two BOMs are turned into
graphs, as illustrated in Fig. 1. A starting node in Graph 1 is chosen
that has a known match in Graph 2, such as C. Graph 1 is traversed,
mapping nodes in Graph 1 to nodes in Graph 2 that have similar
edges and attributes (or names as in the example). Then the graphs

https://github.com/CycloneDX/bom-examples/tree/master/SaaSBOM/apigateway-microservices-datastores

are combined, using the node mapping. This yields the first merged
graph in Fig. 2. Throughout the paper, blue represents nodes that
have a mapping from Graph 1 to Graph 2, yellow represents nodes
in Graph 1, and pink represents nodes only in Graph 2.

For further analysis, we include an option to predict nodes that
might be the same based on fuzzy string matching and graph neigh-
bors, as seen in the far right circle of Fig. 2. This is done by rerunning
the depth first search algorithm with any fuzzy string matching al-
gorithm on the nodes that were not mapped, D, F , and G in our
example. Assuming H and D are close through some string simi-
larity, since they have the same neighbors, a green edge is shown
between them, depicting a possible match. For graphs where large
number of nodes result in severe overplotting, we include an option
to condense the merged graph by combining leaf nodes that appear
in both graphs into a single supernode, as with nodes A and B.

BOM 1

BOM 2

A
C

B

I
E

H

A
C

B

FE
D

G

Merged Graph Merged Graph
(recommendation)

Graph 1

Graph 2

C

AB

I
E F

G

H

A
C

B

I
E F

G

H D D

Figure 2: The process of combining BOMs into a single graph. Blue
nodes indicate a successful mapping between the graphs. Pink nodes
indicate that the node is only in Graph 1. Yellow nodes mean that the
nodes appear in Graph 2. Green edges indicate that the connected
nodes might be the same; they have similar neighbors and have node
attributes that meet some similarity threshold.

An interactive .html version of the combined graph is saved, as
well as a .gml, so the merged graph can be imported into most graph
visualization tools. Our method is an end-to-end system, taking in
graphs generated from BOMs, merging the graphs, and creating a
visualization. Some of the benefits of our method are that we allow
any type of graph (we’re not restricted to trees), that we include
the node attributes and structure in the node mapping, we allow for
fuzzy string matching, and we include interactive visualizations.

4 USE CASES

To demonstrate the usefulness of this method, two illustrative use
cases are provided. The first use case looks at two versions (1.6.3
and 1.8.0) of an open-source example SBOM for proton-bridge.
The graphs, displayed in Fig. 3 and Fig. 4, were created in the same
manner as the example in Sect. 2.1 where components become nodes
in the graph and the relationships are created from the dependencies.
The node mapping was done with an exact match on the SHA-256
hash. So nodes are considered equal if they have the same hash and
the same neighbors. By looking at the merged graph shown in Fig. 5,
we can easily see the differences between the two versions through
the pink (version 1.6.3) and the yellow (version 1.8.0) nodes. When
a user hovers over a node, its edges turn green to highlight the node’s
neighbors, and the node attributes are listed at the top. This way, a
user can manually select and compare node information to identify
discrepancies and possible differences.

From a cyber perspective, only the yellow nodes, nodes in the
newer software version, will drive new behaviors or introduce new
vulnerabilities, which should allow us to narrow our focus when
analyzing new BOMs. The utility of comparing within a version
controlled repository is diminished since much of the insights can be
reproduced using version control software, so it’s important to note
that this approach is going to be agnostic to varied node definitions

(e.g. files, directories, functions, containers, etc.) or relationship
definitions (e.g. contains, imports, installs, downloads, etc.) and
furthermore allows the user to choose which node attribute(s) should
be utilized for the mapping (e.g. names, hashes, etc.).

8/11/23, 9:11 AM 1.6.3

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/open-source_BOMs/sbom/proton-bridge/1.6.3.html 1/1

Figure 3: Visualization of
proton-bridge-v1.6.3 BOM.

8/11/23, 9:08 AM 1.8.0

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/open-source_BOMs/sbom/proton-bridge/1.8.0.html 1/1Figure 4: Visualization of
proton-bridge-v1.8.0 BOM.

8/11/23, 9:18 AM test2

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/open-source_BOMs/sbom/proton-bridge/proton_bridge_viz.html 1/1

Powered by TCPDF (www.tcpdf.org)

Figure 5: Visualization of the combined proton-bridge graph. Blue
nodes represent components with the same SHA-256 hash and edges.
Pink nodes appear only in version 1.6.3, and yellow nodes only ap-
pear in version 1.8.0. The green edge is reflects relationships to the
highlighted node. Node information for the selected node is displayed
in the top left corner.

Next, we look at an actual comparison of two hardware bill of
materials (HBOMs) Fig. 10. In this real example, the HBOMs were
furnished by the same entity and generated for two devices of the
same model, represented by Fig. 6 and Fig. 7. Nodes represent
hardware components in the device and relationships show how the
components are physically connected. A first pass of the algorithm
used exact matching on the node names to generate the initial node
mapping, creating the merged graph shown in Fig. 8. Blue nodes
once again represent components in both BOMs. This means that
the components have the exact same name and neighbors in both
devices. We condensed the merged graph by collapsing blue leaf
nodes into supernodes, as seen in Fig. 9. In a small graph like this
one, collapsing the nodes is not needed, but when the graph becomes
too large to easily display, collapsing leaf nodes can simplify the
graph and allow the differences to be easily seen. A second pass of
the algorithm used a fuzzy match on the names to draw green edges,
see Fig. 10, which suggests where components may be similar.

https://github.com/CycloneDX/bom-examples/tree/master/SBOM/proton-bridge

At first glance we can see that there is a central blue structure in
the graph which suggests the core structures of the two devices are
the same. This isn’t especially surprising since we are comparing
two devices of the same model. From there we can visually make
some additional observations. First, there is a yellow structure jutting
from the center to the lower left. This suggests (and was confirmed)
to be an additional circuit board in one of the devices accompanied
by the corresponding mounted components.

8/11/23, 8:32 AM ion1

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/double_graph/hardware/paper/ion1.html 1/1

Figure 6: First HBOM Graph

8/11/23, 8:38 AM ion2

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/double_graph/hardware/paper/ion2.html 1/1Figure 7: Second HBOM Graph

8/11/23, 8:39 AM ion_full

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/double_graph/hardware/paper/ion_full.html 1/1
Figure 8: Comparison of the exact component names between
HBOMs generated on two distinct hardware devices of the same
model. Blue nodes indicate mapped nodes in both graphs.

Second, the green edges point to instances of similarly named
components at the same structural location in each device. By
manually inspecting the nodes connected by green edges, subject
matter experts (SMEs) were able to view the metadata and compare
the two nodes. This quickly revealed similarly named components,
spelling errors, and subtle differences in the convention used to
record names. For example, AS298 mapped to A5298, likely a
transcription error switching the S to a 5. The denser green webs
form where there are multiples of a component on one device that
got mapped to multiples of a component on the other device and the
names are very similar.

The interactive visualization showed marked benefits over the
baseline approach of set comparisons and greatly increased the abil-
ity of SMEs to explore, explain, and respond appropriately to discrep-
ancies that were identified. Along with discovering the additional
circuit board, SMEs were able to identify some major inconsisten-
cies, likely spelling or transcription errors as described above, that
had previously been undetected using this tool. With subsequent use

of the visualization SMEs were quickly able to form an intuition
about the differences in similar graphs, greatly increasing the speed
and efficiency of the BOM comparisons.

5 CONCLUSION

The increasing prevalence of BOMs requires new tools and methods
to leverage them. While policy is largely driving the creation and
adoption of BOMs, methods for analyzing them have lagged. Our
method describes a flexible approach to easily explore the similarity
or dissimilarity of two BOMs based on any number of metadata
attributes. By presenting the results in an interactive graph visualiza-
tion, users are able to quickly identify and explore differences for
asset management or security use cases.

Figure 9: Combined HBOM graph with leaf nodes collapsed.
8/11/23, 8:21 AM ion_overlay_collapsed

file:///C:/Users/jone252/Documents/CyTRICS-main/cytrics_data/double_graph/hardware/paper/ion_overlay_collapsed.html 1/1Figure 10: Combined HBOM graph with suggested mappings shown
in green.

ACKNOWLEDGMENTS

The authors wish to thank the Department of Energy (DOE) Cy-
bersecurity, Energy Security, and Emergency Response (CESER)
and the Cyber Testing and Resilience of Industrial Control Systems
(CyTRICS) Program including Idaho National Laboratory (INL),
Lawrence Livermore National Laboratory (LLNL), National Re-
newable Energy Laboratory (NREL), Oakridge National Laboratory
(ORNL), and Sandia National Laboratory (SNL).

REFERENCES

[1] CycloneDX/bom-examples. https://github.com/CycloneDX/bom-
examples. Last accessed 2023-06-30, 2013.

[2] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete.
Weighted graph comparison techniques for brain connectivity anal-
ysis. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 483–492. ACM. doi: 10.1145/2470654.
2470724

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers. The state-of-the-art of set visualization: The state-of-
the-art of set visualization. 35(1):234–260. doi: 10.1111/cgf.12722

[4] N. Amenta and J. Klingner. Case study: visualizing sets of evolutionary
trees. In IEEE Symposium on Information Visualization, 2002. INFO-
VIS 2002., pp. 71–74. IEEE Comput. Soc. doi: 10.1109/INFVIS.2002.
1173150

[5] K. Andrews, M. Wohlfahrt, and G. Wurzinger. Visual graph compari-
son. In 2009 13th International Conference Information Visualisation,
pp. 62–67. IEEE. doi: 10.1109/IV.2009.108

[6] D. Archambault. Structural differences between two graphs through
hierarchies. In GI ’09: Proceedings of Graphics Interface 2009, pp.
87–94. Canadian Information Processing Society.

[7] A. O. Aydin and A. Güngör *. Effective relational database ap-
proach to represent bills-of-materials. 43(6):1143–1170. doi: 10.1080/
00207540512331336528

[8] S. Carmody, A. Coravos, G. Fahs, A. Hatch, J. Medina, B. Woods, and
J. Corman. Building resilient medical technology supply chains with a
software bill of materials. 4(1):34. doi: 10.1038/s41746-021-00403-w

[9] M. Cinelli, G. Ferraro, A. Iovanella, G. Lucci, and M. M. Schiraldi.
A network perspective on the visualization and analysis of bill of
materials. 9:184797901773263. doi: 10.1177/1847979017732638

[10] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string
distance metrics for name-matching tasks. IIWeb, 2003, June 2003.

[11] Computer Security Division, Information Technology Labora-
tory. Software identification (SWID) tagging | CSRC | CSRC.
https://csrc.nist.gov/projects/Software-Identification-SWID. Last ac-
cessed 2023-06-30.

[12] Cybersecurity and Infrastructure Security Agency. Software bill of
materials (SBOM). https://www.cisa.gov/sbom. Last accessed 2023-
06-30.

[13] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in
OWL-lite. In Proceedings of the 16th Eureopean Conference on Artifi-
cial Intelligence, p. 323–327, August 2004.

[14] M. Freire, C. Plaisant, B. Shneiderman, and J. Golbeck. ManyNets:
an interface for multiple network analysis and visualization. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 213–222. ACM. doi: 10.1145/1753326.1753358

[15] T. Fujiwara, J. Zhao, F. Chen, and K.-L. Ma. A visual analytics
framework for contrastive network analysis. In 2020 IEEE Conference
on Visual Analytics Science and Technology (VAST), pp. 48–59. IEEE.
doi: 10.1109/VAST50239.2020.00010

[16] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. 10(4):289–
309. doi: 10.1177/1473871611416549

[17] J. Guia, V. Gonçalves Soares, and J. Bernardino. Graph databases:
Neo4j analysis:. In Proceedings of the 19th International Conference
on Enterprise Information Systems, pp. 351–356. SCITEPRESS - Sci-
ence and Technology Publications. doi: 10.5220/0006356003510356

[18] J. Guoli, G. Daxin, and F. Tsui. Analysis and implementation of the
BOM of a tree-type structure in MRPII. 139(1):535–538. doi: 10.
1016/S0924-0136(03)00520-X

[19] D. Han, J. Pan, C. Xie, X. Zhao, and W. Chen. A visual analytics
approach for structural differences among transportation networks.
53(5):566–571. doi: 10.1016/j.ifacol.2021.04.226

[20] M. Hascoët and P. Dragicevic. Interactive graph matching and visual
comparison of graphs and clustered graphs. In Proceedings of the
International Working Conference on Advanced Visual Interfaces - AVI
’12, p. 522. ACM Press. doi: 10.1145/2254556.2254654

[21] J. Huerta-Cepas, J. Dopazo, and T. Gabaldón. ETE: a python environ-
ment for tree exploration. 11(1):24. doi: 10.1186/1471-2105-11-24

[22] M. Kashkoush and H. ElMaraghy. Matching bills of materials using
tree reconciliation. 7:169–174. doi: 10.1016/j.procir.2013.05.029

[23] M. Kashkoush and H. ElMaraghy. Product family formation by match-
ing bill-of-materials trees. 12:1–13. doi: 10.1016/j.cirpj.2015.09.004

[24] O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj.
Topological network alignment uncovers biological function and phy-
logeny. 7(50):1341–1354. doi: 10.1098/rsif.2010.0063

[25] Q. Liu, Z. Dong, and E. Wang. Cut based method for comparing
complex networks. 8(1):5134. doi: 10.1038/s41598-018-21532-5

[26] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Tree-
Juxtaposer: scalable tree comparison using focus+context with guaran-
teed visibility. 22(3):453–462. doi: 10.1145/882262.882291

[27] L. Nagy, T. Ruppert, A. Löcklin, and J. Abonyi. Hypergraph-based
analysis and design of intelligent collaborative manufacturing space.
65:88–103. doi: 10.1016/j.jmsy.2022.08.001

[28] National Weather Service. Valentine’s week win-
ter outbreak 2021: Snow, ice, & record cold.
https://www.weather.gov/hgx/2021ValentineStorm. Last accessed
2023-06-30.

[29] Office of Cybersecurity, Energy Security and Emer-
gency Response. Colonial pipeline cyber incident.
https://www.energy.gov/ceser/colonial-pipeline-cyber-incident.
Last accessed 2023-06-30.

[30] OWASP Foundation. OWASP CycloneDX software bill of materials
(SBOM) standard. https://cyclonedx.org/. Last accessed 2023-06-30.

[31] A. Priel and B. Tamir. A vectorial tree distance measure. 12(1):5256.
doi: 10.1038/s41598-022-08360-4

[32] C. Romanowski and R. Nagi. On comparing bills of materials: A
similarity/ distance measure for unordered trees. 35(2):249–260. doi:
10.1109/TSMCA.2005.843395

[33] M. Schmidt, B. Gehring, J.-S. Gerber, J. M. Stocker, M. Kreimeyer, and
M. Lienkamp. Graph-based similarity analysis of BOM data to identify
unnecessary inner product variance. In 21st International Conference
on Engineering Design (ICED17), vol. 1, pp. 489–498, August 2017.

[34] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software envi-
ronment for integrated models of biomolecular interaction networks.
13(11):2498–2504. doi: 10.1101/gr.1239303

[35] H. M. Shih. Product structure (BOM)-based product similarity mea-
sures using orthogonal procrustes approach. 61(3):608–628. doi: 10.
1016/j.cie.2011.04.016

[36] O. Shilovitsky. OpenBOM best practices – BOM visualization
types. https://www.openbom.com/blog/openbom-best-practices-bom-
visualization-types. Last accessed 2023-06-30, September 2022.

[37] M. Tantardini, F. Ieva, L. Tajoli, and C. Piccardi. Comparing methods
for comparing networks. 9(1):17557. doi: 10.1038/s41598-019-53708
-y

[38] R. Tarjan. Depth-first search and linear graph algorithms. 1(2):146–160.
doi: 10.1137/0201010

[39] A. Telea and D. Auber. Code flows: Visualizing structural evolution of
source code. 27(3):831–838. doi: 10.1111/j.1467-8659.2008.01214.x

[40] D. Temple-Raston. A ’worst nightmare’ cyberattack: The untold story
of the SolarWinds hack. https://www.npr.org/2021/04/16/985439655/a-
worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-
hack. Last accessed 2023-06-30.

[41] The Linux Foundation Projects. International open standard
(ISO/IEC 5962:2021) - software package data exchange (SPDX).
https://spdx.dev/. Last accessed 2023-06-30.

[42] The White House. Executive order on improving the nation’s
cybersecurity. https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/. Last accessed 2023-06-30.

[43] Y. Wang, W. G. Wang, and S. Mao. A new type of BOM model and
its application. 347-350:1234–1238. doi: 10.4028/www.scientific.
net/AMM.347-350.1234

[44] J. Webber. Top 10 use cases: Bill of materials.
https://neo4j.com/blog/top-10-use-cases-bill-of-materials/. Last
accessed 2023-06-30.

[45] G. Wright and K. Hannah. S4 SBOM challenge debrief.
https://www.youtube.com/watch?v=2sQNcc4xphw. S4x23.

https://github.com/CycloneDX/bom-examples
https://github.com/CycloneDX/bom-examples
https://csrc.nist.gov/projects/Software-Identification-SWID
https://www.cisa.gov/sbom
https://www.weather.gov/hgx/2021ValentineStorm
https://www.energy.gov/ceser/colonial-pipeline-cyber-incident
https://cyclonedx.org/
https://www.openbom.com/blog/openbom-best-practices-bom-visualization-types
https://www.openbom.com/blog/openbom-best-practices-bom-visualization-types
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://spdx.dev/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://neo4j.com/blog/top-10-use-cases-bill-of-materials/
https://www.youtube.com/watch?v=2sQNcc4xphw

	Introduction
	Outline

	Background
	Bill of Materials as Graphs
	Previous Research

	Combining Two BOM Graphs
	Use Cases
	Conclusion

